146263887f
Summary: The subcompaction boundary picking logic does not currently guarantee that all user keys that differ only by timestamp get processed by the same subcompaction. This can cause issues with the `CompactionIterator` state machine: for instance, one subcompaction that processes a subset of such KVs might drop a tombstone based on the KVs it sees, while in reality the tombstone might not have been eligible to be optimized out. (See also https://github.com/facebook/rocksdb/issues/6645, which adjusted the way compaction inputs are picked for the same reason.) Pull Request resolved: https://github.com/facebook/rocksdb/pull/8393 Test Plan: Ran `make check` and the crash test script with timestamps enabled. Reviewed By: jay-zhuang Differential Revision: D29071635 Pulled By: ltamasi fbshipit-source-id: f6c72442122b4e581871e096fabe3876a9e8a5a6
603 lines
20 KiB
C++
603 lines
20 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#include "db/compaction/compaction.h"
|
|
|
|
#include <cinttypes>
|
|
#include <vector>
|
|
|
|
#include "db/column_family.h"
|
|
#include "rocksdb/compaction_filter.h"
|
|
#include "rocksdb/sst_partitioner.h"
|
|
#include "test_util/sync_point.h"
|
|
#include "util/string_util.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
const uint64_t kRangeTombstoneSentinel =
|
|
PackSequenceAndType(kMaxSequenceNumber, kTypeRangeDeletion);
|
|
|
|
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
|
|
const InternalKey& b) {
|
|
auto c = user_cmp->CompareWithoutTimestamp(a.user_key(), b.user_key());
|
|
if (c != 0) {
|
|
return c;
|
|
}
|
|
auto a_footer = ExtractInternalKeyFooter(a.Encode());
|
|
auto b_footer = ExtractInternalKeyFooter(b.Encode());
|
|
if (a_footer == kRangeTombstoneSentinel) {
|
|
if (b_footer != kRangeTombstoneSentinel) {
|
|
return -1;
|
|
}
|
|
} else if (b_footer == kRangeTombstoneSentinel) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey* a,
|
|
const InternalKey& b) {
|
|
if (a == nullptr) {
|
|
return -1;
|
|
}
|
|
return sstableKeyCompare(user_cmp, *a, b);
|
|
}
|
|
|
|
int sstableKeyCompare(const Comparator* user_cmp, const InternalKey& a,
|
|
const InternalKey* b) {
|
|
if (b == nullptr) {
|
|
return -1;
|
|
}
|
|
return sstableKeyCompare(user_cmp, a, *b);
|
|
}
|
|
|
|
uint64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
|
|
uint64_t sum = 0;
|
|
for (size_t i = 0; i < files.size() && files[i]; i++) {
|
|
sum += files[i]->fd.GetFileSize();
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
void Compaction::SetInputVersion(Version* _input_version) {
|
|
input_version_ = _input_version;
|
|
cfd_ = input_version_->cfd();
|
|
|
|
cfd_->Ref();
|
|
input_version_->Ref();
|
|
edit_.SetColumnFamily(cfd_->GetID());
|
|
}
|
|
|
|
void Compaction::GetBoundaryKeys(
|
|
VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs, Slice* smallest_user_key,
|
|
Slice* largest_user_key) {
|
|
bool initialized = false;
|
|
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
if (inputs[i].files.empty()) {
|
|
continue;
|
|
}
|
|
if (inputs[i].level == 0) {
|
|
// we need to consider all files on level 0
|
|
for (const auto* f : inputs[i].files) {
|
|
const Slice& start_user_key = f->smallest.user_key();
|
|
if (!initialized ||
|
|
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
|
|
*smallest_user_key = start_user_key;
|
|
}
|
|
const Slice& end_user_key = f->largest.user_key();
|
|
if (!initialized ||
|
|
ucmp->Compare(end_user_key, *largest_user_key) > 0) {
|
|
*largest_user_key = end_user_key;
|
|
}
|
|
initialized = true;
|
|
}
|
|
} else {
|
|
// we only need to consider the first and last file
|
|
const Slice& start_user_key = inputs[i].files[0]->smallest.user_key();
|
|
if (!initialized ||
|
|
ucmp->Compare(start_user_key, *smallest_user_key) < 0) {
|
|
*smallest_user_key = start_user_key;
|
|
}
|
|
const Slice& end_user_key = inputs[i].files.back()->largest.user_key();
|
|
if (!initialized || ucmp->Compare(end_user_key, *largest_user_key) > 0) {
|
|
*largest_user_key = end_user_key;
|
|
}
|
|
initialized = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<CompactionInputFiles> Compaction::PopulateWithAtomicBoundaries(
|
|
VersionStorageInfo* vstorage, std::vector<CompactionInputFiles> inputs) {
|
|
const Comparator* ucmp = vstorage->InternalComparator()->user_comparator();
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
if (inputs[i].level == 0 || inputs[i].files.empty()) {
|
|
continue;
|
|
}
|
|
inputs[i].atomic_compaction_unit_boundaries.reserve(inputs[i].files.size());
|
|
AtomicCompactionUnitBoundary cur_boundary;
|
|
size_t first_atomic_idx = 0;
|
|
auto add_unit_boundary = [&](size_t to) {
|
|
if (first_atomic_idx == to) return;
|
|
for (size_t k = first_atomic_idx; k < to; k++) {
|
|
inputs[i].atomic_compaction_unit_boundaries.push_back(cur_boundary);
|
|
}
|
|
first_atomic_idx = to;
|
|
};
|
|
for (size_t j = 0; j < inputs[i].files.size(); j++) {
|
|
const auto* f = inputs[i].files[j];
|
|
if (j == 0) {
|
|
// First file in a level.
|
|
cur_boundary.smallest = &f->smallest;
|
|
cur_boundary.largest = &f->largest;
|
|
} else if (sstableKeyCompare(ucmp, *cur_boundary.largest, f->smallest) ==
|
|
0) {
|
|
// SSTs overlap but the end key of the previous file was not
|
|
// artificially extended by a range tombstone. Extend the current
|
|
// boundary.
|
|
cur_boundary.largest = &f->largest;
|
|
} else {
|
|
// Atomic compaction unit has ended.
|
|
add_unit_boundary(j);
|
|
cur_boundary.smallest = &f->smallest;
|
|
cur_boundary.largest = &f->largest;
|
|
}
|
|
}
|
|
add_unit_boundary(inputs[i].files.size());
|
|
assert(inputs[i].files.size() ==
|
|
inputs[i].atomic_compaction_unit_boundaries.size());
|
|
}
|
|
return inputs;
|
|
}
|
|
|
|
// helper function to determine if compaction is creating files at the
|
|
// bottommost level
|
|
bool Compaction::IsBottommostLevel(
|
|
int output_level, VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs) {
|
|
int output_l0_idx;
|
|
if (output_level == 0) {
|
|
output_l0_idx = 0;
|
|
for (const auto* file : vstorage->LevelFiles(0)) {
|
|
if (inputs[0].files.back() == file) {
|
|
break;
|
|
}
|
|
++output_l0_idx;
|
|
}
|
|
assert(static_cast<size_t>(output_l0_idx) < vstorage->LevelFiles(0).size());
|
|
} else {
|
|
output_l0_idx = -1;
|
|
}
|
|
Slice smallest_key, largest_key;
|
|
GetBoundaryKeys(vstorage, inputs, &smallest_key, &largest_key);
|
|
return !vstorage->RangeMightExistAfterSortedRun(smallest_key, largest_key,
|
|
output_level, output_l0_idx);
|
|
}
|
|
|
|
// test function to validate the functionality of IsBottommostLevel()
|
|
// function -- determines if compaction with inputs and storage is bottommost
|
|
bool Compaction::TEST_IsBottommostLevel(
|
|
int output_level, VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs) {
|
|
return IsBottommostLevel(output_level, vstorage, inputs);
|
|
}
|
|
|
|
bool Compaction::IsFullCompaction(
|
|
VersionStorageInfo* vstorage,
|
|
const std::vector<CompactionInputFiles>& inputs) {
|
|
size_t num_files_in_compaction = 0;
|
|
size_t total_num_files = 0;
|
|
for (int l = 0; l < vstorage->num_levels(); l++) {
|
|
total_num_files += vstorage->NumLevelFiles(l);
|
|
}
|
|
for (size_t i = 0; i < inputs.size(); i++) {
|
|
num_files_in_compaction += inputs[i].size();
|
|
}
|
|
return num_files_in_compaction == total_num_files;
|
|
}
|
|
|
|
Compaction::Compaction(
|
|
VersionStorageInfo* vstorage, const ImmutableOptions& _immutable_options,
|
|
const MutableCFOptions& _mutable_cf_options,
|
|
const MutableDBOptions& _mutable_db_options,
|
|
std::vector<CompactionInputFiles> _inputs, int _output_level,
|
|
uint64_t _target_file_size, uint64_t _max_compaction_bytes,
|
|
uint32_t _output_path_id, CompressionType _compression,
|
|
CompressionOptions _compression_opts, uint32_t _max_subcompactions,
|
|
std::vector<FileMetaData*> _grandparents, bool _manual_compaction,
|
|
double _score, bool _deletion_compaction,
|
|
CompactionReason _compaction_reason)
|
|
: input_vstorage_(vstorage),
|
|
start_level_(_inputs[0].level),
|
|
output_level_(_output_level),
|
|
max_output_file_size_(_target_file_size),
|
|
max_compaction_bytes_(_max_compaction_bytes),
|
|
max_subcompactions_(_max_subcompactions),
|
|
immutable_options_(_immutable_options),
|
|
mutable_cf_options_(_mutable_cf_options),
|
|
input_version_(nullptr),
|
|
number_levels_(vstorage->num_levels()),
|
|
cfd_(nullptr),
|
|
output_path_id_(_output_path_id),
|
|
output_compression_(_compression),
|
|
output_compression_opts_(_compression_opts),
|
|
deletion_compaction_(_deletion_compaction),
|
|
inputs_(PopulateWithAtomicBoundaries(vstorage, std::move(_inputs))),
|
|
grandparents_(std::move(_grandparents)),
|
|
score_(_score),
|
|
bottommost_level_(IsBottommostLevel(output_level_, vstorage, inputs_)),
|
|
is_full_compaction_(IsFullCompaction(vstorage, inputs_)),
|
|
is_manual_compaction_(_manual_compaction),
|
|
is_trivial_move_(false),
|
|
compaction_reason_(_compaction_reason) {
|
|
MarkFilesBeingCompacted(true);
|
|
if (is_manual_compaction_) {
|
|
compaction_reason_ = CompactionReason::kManualCompaction;
|
|
}
|
|
if (max_subcompactions_ == 0) {
|
|
max_subcompactions_ = _mutable_db_options.max_subcompactions;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
for (size_t i = 1; i < inputs_.size(); ++i) {
|
|
assert(inputs_[i].level > inputs_[i - 1].level);
|
|
}
|
|
#endif
|
|
|
|
// setup input_levels_
|
|
{
|
|
input_levels_.resize(num_input_levels());
|
|
for (size_t which = 0; which < num_input_levels(); which++) {
|
|
DoGenerateLevelFilesBrief(&input_levels_[which], inputs_[which].files,
|
|
&arena_);
|
|
}
|
|
}
|
|
|
|
GetBoundaryKeys(vstorage, inputs_, &smallest_user_key_, &largest_user_key_);
|
|
}
|
|
|
|
Compaction::~Compaction() {
|
|
if (input_version_ != nullptr) {
|
|
input_version_->Unref();
|
|
}
|
|
if (cfd_ != nullptr) {
|
|
cfd_->UnrefAndTryDelete();
|
|
}
|
|
}
|
|
|
|
bool Compaction::InputCompressionMatchesOutput() const {
|
|
int base_level = input_vstorage_->base_level();
|
|
bool matches = (GetCompressionType(immutable_options_, input_vstorage_,
|
|
mutable_cf_options_, start_level_,
|
|
base_level) == output_compression_);
|
|
if (matches) {
|
|
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:Matches");
|
|
return true;
|
|
}
|
|
TEST_SYNC_POINT("Compaction::InputCompressionMatchesOutput:DidntMatch");
|
|
return matches;
|
|
}
|
|
|
|
bool Compaction::IsTrivialMove() const {
|
|
// Avoid a move if there is lots of overlapping grandparent data.
|
|
// Otherwise, the move could create a parent file that will require
|
|
// a very expensive merge later on.
|
|
// If start_level_== output_level_, the purpose is to force compaction
|
|
// filter to be applied to that level, and thus cannot be a trivial move.
|
|
|
|
// Check if start level have files with overlapping ranges
|
|
if (start_level_ == 0 && input_vstorage_->level0_non_overlapping() == false) {
|
|
// We cannot move files from L0 to L1 if the files are overlapping
|
|
return false;
|
|
}
|
|
|
|
if (is_manual_compaction_ &&
|
|
(immutable_options_.compaction_filter != nullptr ||
|
|
immutable_options_.compaction_filter_factory != nullptr)) {
|
|
// This is a manual compaction and we have a compaction filter that should
|
|
// be executed, we cannot do a trivial move
|
|
return false;
|
|
}
|
|
|
|
// Used in universal compaction, where trivial move can be done if the
|
|
// input files are non overlapping
|
|
if ((mutable_cf_options_.compaction_options_universal.allow_trivial_move) &&
|
|
(output_level_ != 0)) {
|
|
return is_trivial_move_;
|
|
}
|
|
|
|
if (!(start_level_ != output_level_ && num_input_levels() == 1 &&
|
|
input(0, 0)->fd.GetPathId() == output_path_id() &&
|
|
InputCompressionMatchesOutput())) {
|
|
return false;
|
|
}
|
|
|
|
// assert inputs_.size() == 1
|
|
|
|
std::unique_ptr<SstPartitioner> partitioner = CreateSstPartitioner();
|
|
|
|
for (const auto& file : inputs_.front().files) {
|
|
std::vector<FileMetaData*> file_grand_parents;
|
|
if (output_level_ + 1 >= number_levels_) {
|
|
continue;
|
|
}
|
|
input_vstorage_->GetOverlappingInputs(output_level_ + 1, &file->smallest,
|
|
&file->largest, &file_grand_parents);
|
|
const auto compaction_size =
|
|
file->fd.GetFileSize() + TotalFileSize(file_grand_parents);
|
|
if (compaction_size > max_compaction_bytes_) {
|
|
return false;
|
|
}
|
|
|
|
if (partitioner.get() != nullptr) {
|
|
if (!partitioner->CanDoTrivialMove(file->smallest.user_key(),
|
|
file->largest.user_key())) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Compaction::AddInputDeletions(VersionEdit* out_edit) {
|
|
for (size_t which = 0; which < num_input_levels(); which++) {
|
|
for (size_t i = 0; i < inputs_[which].size(); i++) {
|
|
out_edit->DeleteFile(level(which), inputs_[which][i]->fd.GetNumber());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Compaction::KeyNotExistsBeyondOutputLevel(
|
|
const Slice& user_key, std::vector<size_t>* level_ptrs) const {
|
|
assert(input_version_ != nullptr);
|
|
assert(level_ptrs != nullptr);
|
|
assert(level_ptrs->size() == static_cast<size_t>(number_levels_));
|
|
if (bottommost_level_) {
|
|
return true;
|
|
} else if (output_level_ != 0 &&
|
|
cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
|
|
// Maybe use binary search to find right entry instead of linear search?
|
|
const Comparator* user_cmp = cfd_->user_comparator();
|
|
for (int lvl = output_level_ + 1; lvl < number_levels_; lvl++) {
|
|
const std::vector<FileMetaData*>& files =
|
|
input_vstorage_->LevelFiles(lvl);
|
|
for (; level_ptrs->at(lvl) < files.size(); level_ptrs->at(lvl)++) {
|
|
auto* f = files[level_ptrs->at(lvl)];
|
|
if (user_cmp->Compare(user_key, f->largest.user_key()) <= 0) {
|
|
// We've advanced far enough
|
|
// In the presence of user-defined timestamp, we may need to handle
|
|
// the case in which f->smallest.user_key() (including ts) has the
|
|
// same user key, but the ts part is smaller. If so,
|
|
// Compare(user_key, f->smallest.user_key()) returns -1.
|
|
// That's why we need CompareWithoutTimestamp().
|
|
if (user_cmp->CompareWithoutTimestamp(user_key,
|
|
f->smallest.user_key()) >= 0) {
|
|
// Key falls in this file's range, so it may
|
|
// exist beyond output level
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Mark (or clear) each file that is being compacted
|
|
void Compaction::MarkFilesBeingCompacted(bool mark_as_compacted) {
|
|
for (size_t i = 0; i < num_input_levels(); i++) {
|
|
for (size_t j = 0; j < inputs_[i].size(); j++) {
|
|
assert(mark_as_compacted ? !inputs_[i][j]->being_compacted
|
|
: inputs_[i][j]->being_compacted);
|
|
inputs_[i][j]->being_compacted = mark_as_compacted;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sample output:
|
|
// If compacting 3 L0 files, 2 L3 files and 1 L4 file, and outputting to L5,
|
|
// print: "3@0 + 2@3 + 1@4 files to L5"
|
|
const char* Compaction::InputLevelSummary(
|
|
InputLevelSummaryBuffer* scratch) const {
|
|
int len = 0;
|
|
bool is_first = true;
|
|
for (auto& input_level : inputs_) {
|
|
if (input_level.empty()) {
|
|
continue;
|
|
}
|
|
if (!is_first) {
|
|
len +=
|
|
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, " + ");
|
|
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
|
|
} else {
|
|
is_first = false;
|
|
}
|
|
len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
|
|
"%" ROCKSDB_PRIszt "@%d", input_level.size(),
|
|
input_level.level);
|
|
len = std::min(len, static_cast<int>(sizeof(scratch->buffer)));
|
|
}
|
|
snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
|
|
" files to L%d", output_level());
|
|
|
|
return scratch->buffer;
|
|
}
|
|
|
|
uint64_t Compaction::CalculateTotalInputSize() const {
|
|
uint64_t size = 0;
|
|
for (auto& input_level : inputs_) {
|
|
for (auto f : input_level.files) {
|
|
size += f->fd.GetFileSize();
|
|
}
|
|
}
|
|
return size;
|
|
}
|
|
|
|
void Compaction::ReleaseCompactionFiles(Status status) {
|
|
MarkFilesBeingCompacted(false);
|
|
cfd_->compaction_picker()->ReleaseCompactionFiles(this, status);
|
|
}
|
|
|
|
void Compaction::ResetNextCompactionIndex() {
|
|
assert(input_version_ != nullptr);
|
|
input_vstorage_->ResetNextCompactionIndex(start_level_);
|
|
}
|
|
|
|
namespace {
|
|
int InputSummary(const std::vector<FileMetaData*>& files, char* output,
|
|
int len) {
|
|
*output = '\0';
|
|
int write = 0;
|
|
for (size_t i = 0; i < files.size(); i++) {
|
|
int sz = len - write;
|
|
int ret;
|
|
char sztxt[16];
|
|
AppendHumanBytes(files.at(i)->fd.GetFileSize(), sztxt, 16);
|
|
ret = snprintf(output + write, sz, "%" PRIu64 "(%s) ",
|
|
files.at(i)->fd.GetNumber(), sztxt);
|
|
if (ret < 0 || ret >= sz) break;
|
|
write += ret;
|
|
}
|
|
// if files.size() is non-zero, overwrite the last space
|
|
return write - !!files.size();
|
|
}
|
|
} // namespace
|
|
|
|
void Compaction::Summary(char* output, int len) {
|
|
int write =
|
|
snprintf(output, len, "Base version %" PRIu64 " Base level %d, inputs: [",
|
|
input_version_->GetVersionNumber(), start_level_);
|
|
if (write < 0 || write >= len) {
|
|
return;
|
|
}
|
|
|
|
for (size_t level_iter = 0; level_iter < num_input_levels(); ++level_iter) {
|
|
if (level_iter > 0) {
|
|
write += snprintf(output + write, len - write, "], [");
|
|
if (write < 0 || write >= len) {
|
|
return;
|
|
}
|
|
}
|
|
write +=
|
|
InputSummary(inputs_[level_iter].files, output + write, len - write);
|
|
if (write < 0 || write >= len) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
snprintf(output + write, len - write, "]");
|
|
}
|
|
|
|
uint64_t Compaction::OutputFilePreallocationSize() const {
|
|
uint64_t preallocation_size = 0;
|
|
|
|
for (const auto& level_files : inputs_) {
|
|
for (const auto& file : level_files.files) {
|
|
preallocation_size += file->fd.GetFileSize();
|
|
}
|
|
}
|
|
|
|
if (max_output_file_size_ != port::kMaxUint64 &&
|
|
(immutable_options_.compaction_style == kCompactionStyleLevel ||
|
|
output_level() > 0)) {
|
|
preallocation_size = std::min(max_output_file_size_, preallocation_size);
|
|
}
|
|
|
|
// Over-estimate slightly so we don't end up just barely crossing
|
|
// the threshold
|
|
// No point to preallocate more than 1GB.
|
|
return std::min(uint64_t{1073741824},
|
|
preallocation_size + (preallocation_size / 10));
|
|
}
|
|
|
|
std::unique_ptr<CompactionFilter> Compaction::CreateCompactionFilter() const {
|
|
if (!cfd_->ioptions()->compaction_filter_factory) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!cfd_->ioptions()
|
|
->compaction_filter_factory->ShouldFilterTableFileCreation(
|
|
TableFileCreationReason::kCompaction)) {
|
|
return nullptr;
|
|
}
|
|
|
|
CompactionFilter::Context context;
|
|
context.is_full_compaction = is_full_compaction_;
|
|
context.is_manual_compaction = is_manual_compaction_;
|
|
context.column_family_id = cfd_->GetID();
|
|
context.reason = TableFileCreationReason::kCompaction;
|
|
return cfd_->ioptions()->compaction_filter_factory->CreateCompactionFilter(
|
|
context);
|
|
}
|
|
|
|
std::unique_ptr<SstPartitioner> Compaction::CreateSstPartitioner() const {
|
|
if (!immutable_options_.sst_partitioner_factory) {
|
|
return nullptr;
|
|
}
|
|
|
|
SstPartitioner::Context context;
|
|
context.is_full_compaction = is_full_compaction_;
|
|
context.is_manual_compaction = is_manual_compaction_;
|
|
context.output_level = output_level_;
|
|
context.smallest_user_key = smallest_user_key_;
|
|
context.largest_user_key = largest_user_key_;
|
|
return immutable_options_.sst_partitioner_factory->CreatePartitioner(context);
|
|
}
|
|
|
|
bool Compaction::IsOutputLevelEmpty() const {
|
|
return inputs_.back().level != output_level_ || inputs_.back().empty();
|
|
}
|
|
|
|
bool Compaction::ShouldFormSubcompactions() const {
|
|
if (max_subcompactions_ <= 1 || cfd_ == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// Note: the subcompaction boundary picking logic does not currently guarantee
|
|
// that all user keys that differ only by timestamp get processed by the same
|
|
// subcompaction.
|
|
if (cfd_->user_comparator()->timestamp_size() > 0) {
|
|
return false;
|
|
}
|
|
|
|
if (cfd_->ioptions()->compaction_style == kCompactionStyleLevel) {
|
|
return (start_level_ == 0 || is_manual_compaction_) && output_level_ > 0 &&
|
|
!IsOutputLevelEmpty();
|
|
} else if (cfd_->ioptions()->compaction_style == kCompactionStyleUniversal) {
|
|
return number_levels_ > 1 && output_level_ > 0;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
uint64_t Compaction::MinInputFileOldestAncesterTime() const {
|
|
uint64_t min_oldest_ancester_time = port::kMaxUint64;
|
|
for (const auto& level_files : inputs_) {
|
|
for (const auto& file : level_files.files) {
|
|
uint64_t oldest_ancester_time = file->TryGetOldestAncesterTime();
|
|
if (oldest_ancester_time != 0) {
|
|
min_oldest_ancester_time =
|
|
std::min(min_oldest_ancester_time, oldest_ancester_time);
|
|
}
|
|
}
|
|
}
|
|
return min_oldest_ancester_time;
|
|
}
|
|
|
|
int Compaction::GetInputBaseLevel() const {
|
|
return input_vstorage_->base_level();
|
|
}
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|