78a309bf86
Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
356 lines
12 KiB
C++
356 lines
12 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
#pragma once
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "cache/sharded_cache.h"
|
|
#include "port/malloc.h"
|
|
#include "port/port.h"
|
|
#include "util/autovector.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
// LRU cache implementation. This class is not thread-safe.
|
|
|
|
// An entry is a variable length heap-allocated structure.
|
|
// Entries are referenced by cache and/or by any external entity.
|
|
// The cache keeps all its entries in a hash table. Some elements
|
|
// are also stored on LRU list.
|
|
//
|
|
// LRUHandle can be in these states:
|
|
// 1. Referenced externally AND in hash table.
|
|
// In that case the entry is *not* in the LRU list
|
|
// (refs >= 1 && in_cache == true)
|
|
// 2. Not referenced externally AND in hash table.
|
|
// In that case the entry is in the LRU list and can be freed.
|
|
// (refs == 0 && in_cache == true)
|
|
// 3. Referenced externally AND not in hash table.
|
|
// In that case the entry is not in the LRU list and not in hash table.
|
|
// The entry can be freed when refs becomes 0.
|
|
// (refs >= 1 && in_cache == false)
|
|
//
|
|
// All newly created LRUHandles are in state 1. If you call
|
|
// LRUCacheShard::Release on entry in state 1, it will go into state 2.
|
|
// To move from state 1 to state 3, either call LRUCacheShard::Erase or
|
|
// LRUCacheShard::Insert with the same key (but possibly different value).
|
|
// To move from state 2 to state 1, use LRUCacheShard::Lookup.
|
|
// Before destruction, make sure that no handles are in state 1. This means
|
|
// that any successful LRUCacheShard::Lookup/LRUCacheShard::Insert have a
|
|
// matching LRUCache::Release (to move into state 2) or LRUCacheShard::Erase
|
|
// (to move into state 3).
|
|
|
|
struct LRUHandle {
|
|
void* value;
|
|
void (*deleter)(const Slice&, void* value);
|
|
LRUHandle* next_hash;
|
|
LRUHandle* next;
|
|
LRUHandle* prev;
|
|
size_t charge; // TODO(opt): Only allow uint32_t?
|
|
size_t key_length;
|
|
// The hash of key(). Used for fast sharding and comparisons.
|
|
uint32_t hash;
|
|
// The number of external refs to this entry. The cache itself is not counted.
|
|
uint32_t refs;
|
|
|
|
enum Flags : uint8_t {
|
|
// Whether this entry is referenced by the hash table.
|
|
IN_CACHE = (1 << 0),
|
|
// Whether this entry is high priority entry.
|
|
IS_HIGH_PRI = (1 << 1),
|
|
// Whether this entry is in high-pri pool.
|
|
IN_HIGH_PRI_POOL = (1 << 2),
|
|
// Whether this entry has had any lookups (hits).
|
|
HAS_HIT = (1 << 3),
|
|
};
|
|
|
|
uint8_t flags;
|
|
|
|
// Beginning of the key (MUST BE THE LAST FIELD IN THIS STRUCT!)
|
|
char key_data[1];
|
|
|
|
Slice key() const { return Slice(key_data, key_length); }
|
|
|
|
// Increase the reference count by 1.
|
|
void Ref() { refs++; }
|
|
|
|
// Just reduce the reference count by 1. Return true if it was last reference.
|
|
bool Unref() {
|
|
assert(refs > 0);
|
|
refs--;
|
|
return refs == 0;
|
|
}
|
|
|
|
// Return true if there are external refs, false otherwise.
|
|
bool HasRefs() const { return refs > 0; }
|
|
|
|
bool InCache() const { return flags & IN_CACHE; }
|
|
bool IsHighPri() const { return flags & IS_HIGH_PRI; }
|
|
bool InHighPriPool() const { return flags & IN_HIGH_PRI_POOL; }
|
|
bool HasHit() const { return flags & HAS_HIT; }
|
|
|
|
void SetInCache(bool in_cache) {
|
|
if (in_cache) {
|
|
flags |= IN_CACHE;
|
|
} else {
|
|
flags &= ~IN_CACHE;
|
|
}
|
|
}
|
|
|
|
void SetPriority(Cache::Priority priority) {
|
|
if (priority == Cache::Priority::HIGH) {
|
|
flags |= IS_HIGH_PRI;
|
|
} else {
|
|
flags &= ~IS_HIGH_PRI;
|
|
}
|
|
}
|
|
|
|
void SetInHighPriPool(bool in_high_pri_pool) {
|
|
if (in_high_pri_pool) {
|
|
flags |= IN_HIGH_PRI_POOL;
|
|
} else {
|
|
flags &= ~IN_HIGH_PRI_POOL;
|
|
}
|
|
}
|
|
|
|
void SetHit() { flags |= HAS_HIT; }
|
|
|
|
void Free() {
|
|
assert(refs == 0);
|
|
if (deleter) {
|
|
(*deleter)(key(), value);
|
|
}
|
|
delete[] reinterpret_cast<char*>(this);
|
|
}
|
|
|
|
// Calculate the memory usage by metadata
|
|
inline size_t CalcTotalCharge(
|
|
CacheMetadataChargePolicy metadata_charge_policy) {
|
|
size_t meta_charge = 0;
|
|
if (metadata_charge_policy == kFullChargeCacheMetadata) {
|
|
#ifdef ROCKSDB_MALLOC_USABLE_SIZE
|
|
meta_charge += malloc_usable_size(static_cast<void*>(this));
|
|
#else
|
|
// This is the size that is used when a new handle is created
|
|
meta_charge += sizeof(LRUHandle) - 1 + key_length;
|
|
#endif
|
|
}
|
|
return charge + meta_charge;
|
|
}
|
|
};
|
|
|
|
// We provide our own simple hash table since it removes a whole bunch
|
|
// of porting hacks and is also faster than some of the built-in hash
|
|
// table implementations in some of the compiler/runtime combinations
|
|
// we have tested. E.g., readrandom speeds up by ~5% over the g++
|
|
// 4.4.3's builtin hashtable.
|
|
class LRUHandleTable {
|
|
public:
|
|
// If the table uses more hash bits than `max_upper_hash_bits`,
|
|
// it will eat into the bits used for sharding, which are constant
|
|
// for a given LRUHandleTable.
|
|
explicit LRUHandleTable(int max_upper_hash_bits);
|
|
~LRUHandleTable();
|
|
|
|
LRUHandle* Lookup(const Slice& key, uint32_t hash);
|
|
LRUHandle* Insert(LRUHandle* h);
|
|
LRUHandle* Remove(const Slice& key, uint32_t hash);
|
|
|
|
template <typename T>
|
|
void ApplyToEntriesRange(T func, uint32_t index_begin, uint32_t index_end) {
|
|
for (uint32_t i = index_begin; i < index_end; i++) {
|
|
LRUHandle* h = list_[i];
|
|
while (h != nullptr) {
|
|
auto n = h->next_hash;
|
|
assert(h->InCache());
|
|
func(h);
|
|
h = n;
|
|
}
|
|
}
|
|
}
|
|
|
|
int GetLengthBits() const { return length_bits_; }
|
|
|
|
private:
|
|
// Return a pointer to slot that points to a cache entry that
|
|
// matches key/hash. If there is no such cache entry, return a
|
|
// pointer to the trailing slot in the corresponding linked list.
|
|
LRUHandle** FindPointer(const Slice& key, uint32_t hash);
|
|
|
|
void Resize();
|
|
|
|
// Number of hash bits (upper because lower bits used for sharding)
|
|
// used for table index. Length == 1 << length_bits_
|
|
int length_bits_;
|
|
|
|
// The table consists of an array of buckets where each bucket is
|
|
// a linked list of cache entries that hash into the bucket.
|
|
std::unique_ptr<LRUHandle*[]> list_;
|
|
|
|
// Number of elements currently in the table
|
|
uint32_t elems_;
|
|
|
|
// Set from max_upper_hash_bits (see constructor)
|
|
const int max_length_bits_;
|
|
};
|
|
|
|
// A single shard of sharded cache.
|
|
class ALIGN_AS(CACHE_LINE_SIZE) LRUCacheShard final : public CacheShard {
|
|
public:
|
|
LRUCacheShard(size_t capacity, bool strict_capacity_limit,
|
|
double high_pri_pool_ratio, bool use_adaptive_mutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy,
|
|
int max_upper_hash_bits);
|
|
virtual ~LRUCacheShard() override = default;
|
|
|
|
// Separate from constructor so caller can easily make an array of LRUCache
|
|
// if current usage is more than new capacity, the function will attempt to
|
|
// free the needed space
|
|
virtual void SetCapacity(size_t capacity) override;
|
|
|
|
// Set the flag to reject insertion if cache if full.
|
|
virtual void SetStrictCapacityLimit(bool strict_capacity_limit) override;
|
|
|
|
// Set percentage of capacity reserved for high-pri cache entries.
|
|
void SetHighPriorityPoolRatio(double high_pri_pool_ratio);
|
|
|
|
// Like Cache methods, but with an extra "hash" parameter.
|
|
virtual Status Insert(const Slice& key, uint32_t hash, void* value,
|
|
size_t charge,
|
|
void (*deleter)(const Slice& key, void* value),
|
|
Cache::Handle** handle,
|
|
Cache::Priority priority) override;
|
|
virtual Cache::Handle* Lookup(const Slice& key, uint32_t hash) override;
|
|
virtual bool Ref(Cache::Handle* handle) override;
|
|
virtual bool Release(Cache::Handle* handle,
|
|
bool force_erase = false) override;
|
|
virtual void Erase(const Slice& key, uint32_t hash) override;
|
|
|
|
// Although in some platforms the update of size_t is atomic, to make sure
|
|
// GetUsage() and GetPinnedUsage() work correctly under any platform, we'll
|
|
// protect them with mutex_.
|
|
|
|
virtual size_t GetUsage() const override;
|
|
virtual size_t GetPinnedUsage() const override;
|
|
|
|
virtual void ApplyToSomeEntries(
|
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter)>& callback,
|
|
uint32_t average_entries_per_lock, uint32_t* state) override;
|
|
|
|
virtual void EraseUnRefEntries() override;
|
|
|
|
virtual std::string GetPrintableOptions() const override;
|
|
|
|
void TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri);
|
|
|
|
// Retrieves number of elements in LRU, for unit test purpose only
|
|
// not threadsafe
|
|
size_t TEST_GetLRUSize();
|
|
|
|
// Retrieves high pri pool ratio
|
|
double GetHighPriPoolRatio();
|
|
|
|
private:
|
|
void LRU_Remove(LRUHandle* e);
|
|
void LRU_Insert(LRUHandle* e);
|
|
|
|
// Overflow the last entry in high-pri pool to low-pri pool until size of
|
|
// high-pri pool is no larger than the size specify by high_pri_pool_pct.
|
|
void MaintainPoolSize();
|
|
|
|
// Free some space following strict LRU policy until enough space
|
|
// to hold (usage_ + charge) is freed or the lru list is empty
|
|
// This function is not thread safe - it needs to be executed while
|
|
// holding the mutex_
|
|
void EvictFromLRU(size_t charge, autovector<LRUHandle*>* deleted);
|
|
|
|
// Initialized before use.
|
|
size_t capacity_;
|
|
|
|
// Memory size for entries in high-pri pool.
|
|
size_t high_pri_pool_usage_;
|
|
|
|
// Whether to reject insertion if cache reaches its full capacity.
|
|
bool strict_capacity_limit_;
|
|
|
|
// Ratio of capacity reserved for high priority cache entries.
|
|
double high_pri_pool_ratio_;
|
|
|
|
// High-pri pool size, equals to capacity * high_pri_pool_ratio.
|
|
// Remember the value to avoid recomputing each time.
|
|
double high_pri_pool_capacity_;
|
|
|
|
// Dummy head of LRU list.
|
|
// lru.prev is newest entry, lru.next is oldest entry.
|
|
// LRU contains items which can be evicted, ie reference only by cache
|
|
LRUHandle lru_;
|
|
|
|
// Pointer to head of low-pri pool in LRU list.
|
|
LRUHandle* lru_low_pri_;
|
|
|
|
// ------------^^^^^^^^^^^^^-----------
|
|
// Not frequently modified data members
|
|
// ------------------------------------
|
|
//
|
|
// We separate data members that are updated frequently from the ones that
|
|
// are not frequently updated so that they don't share the same cache line
|
|
// which will lead into false cache sharing
|
|
//
|
|
// ------------------------------------
|
|
// Frequently modified data members
|
|
// ------------vvvvvvvvvvvvv-----------
|
|
LRUHandleTable table_;
|
|
|
|
// Memory size for entries residing in the cache
|
|
size_t usage_;
|
|
|
|
// Memory size for entries residing only in the LRU list
|
|
size_t lru_usage_;
|
|
|
|
// mutex_ protects the following state.
|
|
// We don't count mutex_ as the cache's internal state so semantically we
|
|
// don't mind mutex_ invoking the non-const actions.
|
|
mutable port::Mutex mutex_;
|
|
};
|
|
|
|
class LRUCache
|
|
#ifdef NDEBUG
|
|
final
|
|
#endif
|
|
: public ShardedCache {
|
|
public:
|
|
LRUCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit,
|
|
double high_pri_pool_ratio,
|
|
std::shared_ptr<MemoryAllocator> memory_allocator = nullptr,
|
|
bool use_adaptive_mutex = kDefaultToAdaptiveMutex,
|
|
CacheMetadataChargePolicy metadata_charge_policy =
|
|
kDontChargeCacheMetadata);
|
|
virtual ~LRUCache();
|
|
virtual const char* Name() const override { return "LRUCache"; }
|
|
virtual CacheShard* GetShard(uint32_t shard) override;
|
|
virtual const CacheShard* GetShard(uint32_t shard) const override;
|
|
virtual void* Value(Handle* handle) override;
|
|
virtual size_t GetCharge(Handle* handle) const override;
|
|
virtual uint32_t GetHash(Handle* handle) const override;
|
|
virtual void DisownData() override;
|
|
|
|
// Retrieves number of elements in LRU, for unit test purpose only
|
|
size_t TEST_GetLRUSize();
|
|
// Retrieves high pri pool ratio
|
|
double GetHighPriPoolRatio();
|
|
|
|
private:
|
|
LRUCacheShard* shards_ = nullptr;
|
|
int num_shards_ = 0;
|
|
};
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|