rocksdb/util/cache.cc
Aaron Feldman 69bb210d58 Add Cache.GetPinnedUsageUsage()
Summary:
  Add the funcion Cache.GetPinnedUsage() to return the memory size of entries
  that are in use by the system (that is, all the entries not in the LRU list).

Test Plan:
  Run ./cache_test and examine PinnedUsageTest.

Reviewers: tnovak, igor

Reviewed By: igor

Subscribers: dhruba

Differential Revision: https://reviews.facebook.net/D40305
2015-06-18 13:56:31 -07:00

578 lines
17 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include "rocksdb/cache.h"
#include "port/port.h"
#include "util/autovector.h"
#include "util/hash.h"
#include "util/mutexlock.h"
namespace rocksdb {
Cache::~Cache() {
}
namespace {
// LRU cache implementation
// An entry is a variable length heap-allocated structure.
// Entries are referenced by cache and/or by any external entity.
// The cache keeps all its entries in table. Some elements
// are also stored on LRU list.
//
// LRUHandle can be in these states:
// 1. Referenced externally AND in hash table.
// In that case the entry is *not* in the LRU. (refs > 1 && in_cache == true)
// 2. Not referenced externally and in hash table. In that case the entry is
// in the LRU and can be freed. (refs == 1 && in_cache == true)
// 3. Referenced externally and not in hash table. In that case the entry is
// in not on LRU and not in table. (refs >= 1 && in_cache == false)
//
// All newly created LRUHandles are in state 1. If you call LRUCache::Release
// on entry in state 1, it will go into state 2. To move from state 1 to
// state 3, either call LRUCache::Erase or LRUCache::Insert with the same key.
// To move from state 2 to state 1, use LRUCache::Lookup.
// Before destruction, make sure that no handles are in state 1. This means
// that any successful LRUCache::Lookup/LRUCache::Insert have a matching
// RUCache::Release (to move into state 2) or LRUCache::Erase (for state 3)
struct LRUHandle {
void* value;
void (*deleter)(const Slice&, void* value);
LRUHandle* next_hash;
LRUHandle* next;
LRUHandle* prev;
size_t charge; // TODO(opt): Only allow uint32_t?
size_t key_length;
uint32_t refs; // a number of refs to this entry
// cache itself is counted as 1
bool in_cache; // true, if this entry is referenced by the hash table
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
char key_data[1]; // Beginning of key
Slice key() const {
// For cheaper lookups, we allow a temporary Handle object
// to store a pointer to a key in "value".
if (next == this) {
return *(reinterpret_cast<Slice*>(value));
} else {
return Slice(key_data, key_length);
}
}
void Free() {
assert((refs == 1 && in_cache) || (refs == 0 && !in_cache));
(*deleter)(key(), value);
free(this);
}
};
// We provide our own simple hash table since it removes a whole bunch
// of porting hacks and is also faster than some of the built-in hash
// table implementations in some of the compiler/runtime combinations
// we have tested. E.g., readrandom speeds up by ~5% over the g++
// 4.4.3's builtin hashtable.
class HandleTable {
public:
HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); }
template <typename T>
void ApplyToAllCacheEntries(T func) {
for (uint32_t i = 0; i < length_; i++) {
LRUHandle* h = list_[i];
while (h != nullptr) {
auto n = h->next_hash;
assert(h->in_cache);
func(h);
h = n;
}
}
}
~HandleTable() {
ApplyToAllCacheEntries([](LRUHandle* h) {
if (h->refs == 1) {
h->Free();
}
});
delete[] list_;
}
LRUHandle* Lookup(const Slice& key, uint32_t hash) {
return *FindPointer(key, hash);
}
LRUHandle* Insert(LRUHandle* h) {
LRUHandle** ptr = FindPointer(h->key(), h->hash);
LRUHandle* old = *ptr;
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
*ptr = h;
if (old == nullptr) {
++elems_;
if (elems_ > length_) {
// Since each cache entry is fairly large, we aim for a small
// average linked list length (<= 1).
Resize();
}
}
return old;
}
LRUHandle* Remove(const Slice& key, uint32_t hash) {
LRUHandle** ptr = FindPointer(key, hash);
LRUHandle* result = *ptr;
if (result != nullptr) {
*ptr = result->next_hash;
--elems_;
}
return result;
}
private:
// The table consists of an array of buckets where each bucket is
// a linked list of cache entries that hash into the bucket.
uint32_t length_;
uint32_t elems_;
LRUHandle** list_;
// Return a pointer to slot that points to a cache entry that
// matches key/hash. If there is no such cache entry, return a
// pointer to the trailing slot in the corresponding linked list.
LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
LRUHandle** ptr = &list_[hash & (length_ - 1)];
while (*ptr != nullptr &&
((*ptr)->hash != hash || key != (*ptr)->key())) {
ptr = &(*ptr)->next_hash;
}
return ptr;
}
void Resize() {
uint32_t new_length = 16;
while (new_length < elems_ * 1.5) {
new_length *= 2;
}
LRUHandle** new_list = new LRUHandle*[new_length];
memset(new_list, 0, sizeof(new_list[0]) * new_length);
uint32_t count = 0;
for (uint32_t i = 0; i < length_; i++) {
LRUHandle* h = list_[i];
while (h != nullptr) {
LRUHandle* next = h->next_hash;
uint32_t hash = h->hash;
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
h->next_hash = *ptr;
*ptr = h;
h = next;
count++;
}
}
assert(elems_ == count);
delete[] list_;
list_ = new_list;
length_ = new_length;
}
};
// A single shard of sharded cache.
class LRUCache {
public:
LRUCache();
~LRUCache();
// Separate from constructor so caller can easily make an array of LRUCache
// if current usage is more than new capacity, the function will attempt to
// free the needed space
void SetCapacity(size_t capacity);
// Like Cache methods, but with an extra "hash" parameter.
Cache::Handle* Insert(const Slice& key, uint32_t hash,
void* value, size_t charge,
void (*deleter)(const Slice& key, void* value));
Cache::Handle* Lookup(const Slice& key, uint32_t hash);
void Release(Cache::Handle* handle);
void Erase(const Slice& key, uint32_t hash);
// Although in some platforms the update of size_t is atomic, to make sure
// GetUsage() and GetPinnedUsage() work correctly under any platform, we'll
// protect them with mutex_.
size_t GetUsage() const {
MutexLock l(&mutex_);
return usage_;
}
size_t GetPinnedUsage() const {
MutexLock l(&mutex_);
assert(usage_ >= lru_usage_);
return usage_ - lru_usage_;
}
void ApplyToAllCacheEntries(void (*callback)(void*, size_t),
bool thread_safe);
private:
void LRU_Remove(LRUHandle* e);
void LRU_Append(LRUHandle* e);
// Just reduce the reference count by 1.
// Return true if last reference
bool Unref(LRUHandle* e);
// Free some space following strict LRU policy until enough space
// to hold (usage_ + charge) is freed or the lru list is empty
// This function is not thread safe - it needs to be executed while
// holding the mutex_
void EvictFromLRU(size_t charge,
autovector<LRUHandle*>* deleted);
// Initialized before use.
size_t capacity_;
// Memory size for entries residing in the cache
size_t usage_;
// Memory size for entries residing only in the LRU list
size_t lru_usage_;
// mutex_ protects the following state.
// We don't count mutex_ as the cache's internal state so semantically we
// don't mind mutex_ invoking the non-const actions.
mutable port::Mutex mutex_;
// Dummy head of LRU list.
// lru.prev is newest entry, lru.next is oldest entry.
// LRU contains items which can be evicted, ie reference only by cache
LRUHandle lru_;
HandleTable table_;
};
LRUCache::LRUCache() : usage_(0), lru_usage_(0) {
// Make empty circular linked list
lru_.next = &lru_;
lru_.prev = &lru_;
}
LRUCache::~LRUCache() {}
bool LRUCache::Unref(LRUHandle* e) {
assert(e->refs > 0);
e->refs--;
return e->refs == 0;
}
// Call deleter and free
void LRUCache::ApplyToAllCacheEntries(void (*callback)(void*, size_t),
bool thread_safe) {
if (thread_safe) {
mutex_.Lock();
}
table_.ApplyToAllCacheEntries([callback](LRUHandle* h) {
callback(h->value, h->charge);
});
if (thread_safe) {
mutex_.Unlock();
}
}
void LRUCache::LRU_Remove(LRUHandle* e) {
assert(e->next != nullptr);
assert(e->prev != nullptr);
e->next->prev = e->prev;
e->prev->next = e->next;
e->prev = e->next = nullptr;
lru_usage_ -= e->charge;
}
void LRUCache::LRU_Append(LRUHandle* e) {
// Make "e" newest entry by inserting just before lru_
assert(e->next == nullptr);
assert(e->prev == nullptr);
e->next = &lru_;
e->prev = lru_.prev;
e->prev->next = e;
e->next->prev = e;
lru_usage_ += e->charge;
}
void LRUCache::EvictFromLRU(size_t charge,
autovector<LRUHandle*>* deleted) {
while (usage_ + charge > capacity_ && lru_.next != &lru_) {
LRUHandle* old = lru_.next;
assert(old->in_cache);
assert(old->refs == 1); // LRU list contains elements which may be evicted
LRU_Remove(old);
table_.Remove(old->key(), old->hash);
old->in_cache = false;
Unref(old);
usage_ -= old->charge;
deleted->push_back(old);
}
}
void LRUCache::SetCapacity(size_t capacity) {
autovector<LRUHandle*> last_reference_list;
{
MutexLock l(&mutex_);
capacity_ = capacity;
EvictFromLRU(0, &last_reference_list);
}
// we free the entries here outside of mutex for
// performance reasons
for (auto entry : last_reference_list) {
entry->Free();
}
}
Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
MutexLock l(&mutex_);
LRUHandle* e = table_.Lookup(key, hash);
if (e != nullptr) {
assert(e->in_cache);
if (e->refs == 1) {
LRU_Remove(e);
}
e->refs++;
}
return reinterpret_cast<Cache::Handle*>(e);
}
void LRUCache::Release(Cache::Handle* handle) {
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
bool last_reference = false;
{
MutexLock l(&mutex_);
last_reference = Unref(e);
if (last_reference) {
usage_ -= e->charge;
}
if (e->refs == 1 && e->in_cache) {
// The item is still in cache, and nobody else holds a reference to it
if (usage_ > capacity_) {
// the cache is full
// The LRU list must be empty since the cache is full
assert(lru_.next == &lru_);
// take this opportunity and remove the item
table_.Remove(e->key(), e->hash);
e->in_cache = false;
Unref(e);
usage_ -= e->charge;
last_reference = true;
} else {
// put the item on the list to be potentially freed
LRU_Append(e);
}
}
}
// free outside of mutex
if (last_reference) {
e->Free();
}
}
Cache::Handle* LRUCache::Insert(
const Slice& key, uint32_t hash, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value)) {
// Allocate the memory here outside of the mutex
// If the cache is full, we'll have to release it
// It shouldn't happen very often though.
LRUHandle* e =
reinterpret_cast<LRUHandle*>(malloc(sizeof(LRUHandle) - 1 + key.size()));
autovector<LRUHandle*> last_reference_list;
e->value = value;
e->deleter = deleter;
e->charge = charge;
e->key_length = key.size();
e->hash = hash;
e->refs = 2; // One from LRUCache, one for the returned handle
e->next = e->prev = nullptr;
e->in_cache = true;
memcpy(e->key_data, key.data(), key.size());
{
MutexLock l(&mutex_);
// Free the space following strict LRU policy until enough space
// is freed or the lru list is empty
EvictFromLRU(charge, &last_reference_list);
// insert into the cache
// note that the cache might get larger than its capacity if not enough
// space was freed
LRUHandle* old = table_.Insert(e);
usage_ += e->charge;
if (old != nullptr) {
old->in_cache = false;
if (Unref(old)) {
usage_ -= old->charge;
// old is on LRU because it's in cache and its reference count
// was just 1 (Unref returned 0)
LRU_Remove(old);
last_reference_list.push_back(old);
}
}
}
// we free the entries here outside of mutex for
// performance reasons
for (auto entry : last_reference_list) {
entry->Free();
}
return reinterpret_cast<Cache::Handle*>(e);
}
void LRUCache::Erase(const Slice& key, uint32_t hash) {
LRUHandle* e;
bool last_reference = false;
{
MutexLock l(&mutex_);
e = table_.Remove(key, hash);
if (e != nullptr) {
last_reference = Unref(e);
if (last_reference) {
usage_ -= e->charge;
}
if (last_reference && e->in_cache) {
LRU_Remove(e);
}
e->in_cache = false;
}
}
// mutex not held here
// last_reference will only be true if e != nullptr
if (last_reference) {
e->Free();
}
}
static int kNumShardBits = 4; // default values, can be overridden
class ShardedLRUCache : public Cache {
private:
LRUCache* shards_;
port::Mutex id_mutex_;
port::Mutex capacity_mutex_;
uint64_t last_id_;
int num_shard_bits_;
size_t capacity_;
static inline uint32_t HashSlice(const Slice& s) {
return Hash(s.data(), s.size(), 0);
}
uint32_t Shard(uint32_t hash) {
// Note, hash >> 32 yields hash in gcc, not the zero we expect!
return (num_shard_bits_ > 0) ? (hash >> (32 - num_shard_bits_)) : 0;
}
public:
ShardedLRUCache(size_t capacity, int num_shard_bits)
: last_id_(0), num_shard_bits_(num_shard_bits), capacity_(capacity) {
int num_shards = 1 << num_shard_bits_;
shards_ = new LRUCache[num_shards];
const size_t per_shard = (capacity + (num_shards - 1)) / num_shards;
for (int s = 0; s < num_shards; s++) {
shards_[s].SetCapacity(per_shard);
}
}
virtual ~ShardedLRUCache() {
delete[] shards_;
}
virtual void SetCapacity(size_t capacity) override {
int num_shards = 1 << num_shard_bits_;
const size_t per_shard = (capacity + (num_shards - 1)) / num_shards;
MutexLock l(&capacity_mutex_);
for (int s = 0; s < num_shards; s++) {
shards_[s].SetCapacity(per_shard);
}
capacity_ = capacity;
}
virtual Handle* Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key,
void* value)) override {
const uint32_t hash = HashSlice(key);
return shards_[Shard(hash)].Insert(key, hash, value, charge, deleter);
}
virtual Handle* Lookup(const Slice& key) override {
const uint32_t hash = HashSlice(key);
return shards_[Shard(hash)].Lookup(key, hash);
}
virtual void Release(Handle* handle) override {
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
shards_[Shard(h->hash)].Release(handle);
}
virtual void Erase(const Slice& key) override {
const uint32_t hash = HashSlice(key);
shards_[Shard(hash)].Erase(key, hash);
}
virtual void* Value(Handle* handle) override {
return reinterpret_cast<LRUHandle*>(handle)->value;
}
virtual uint64_t NewId() override {
MutexLock l(&id_mutex_);
return ++(last_id_);
}
virtual size_t GetCapacity() const override { return capacity_; }
virtual size_t GetUsage() const override {
// We will not lock the cache when getting the usage from shards.
int num_shards = 1 << num_shard_bits_;
size_t usage = 0;
for (int s = 0; s < num_shards; s++) {
usage += shards_[s].GetUsage();
}
return usage;
}
virtual size_t GetPinnedUsage() const override {
// We will not lock the cache when getting the usage from shards.
int num_shards = 1 << num_shard_bits_;
size_t usage = 0;
for (int s = 0; s < num_shards; s++) {
usage += shards_[s].GetPinnedUsage();
}
return usage;
}
virtual void DisownData() override { shards_ = nullptr; }
virtual void ApplyToAllCacheEntries(void (*callback)(void*, size_t),
bool thread_safe) override {
int num_shards = 1 << num_shard_bits_;
for (int s = 0; s < num_shards; s++) {
shards_[s].ApplyToAllCacheEntries(callback, thread_safe);
}
}
};
} // end anonymous namespace
shared_ptr<Cache> NewLRUCache(size_t capacity) {
return NewLRUCache(capacity, kNumShardBits);
}
shared_ptr<Cache> NewLRUCache(size_t capacity, int num_shard_bits) {
if (num_shard_bits >= 20) {
return nullptr; // the cache cannot be sharded into too many fine pieces
}
return std::make_shared<ShardedLRUCache>(capacity, num_shard_bits);
}
} // namespace rocksdb