rocksdb/util/thread_posix.cc
Venkatesh Radhakrishnan 030215bf01 Running manual compactions in parallel with other automatic or manual compactions in restricted cases
Summary:
This diff provides a framework for doing manual
compactions in parallel with other compactions. We now have a deque of manual compactions. We also pass manual compactions as an argument from RunManualCompactions down to
BackgroundCompactions, so that RunManualCompactions can be reentrant.
Parallelism is controlled by the two routines
ConflictingManualCompaction to allow/disallow new parallel/manual
compactions based on already existing ManualCompactions. In this diff, by default manual compactions still have to run exclusive of other compactions. However, by setting the compaction option, exclusive_manual_compaction to false, it is possible to run other compactions in parallel with a manual compaction. However, we are still restricted to one manual compaction per column family at a time. All of these restrictions will be relaxed in future diffs.
I will be adding more tests later.

Test Plan: Rocksdb regression + new tests + valgrind

Reviewers: igor, anthony, IslamAbdelRahman, kradhakrishnan, yhchiang, sdong

Reviewed By: sdong

Subscribers: yoshinorim, dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D47973
2015-12-14 11:20:34 -08:00

258 lines
8.1 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "util/thread_posix.h"
#include <atomic>
#include <unistd.h>
#ifdef OS_LINUX
#include <sys/syscall.h>
#endif
namespace rocksdb {
void ThreadPool::PthreadCall(const char* label, int result) {
if (result != 0) {
fprintf(stderr, "pthread %s: %s\n", label, strerror(result));
abort();
}
}
ThreadPool::ThreadPool()
: total_threads_limit_(1),
bgthreads_(0),
queue_(),
queue_len_(0),
exit_all_threads_(false),
low_io_priority_(false),
env_(nullptr) {
PthreadCall("mutex_init", pthread_mutex_init(&mu_, nullptr));
PthreadCall("cvar_init", pthread_cond_init(&bgsignal_, nullptr));
}
ThreadPool::~ThreadPool() { assert(bgthreads_.size() == 0U); }
void ThreadPool::JoinAllThreads() {
PthreadCall("lock", pthread_mutex_lock(&mu_));
assert(!exit_all_threads_);
exit_all_threads_ = true;
PthreadCall("signalall", pthread_cond_broadcast(&bgsignal_));
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
for (const auto tid : bgthreads_) {
pthread_join(tid, nullptr);
}
bgthreads_.clear();
}
void ThreadPool::LowerIOPriority() {
#ifdef OS_LINUX
PthreadCall("lock", pthread_mutex_lock(&mu_));
low_io_priority_ = true;
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
#endif
}
void ThreadPool::BGThread(size_t thread_id) {
bool low_io_priority = false;
while (true) {
// Wait until there is an item that is ready to run
PthreadCall("lock", pthread_mutex_lock(&mu_));
// Stop waiting if the thread needs to do work or needs to terminate.
while (!exit_all_threads_ && !IsLastExcessiveThread(thread_id) &&
(queue_.empty() || IsExcessiveThread(thread_id))) {
PthreadCall("wait", pthread_cond_wait(&bgsignal_, &mu_));
}
if (exit_all_threads_) { // mechanism to let BG threads exit safely
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
break;
}
if (IsLastExcessiveThread(thread_id)) {
// Current thread is the last generated one and is excessive.
// We always terminate excessive thread in the reverse order of
// generation time.
auto terminating_thread = bgthreads_.back();
pthread_detach(terminating_thread);
bgthreads_.pop_back();
if (HasExcessiveThread()) {
// There is still at least more excessive thread to terminate.
WakeUpAllThreads();
}
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
break;
}
void (*function)(void*) = queue_.front().function;
void* arg = queue_.front().arg;
queue_.pop_front();
queue_len_.store(static_cast<unsigned int>(queue_.size()),
std::memory_order_relaxed);
bool decrease_io_priority = (low_io_priority != low_io_priority_);
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
#ifdef OS_LINUX
if (decrease_io_priority) {
#define IOPRIO_CLASS_SHIFT (13)
#define IOPRIO_PRIO_VALUE(class, data) (((class) << IOPRIO_CLASS_SHIFT) | data)
// Put schedule into IOPRIO_CLASS_IDLE class (lowest)
// These system calls only have an effect when used in conjunction
// with an I/O scheduler that supports I/O priorities. As at
// kernel 2.6.17 the only such scheduler is the Completely
// Fair Queuing (CFQ) I/O scheduler.
// To change scheduler:
// echo cfq > /sys/block/<device_name>/queue/schedule
// Tunables to consider:
// /sys/block/<device_name>/queue/slice_idle
// /sys/block/<device_name>/queue/slice_sync
syscall(SYS_ioprio_set, 1, // IOPRIO_WHO_PROCESS
0, // current thread
IOPRIO_PRIO_VALUE(3, 0));
low_io_priority = true;
}
#else
(void)decrease_io_priority; // avoid 'unused variable' error
#endif
(*function)(arg);
}
}
// Helper struct for passing arguments when creating threads.
struct BGThreadMetadata {
ThreadPool* thread_pool_;
size_t thread_id_; // Thread count in the thread.
explicit BGThreadMetadata(ThreadPool* thread_pool, size_t thread_id)
: thread_pool_(thread_pool), thread_id_(thread_id) {}
};
static void* BGThreadWrapper(void* arg) {
BGThreadMetadata* meta = reinterpret_cast<BGThreadMetadata*>(arg);
size_t thread_id = meta->thread_id_;
ThreadPool* tp = meta->thread_pool_;
#if ROCKSDB_USING_THREAD_STATUS
// for thread-status
ThreadStatusUtil::RegisterThread(
tp->GetHostEnv(), (tp->GetThreadPriority() == Env::Priority::HIGH
? ThreadStatus::HIGH_PRIORITY
: ThreadStatus::LOW_PRIORITY));
#endif
delete meta;
tp->BGThread(thread_id);
#if ROCKSDB_USING_THREAD_STATUS
ThreadStatusUtil::UnregisterThread();
#endif
return nullptr;
}
void ThreadPool::WakeUpAllThreads() {
PthreadCall("signalall", pthread_cond_broadcast(&bgsignal_));
}
void ThreadPool::SetBackgroundThreadsInternal(int num, bool allow_reduce) {
PthreadCall("lock", pthread_mutex_lock(&mu_));
if (exit_all_threads_) {
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
return;
}
if (num > total_threads_limit_ ||
(num < total_threads_limit_ && allow_reduce)) {
total_threads_limit_ = std::max(1, num);
WakeUpAllThreads();
StartBGThreads();
}
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
}
void ThreadPool::IncBackgroundThreadsIfNeeded(int num) {
SetBackgroundThreadsInternal(num, false);
}
void ThreadPool::SetBackgroundThreads(int num) {
SetBackgroundThreadsInternal(num, true);
}
void ThreadPool::StartBGThreads() {
// Start background thread if necessary
while ((int)bgthreads_.size() < total_threads_limit_) {
pthread_t t;
PthreadCall("create thread",
pthread_create(&t, nullptr, &BGThreadWrapper,
new BGThreadMetadata(this, bgthreads_.size())));
// Set the thread name to aid debugging
#if defined(_GNU_SOURCE) && defined(__GLIBC_PREREQ)
#if __GLIBC_PREREQ(2, 12)
char name_buf[16];
snprintf(name_buf, sizeof name_buf, "rocksdb:bg%" ROCKSDB_PRIszt,
bgthreads_.size());
name_buf[sizeof name_buf - 1] = '\0';
pthread_setname_np(t, name_buf);
#endif
#endif
bgthreads_.push_back(t);
}
}
void ThreadPool::Schedule(void (*function)(void* arg1), void* arg, void* tag,
void (*unschedFunction)(void* arg)) {
PthreadCall("lock", pthread_mutex_lock(&mu_));
if (exit_all_threads_) {
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
return;
}
StartBGThreads();
// Add to priority queue
queue_.push_back(BGItem());
queue_.back().function = function;
queue_.back().arg = arg;
queue_.back().tag = tag;
queue_.back().unschedFunction = unschedFunction;
queue_len_.store(static_cast<unsigned int>(queue_.size()),
std::memory_order_relaxed);
if (!HasExcessiveThread()) {
// Wake up at least one waiting thread.
PthreadCall("signal", pthread_cond_signal(&bgsignal_));
} else {
// Need to wake up all threads to make sure the one woken
// up is not the one to terminate.
WakeUpAllThreads();
}
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
}
int ThreadPool::UnSchedule(void* arg) {
int count = 0;
PthreadCall("lock", pthread_mutex_lock(&mu_));
// Remove from priority queue
BGQueue::iterator it = queue_.begin();
while (it != queue_.end()) {
if (arg == (*it).tag) {
void (*unschedFunction)(void*) = (*it).unschedFunction;
void* arg1 = (*it).arg;
if (unschedFunction != nullptr) {
(*unschedFunction)(arg1);
}
it = queue_.erase(it);
count++;
} else {
it++;
}
}
queue_len_.store(static_cast<unsigned int>(queue_.size()),
std::memory_order_relaxed);
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
return count;
}
} // namespace rocksdb