rocksdb/cache/lru_cache_test.cc
Zhichao Cao f44e69c64a Use DbSessionId as cache key prefix when secondary cache is enabled (#8360)
Summary:
Currently, we either use the file system inode or a monotonically incrementing runtime ID as the block cache key prefix. However, if we use a monotonically incrementing runtime ID (in the case that the file system does not support inode id generation), in some cases, it cannot ensure uniqueness (e.g., we have secondary cache migrated from host to host). We use DbSessionID (20 bytes) + current file number (at most 10 bytes) as the new cache block key prefix when the secondary cache is enabled. So can accommodate scenarios such as transfer of cache state across hosts.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8360

Test Plan: add the test to lru_cache_test

Reviewed By: pdillinger

Differential Revision: D29006215

Pulled By: zhichao-cao

fbshipit-source-id: 6cff686b38d83904667a2bd39923cd030df16814
2021-06-10 11:02:43 -07:00

994 lines
36 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include "cache/lru_cache.h"
#include <string>
#include <vector>
#include "db/db_test_util.h"
#include "file/sst_file_manager_impl.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/io_status.h"
#include "rocksdb/sst_file_manager.h"
#include "test_util/testharness.h"
#include "util/coding.h"
#include "util/random.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
class LRUCacheTest : public testing::Test {
public:
LRUCacheTest() {}
~LRUCacheTest() override { DeleteCache(); }
void DeleteCache() {
if (cache_ != nullptr) {
cache_->~LRUCacheShard();
port::cacheline_aligned_free(cache_);
cache_ = nullptr;
}
}
void NewCache(size_t capacity, double high_pri_pool_ratio = 0.0,
bool use_adaptive_mutex = kDefaultToAdaptiveMutex) {
DeleteCache();
cache_ = reinterpret_cast<LRUCacheShard*>(
port::cacheline_aligned_alloc(sizeof(LRUCacheShard)));
new (cache_) LRUCacheShard(
capacity, false /*strict_capcity_limit*/, high_pri_pool_ratio,
use_adaptive_mutex, kDontChargeCacheMetadata,
24 /*max_upper_hash_bits*/, nullptr /*secondary_cache*/);
}
void Insert(const std::string& key,
Cache::Priority priority = Cache::Priority::LOW) {
EXPECT_OK(cache_->Insert(key, 0 /*hash*/, nullptr /*value*/, 1 /*charge*/,
nullptr /*deleter*/, nullptr /*handle*/,
priority));
}
void Insert(char key, Cache::Priority priority = Cache::Priority::LOW) {
Insert(std::string(1, key), priority);
}
bool Lookup(const std::string& key) {
auto handle = cache_->Lookup(key, 0 /*hash*/);
if (handle) {
cache_->Release(handle);
return true;
}
return false;
}
bool Lookup(char key) { return Lookup(std::string(1, key)); }
void Erase(const std::string& key) { cache_->Erase(key, 0 /*hash*/); }
void ValidateLRUList(std::vector<std::string> keys,
size_t num_high_pri_pool_keys = 0) {
LRUHandle* lru;
LRUHandle* lru_low_pri;
cache_->TEST_GetLRUList(&lru, &lru_low_pri);
LRUHandle* iter = lru;
bool in_high_pri_pool = false;
size_t high_pri_pool_keys = 0;
if (iter == lru_low_pri) {
in_high_pri_pool = true;
}
for (const auto& key : keys) {
iter = iter->next;
ASSERT_NE(lru, iter);
ASSERT_EQ(key, iter->key().ToString());
ASSERT_EQ(in_high_pri_pool, iter->InHighPriPool());
if (in_high_pri_pool) {
high_pri_pool_keys++;
}
if (iter == lru_low_pri) {
ASSERT_FALSE(in_high_pri_pool);
in_high_pri_pool = true;
}
}
ASSERT_EQ(lru, iter->next);
ASSERT_TRUE(in_high_pri_pool);
ASSERT_EQ(num_high_pri_pool_keys, high_pri_pool_keys);
}
private:
LRUCacheShard* cache_ = nullptr;
};
TEST_F(LRUCacheTest, BasicLRU) {
NewCache(5);
for (char ch = 'a'; ch <= 'e'; ch++) {
Insert(ch);
}
ValidateLRUList({"a", "b", "c", "d", "e"});
for (char ch = 'x'; ch <= 'z'; ch++) {
Insert(ch);
}
ValidateLRUList({"d", "e", "x", "y", "z"});
ASSERT_FALSE(Lookup("b"));
ValidateLRUList({"d", "e", "x", "y", "z"});
ASSERT_TRUE(Lookup("e"));
ValidateLRUList({"d", "x", "y", "z", "e"});
ASSERT_TRUE(Lookup("z"));
ValidateLRUList({"d", "x", "y", "e", "z"});
Erase("x");
ValidateLRUList({"d", "y", "e", "z"});
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"y", "e", "z", "d"});
Insert("u");
ValidateLRUList({"y", "e", "z", "d", "u"});
Insert("v");
ValidateLRUList({"e", "z", "d", "u", "v"});
}
TEST_F(LRUCacheTest, MidpointInsertion) {
// Allocate 2 cache entries to high-pri pool.
NewCache(5, 0.45);
Insert("a", Cache::Priority::LOW);
Insert("b", Cache::Priority::LOW);
Insert("c", Cache::Priority::LOW);
Insert("x", Cache::Priority::HIGH);
Insert("y", Cache::Priority::HIGH);
ValidateLRUList({"a", "b", "c", "x", "y"}, 2);
// Low-pri entries inserted to the tail of low-pri list (the midpoint).
// After lookup, it will move to the tail of the full list.
Insert("d", Cache::Priority::LOW);
ValidateLRUList({"b", "c", "d", "x", "y"}, 2);
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"b", "c", "x", "y", "d"}, 2);
// High-pri entries will be inserted to the tail of full list.
Insert("z", Cache::Priority::HIGH);
ValidateLRUList({"c", "x", "y", "d", "z"}, 2);
}
TEST_F(LRUCacheTest, EntriesWithPriority) {
// Allocate 2 cache entries to high-pri pool.
NewCache(5, 0.45);
Insert("a", Cache::Priority::LOW);
Insert("b", Cache::Priority::LOW);
Insert("c", Cache::Priority::LOW);
ValidateLRUList({"a", "b", "c"}, 0);
// Low-pri entries can take high-pri pool capacity if available
Insert("u", Cache::Priority::LOW);
Insert("v", Cache::Priority::LOW);
ValidateLRUList({"a", "b", "c", "u", "v"}, 0);
Insert("X", Cache::Priority::HIGH);
Insert("Y", Cache::Priority::HIGH);
ValidateLRUList({"c", "u", "v", "X", "Y"}, 2);
// High-pri entries can overflow to low-pri pool.
Insert("Z", Cache::Priority::HIGH);
ValidateLRUList({"u", "v", "X", "Y", "Z"}, 2);
// Low-pri entries will be inserted to head of low-pri pool.
Insert("a", Cache::Priority::LOW);
ValidateLRUList({"v", "X", "a", "Y", "Z"}, 2);
// Low-pri entries will be inserted to head of high-pri pool after lookup.
ASSERT_TRUE(Lookup("v"));
ValidateLRUList({"X", "a", "Y", "Z", "v"}, 2);
// High-pri entries will be inserted to the head of the list after lookup.
ASSERT_TRUE(Lookup("X"));
ValidateLRUList({"a", "Y", "Z", "v", "X"}, 2);
ASSERT_TRUE(Lookup("Z"));
ValidateLRUList({"a", "Y", "v", "X", "Z"}, 2);
Erase("Y");
ValidateLRUList({"a", "v", "X", "Z"}, 2);
Erase("X");
ValidateLRUList({"a", "v", "Z"}, 1);
Insert("d", Cache::Priority::LOW);
Insert("e", Cache::Priority::LOW);
ValidateLRUList({"a", "v", "d", "e", "Z"}, 1);
Insert("f", Cache::Priority::LOW);
Insert("g", Cache::Priority::LOW);
ValidateLRUList({"d", "e", "f", "g", "Z"}, 1);
ASSERT_TRUE(Lookup("d"));
ValidateLRUList({"e", "f", "g", "Z", "d"}, 2);
}
class TestSecondaryCache : public SecondaryCache {
public:
explicit TestSecondaryCache(size_t capacity)
: num_inserts_(0), num_lookups_(0), inject_failure_(false) {
cache_ = NewLRUCache(capacity, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
}
~TestSecondaryCache() override { cache_.reset(); }
std::string Name() override { return "TestSecondaryCache"; }
void InjectFailure() { inject_failure_ = true; }
void ResetInjectFailure() { inject_failure_ = false; }
void SetDbSessionId(const std::string& db_session_id) {
db_session_id_ = db_session_id;
}
Status Insert(const Slice& key, void* value,
const Cache::CacheItemHelper* helper) override {
if (inject_failure_) {
return Status::Corruption("Insertion Data Corrupted");
}
assert(IsDbSessionIdAsKeyPrefix(key) == true);
size_t size;
char* buf;
Status s;
num_inserts_++;
size = (*helper->size_cb)(value);
buf = new char[size + sizeof(uint64_t)];
EncodeFixed64(buf, size);
s = (*helper->saveto_cb)(value, 0, size, buf + sizeof(uint64_t));
if (!s.ok()) {
delete[] buf;
return s;
}
return cache_->Insert(key, buf, size,
[](const Slice& /*key*/, void* val) -> void {
delete[] static_cast<char*>(val);
});
}
std::unique_ptr<SecondaryCacheHandle> Lookup(
const Slice& key, const Cache::CreateCallback& create_cb,
bool /*wait*/) override {
std::unique_ptr<SecondaryCacheHandle> secondary_handle;
Cache::Handle* handle = cache_->Lookup(key);
num_lookups_++;
if (handle) {
void* value;
size_t charge;
char* ptr = (char*)cache_->Value(handle);
size_t size = DecodeFixed64(ptr);
ptr += sizeof(uint64_t);
Status s = create_cb(ptr, size, &value, &charge);
if (s.ok()) {
secondary_handle.reset(
new TestSecondaryCacheHandle(cache_.get(), handle, value, charge));
} else {
cache_->Release(handle);
}
}
return secondary_handle;
}
void Erase(const Slice& /*key*/) override {}
void WaitAll(std::vector<SecondaryCacheHandle*> /*handles*/) override {}
std::string GetPrintableOptions() const override { return ""; }
uint32_t num_inserts() { return num_inserts_; }
uint32_t num_lookups() { return num_lookups_; }
bool IsDbSessionIdAsKeyPrefix(const Slice& key) {
if (db_session_id_.size() == 0) {
return true;
}
if (key.size() < 20) {
return false;
}
std::string s_key = key.ToString();
if (s_key.substr(0, 20) != db_session_id_) {
return false;
}
return true;
}
private:
class TestSecondaryCacheHandle : public SecondaryCacheHandle {
public:
TestSecondaryCacheHandle(Cache* cache, Cache::Handle* handle, void* value,
size_t size)
: cache_(cache), handle_(handle), value_(value), size_(size) {}
~TestSecondaryCacheHandle() override { cache_->Release(handle_); }
bool IsReady() override { return true; }
void Wait() override {}
void* Value() override { return value_; }
size_t Size() override { return size_; }
private:
Cache* cache_;
Cache::Handle* handle_;
void* value_;
size_t size_;
};
std::shared_ptr<Cache> cache_;
uint32_t num_inserts_;
uint32_t num_lookups_;
bool inject_failure_;
std::string db_session_id_;
};
class DBSecondaryCacheTest : public DBTestBase {
public:
DBSecondaryCacheTest()
: DBTestBase("/db_secondary_cache_test", /*env_do_fsync=*/true) {
fault_fs_.reset(new FaultInjectionTestFS(env_->GetFileSystem()));
fault_env_.reset(new CompositeEnvWrapper(env_, fault_fs_));
}
std::shared_ptr<FaultInjectionTestFS> fault_fs_;
std::unique_ptr<Env> fault_env_;
};
class LRUSecondaryCacheTest : public LRUCacheTest {
public:
LRUSecondaryCacheTest() : fail_create_(false) {}
~LRUSecondaryCacheTest() {}
protected:
class TestItem {
public:
TestItem(const char* buf, size_t size) : buf_(new char[size]), size_(size) {
memcpy(buf_.get(), buf, size);
}
~TestItem() {}
char* Buf() { return buf_.get(); }
size_t Size() { return size_; }
private:
std::unique_ptr<char[]> buf_;
size_t size_;
};
static size_t SizeCallback(void* obj) {
return reinterpret_cast<TestItem*>(obj)->Size();
}
static Status SaveToCallback(void* from_obj, size_t from_offset,
size_t length, void* out) {
TestItem* item = reinterpret_cast<TestItem*>(from_obj);
char* buf = item->Buf();
EXPECT_EQ(length, item->Size());
EXPECT_EQ(from_offset, 0);
memcpy(out, buf, length);
return Status::OK();
}
static void DeletionCallback(const Slice& /*key*/, void* obj) {
delete reinterpret_cast<TestItem*>(obj);
}
static Cache::CacheItemHelper helper_;
static Status SaveToCallbackFail(void* /*obj*/, size_t /*offset*/,
size_t /*size*/, void* /*out*/) {
return Status::NotSupported();
}
static Cache::CacheItemHelper helper_fail_;
Cache::CreateCallback test_item_creator =
[&](void* buf, size_t size, void** out_obj, size_t* charge) -> Status {
if (fail_create_) {
return Status::NotSupported();
}
*out_obj = reinterpret_cast<void*>(new TestItem((char*)buf, size));
*charge = size;
return Status::OK();
};
void SetFailCreate(bool fail) { fail_create_ = fail; }
private:
bool fail_create_;
};
Cache::CacheItemHelper LRUSecondaryCacheTest::helper_(
LRUSecondaryCacheTest::SizeCallback, LRUSecondaryCacheTest::SaveToCallback,
LRUSecondaryCacheTest::DeletionCallback);
Cache::CacheItemHelper LRUSecondaryCacheTest::helper_fail_(
LRUSecondaryCacheTest::SizeCallback,
LRUSecondaryCacheTest::SaveToCallbackFail,
LRUSecondaryCacheTest::DeletionCallback);
TEST_F(LRUSecondaryCacheTest, BasicTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert("k1", item1, &LRUSecondaryCacheTest::helper_,
str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k2 should be demoted to NVM
ASSERT_OK(cache->Insert("k2", item2, &LRUSecondaryCacheTest::helper_,
str2.length()));
Cache::Handle* handle;
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should promote k1 and demote k2
handle = cache->Lookup("k1", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUSecondaryCacheTest, BasicFailTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_NOK(cache->Insert("k1", item1, nullptr, str1.length()));
ASSERT_OK(cache->Insert("k1", item1, &LRUSecondaryCacheTest::helper_,
str1.length()));
Cache::Handle* handle;
handle = cache->Lookup("k2", nullptr, test_item_creator, Cache::Priority::LOW,
true);
ASSERT_EQ(handle, nullptr);
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, false);
ASSERT_EQ(handle, nullptr);
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUSecondaryCacheTest, SaveFailTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert("k1", item1, &LRUSecondaryCacheTest::helper_fail_,
str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert("k2", item2, &LRUSecondaryCacheTest::helper_fail_,
str2.length()));
Cache::Handle* handle;
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_fail_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should fail, since k1 demotion would have failed
handle = cache->Lookup("k1", &LRUSecondaryCacheTest::helper_fail_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_EQ(handle, nullptr);
// Since k1 didn't get promoted, k2 should still be in cache
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_fail_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUSecondaryCacheTest, CreateFailTest) {
LRUCacheOptions opts(1024, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert("k1", item1, &LRUSecondaryCacheTest::helper_,
str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert("k2", item2, &LRUSecondaryCacheTest::helper_,
str2.length()));
Cache::Handle* handle;
SetFailCreate(true);
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
// This lookup should fail, since k1 creation would have failed
handle = cache->Lookup("k1", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_EQ(handle, nullptr);
// Since k1 didn't get promoted, k2 should still be in cache
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
TEST_F(LRUSecondaryCacheTest, FullCapacityTest) {
LRUCacheOptions opts(1024, 0, /*_strict_capacity_limit=*/true, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache =
std::make_shared<TestSecondaryCache>(2048);
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
Random rnd(301);
std::string str1 = rnd.RandomString(1020);
TestItem* item1 = new TestItem(str1.data(), str1.length());
ASSERT_OK(cache->Insert("k1", item1, &LRUSecondaryCacheTest::helper_,
str1.length()));
std::string str2 = rnd.RandomString(1020);
TestItem* item2 = new TestItem(str2.data(), str2.length());
// k1 should be demoted to NVM
ASSERT_OK(cache->Insert("k2", item2, &LRUSecondaryCacheTest::helper_,
str2.length()));
Cache::Handle* handle;
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
// This lookup should fail, since k1 promotion would have failed due to
// the block cache being at capacity
Cache::Handle* handle2;
handle2 = cache->Lookup("k1", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_EQ(handle2, nullptr);
// Since k1 didn't get promoted, k2 should still be in cache
cache->Release(handle);
handle = cache->Lookup("k2", &LRUSecondaryCacheTest::helper_,
test_item_creator, Cache::Priority::LOW, true);
ASSERT_NE(handle, nullptr);
cache->Release(handle);
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 1u);
cache.reset();
secondary_cache.reset();
}
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
// if we try to insert block_1 to the block cache, it will always fails. Only
// block_2 will be successfully inserted into the block cache.
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheCorrectness1) {
LRUCacheOptions opts(4 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
// Set the file paranoid check, so after flush, the file will be read
// all the blocks will be accessed.
options.paranoid_file_checks = true;
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Note that, block_1 is never successfully
// inserted to the block cache. Here are 2 lookups in the secondary cache
// for block_1 and block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. Meta blocks are always cached. When block_1 is read
// out, block_2 is evicted from block cache and inserted to secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// The first data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
// be inserted successfully due to the size. Currently, cache only has
// the meta blocks.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// The second data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
// in the secondary cache. Now block cache has block_2
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block_2 is in the block cache. There is a block cache hit. No need to
// lookup or insert the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
Destroy(options);
}
// In this test, the block cache size is set to 6100, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
// insert and cache block_1 in the block cache (this is the different place
// from TestSecondaryCacheCorrectness1)
TEST_F(DBSecondaryCacheTest, TestSecondaryCacheCorrectness2) {
LRUCacheOptions opts(6100, 0, false, 0.5, nullptr, kDefaultToAdaptiveMutex,
kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.paranoid_file_checks = true;
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Thefore, block_1 is evicted from block
// cache and successfully inserted to the secondary cache. Here are 2
// lookups in the secondary cache for block_1 and block_2.
ASSERT_EQ(secondary_cache->num_inserts(), 1u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. After Flush, only block_2 is cached in block cache
// and block_1 is in the secondary cache. So when read block_1, it is
// read out from secondary cache and inserted to block cache. At the same
// time, block_2 is inserted to secondary cache. Now, secondary cache has
// both block_1 and block_2. After compaction, block_1 is in the cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is cached in block cache
// there is no secondary cache lookup.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_2 which is not in the block cache. So
// it will lookup the secondary cache for block_2 and cache it in the
// block_cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_2 which is already in the block cache.
// No need to lookup secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is not in block cache
// there is one econdary cache lookup. Then, block_1 is cached in the
// block cache.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// This Get needs to access block_1, since block_1 is cached in block cache
// there is no secondary cache lookup.
ASSERT_EQ(secondary_cache->num_inserts(), 2u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
Destroy(options);
}
// The block cache size is set to 1024*1024, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, we can successfully
// cache all the blocks in the block cache and there is not secondary cache
// insertion. 2 lookup is needed for the blocks.
TEST_F(DBSecondaryCacheTest, NoSecondaryCacheInsertion) {
LRUCacheOptions opts(1024 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.paranoid_file_checks = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1000);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. Now, block cache is large enough, it cache
// both block_1 and block_2. When first time read block_1 and block_2
// there are cache misses. So 2 secondary cache lookups are needed for
// the 2 blocks
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Compact("a", "z");
// Compaction will iterate the whole SST file. Since all the data blocks
// are in the block cache. No need to lookup the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
std::string v = Get(Key(0));
ASSERT_EQ(1000, v.size());
// Since the block cache is large enough, all the blocks are cached. we
// do not need to lookup the seondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
Destroy(options);
}
TEST_F(DBSecondaryCacheTest, SecondaryCacheIntensiveTesting) {
LRUCacheOptions opts(8 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 256;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1000);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
Compact("a", "z");
Random r_index(47);
std::string v;
for (int i = 0; i < 1000; i++) {
uint32_t key_i = r_index.Next() % N;
v = Get(Key(key_i));
}
// We have over 200 data blocks there will be multiple insertion
// and lookups.
ASSERT_GE(secondary_cache->num_inserts(), 1u);
ASSERT_GE(secondary_cache->num_lookups(), 1u);
Destroy(options);
}
// In this test, the block cache size is set to 4096, after insert 6 KV-pairs
// and flush, there are 5 blocks in this SST file, 2 data blocks and 3 meta
// blocks. block_1 size is 4096 and block_2 size is 2056. The total size
// of the meta blocks are about 900 to 1000. Therefore, in any situation,
// if we try to insert block_1 to the block cache, it will always fails. Only
// block_2 will be successfully inserted into the block cache.
TEST_F(DBSecondaryCacheTest, SecondaryCacheFailureTest) {
LRUCacheOptions opts(4 * 1024, 0, false, 0.5, nullptr,
kDefaultToAdaptiveMutex, kDontChargeCacheMetadata);
std::shared_ptr<TestSecondaryCache> secondary_cache(
new TestSecondaryCache(2048 * 1024));
opts.secondary_cache = secondary_cache;
std::shared_ptr<Cache> cache = NewLRUCache(opts);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
table_options.block_size = 4 * 1024;
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.paranoid_file_checks = true;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = fault_env_.get();
fault_fs_->SetFailGetUniqueId(true);
DestroyAndReopen(options);
std::string session_id;
ASSERT_OK(db_->GetDbSessionId(session_id));
secondary_cache->SetDbSessionId(session_id);
Random rnd(301);
const int N = 6;
for (int i = 0; i < N; i++) {
std::string p_v = rnd.RandomString(1007);
ASSERT_OK(Put(Key(i), p_v));
}
ASSERT_OK(Flush());
// After Flush is successful, RocksDB do the paranoid check for the new
// SST file. Meta blocks are always cached in the block cache and they
// will not be evicted. When block_2 is cache miss and read out, it is
// inserted to the block cache. Note that, block_1 is never successfully
// inserted to the block cache. Here are 2 lookups in the secondary cache
// for block_1 and block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 2u);
// Fail the insertion, in LRU cache, the secondary insertion returned status
// is not checked, therefore, the DB will not be influenced.
secondary_cache->InjectFailure();
Compact("a", "z");
// Compaction will create the iterator to scan the whole file. So all the
// blocks are needed. Meta blocks are always cached. When block_1 is read
// out, block_2 is evicted from block cache and inserted to secondary
// cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 3u);
std::string v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// The first data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_1. But block_1 will not
// be inserted successfully due to the size. Currently, cache only has
// the meta blocks.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 4u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// The second data block is not in the cache, similarly, trigger the block
// cache Lookup and secondary cache lookup for block_2 and block_2 is found
// in the secondary cache. Now block cache has block_2
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(5));
ASSERT_EQ(1007, v.size());
// block_2 is in the block cache. There is a block cache hit. No need to
// lookup or insert the secondary cache.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 5u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 6u);
v = Get(Key(0));
ASSERT_EQ(1007, v.size());
// Lookup the first data block, not in the block cache, so lookup the
// secondary cache. Also not in the secondary cache. After Get, still
// block_1 is will not be cached.
ASSERT_EQ(secondary_cache->num_inserts(), 0u);
ASSERT_EQ(secondary_cache->num_lookups(), 7u);
secondary_cache->ResetInjectFailure();
Destroy(options);
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}