rocksdb/db/db_impl_write.cc
Yi Wu e9e6e53247 Simplify write thread logic
Summary:
The concept about early exit in write thread implementation is a confusing one. It means that if early exit is allowed, batch group leader will not responsible to exit the batch group, but the last finished writer do. In case we need to mark log synced, or encounter memtable insert error, early exit is disallowed.

This patch remove such a concept by:
* In all cases, the last finished writer (not necessary leader) is responsible to exit batch group.
* In case of parallel memtable write, leader will also mark log synced after memtable insert and before signal finish (call `CompleteParallelWorker()`). The purpose is to allow mark log synced (which require locking mutex) can run in parallel to memtable insert in other writers.
* The last finish writer should handle memtable insert error (update bg_error_) before exiting batch group.
Closes https://github.com/facebook/rocksdb/pull/2134

Differential Revision: D4869667

Pulled By: yiwu-arbug

fbshipit-source-id: aec170847c85b90f4179d6a4608a4fe1361544e3
2017-04-13 16:12:04 -07:00

826 lines
30 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
#include "monitoring/perf_context_imp.h"
#include "options/options_helper.h"
#include "util/sync_point.h"
namespace rocksdb {
// Convenience methods
Status DBImpl::Put(const WriteOptions& o, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& val) {
return DB::Put(o, column_family, key, val);
}
Status DBImpl::Merge(const WriteOptions& o, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& val) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
if (!cfh->cfd()->ioptions()->merge_operator) {
return Status::NotSupported("Provide a merge_operator when opening DB");
} else {
return DB::Merge(o, column_family, key, val);
}
}
Status DBImpl::Delete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family, const Slice& key) {
return DB::Delete(write_options, column_family, key);
}
Status DBImpl::SingleDelete(const WriteOptions& write_options,
ColumnFamilyHandle* column_family,
const Slice& key) {
return DB::SingleDelete(write_options, column_family, key);
}
Status DBImpl::Write(const WriteOptions& write_options, WriteBatch* my_batch) {
return WriteImpl(write_options, my_batch, nullptr, nullptr);
}
#ifndef ROCKSDB_LITE
Status DBImpl::WriteWithCallback(const WriteOptions& write_options,
WriteBatch* my_batch,
WriteCallback* callback) {
return WriteImpl(write_options, my_batch, callback, nullptr);
}
#endif // ROCKSDB_LITE
Status DBImpl::WriteImpl(const WriteOptions& write_options,
WriteBatch* my_batch, WriteCallback* callback,
uint64_t* log_used, uint64_t log_ref,
bool disable_memtable) {
if (my_batch == nullptr) {
return Status::Corruption("Batch is nullptr!");
}
Status status;
PERF_TIMER_GUARD(write_pre_and_post_process_time);
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
disable_memtable);
if (!write_options.disableWAL) {
RecordTick(stats_, WRITE_WITH_WAL);
}
StopWatch write_sw(env_, immutable_db_options_.statistics.get(), DB_WRITE);
write_thread_.JoinBatchGroup(&w);
if (w.state == WriteThread::STATE_PARALLEL_FOLLOWER) {
// we are a non-leader in a parallel group
PERF_TIMER_GUARD(write_memtable_time);
if (w.ShouldWriteToMemtable()) {
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
WriteBatchInternal::SetSequence(w.batch, w.sequence);
w.status = WriteBatchInternal::InsertInto(
&w, &column_family_memtables, &flush_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/, this,
true /*concurrent_memtable_writes*/);
}
if (write_thread_.CompleteParallelWorker(&w)) {
// we're responsible for exit batch group
auto last_sequence = w.parallel_group->last_sequence;
versions_->SetLastSequence(last_sequence);
UpdateBackgroundError(w.status);
write_thread_.ExitAsBatchGroupFollower(&w);
}
assert(w.state == WriteThread::STATE_COMPLETED);
// STATE_COMPLETED conditional below handles exit
status = w.FinalStatus();
}
if (w.state == WriteThread::STATE_COMPLETED) {
if (log_used != nullptr) {
*log_used = w.log_used;
}
// write is complete and leader has updated sequence
return w.FinalStatus();
}
// else we are the leader of the write batch group
assert(w.state == WriteThread::STATE_GROUP_LEADER);
// Once reaches this point, the current writer "w" will try to do its write
// job. It may also pick up some of the remaining writers in the "writers_"
// when it finds suitable, and finish them in the same write batch.
// This is how a write job could be done by the other writer.
WriteContext write_context;
WriteThread::Writer* last_writer = &w; // Dummy intial value
autovector<WriteThread::Writer*> write_group;
WriteThread::ParallelGroup pg;
bool logs_getting_synced = false;
bool in_parallel_group = false;
uint64_t last_sequence = versions_->LastSequence();
mutex_.Lock();
bool need_log_sync = !write_options.disableWAL && write_options.sync;
bool need_log_dir_sync = need_log_sync && !log_dir_synced_;
status = PreprocessWrite(write_options, need_log_sync, &logs_getting_synced,
&write_context);
log::Writer* cur_log_writer = logs_.back().writer;
mutex_.Unlock();
// Add to log and apply to memtable. We can release the lock
// during this phase since &w is currently responsible for logging
// and protects against concurrent loggers and concurrent writes
// into memtables
last_batch_group_size_ =
write_thread_.EnterAsBatchGroupLeader(&w, &last_writer, &write_group);
if (status.ok()) {
// Rules for when we can update the memtable concurrently
// 1. supported by memtable
// 2. Puts are not okay if inplace_update_support
// 3. Merges are not okay
//
// Rules 1..2 are enforced by checking the options
// during startup (CheckConcurrentWritesSupported), so if
// options.allow_concurrent_memtable_write is true then they can be
// assumed to be true. Rule 3 is checked for each batch. We could
// relax rules 2 if we could prevent write batches from referring
// more than once to a particular key.
bool parallel = immutable_db_options_.allow_concurrent_memtable_write &&
write_group.size() > 1;
int total_count = 0;
uint64_t total_byte_size = 0;
for (auto writer : write_group) {
if (writer->CheckCallback(this)) {
if (writer->ShouldWriteToMemtable()) {
total_count += WriteBatchInternal::Count(writer->batch);
parallel = parallel && !writer->batch->HasMerge();
}
total_byte_size = WriteBatchInternal::AppendedByteSize(
total_byte_size, WriteBatchInternal::ByteSize(writer->batch));
}
}
const SequenceNumber current_sequence = last_sequence + 1;
last_sequence += total_count;
// Update stats while we are an exclusive group leader, so we know
// that nobody else can be writing to these particular stats.
// We're optimistic, updating the stats before we successfully
// commit. That lets us release our leader status early.
auto stats = default_cf_internal_stats_;
stats->AddDBStats(InternalStats::NUMBER_KEYS_WRITTEN, total_count);
RecordTick(stats_, NUMBER_KEYS_WRITTEN, total_count);
stats->AddDBStats(InternalStats::BYTES_WRITTEN, total_byte_size);
RecordTick(stats_, BYTES_WRITTEN, total_byte_size);
stats->AddDBStats(InternalStats::WRITE_DONE_BY_SELF, 1);
RecordTick(stats_, WRITE_DONE_BY_SELF);
auto write_done_by_other = write_group.size() - 1;
if (write_done_by_other > 0) {
stats->AddDBStats(InternalStats::WRITE_DONE_BY_OTHER,
write_done_by_other);
RecordTick(stats_, WRITE_DONE_BY_OTHER, write_done_by_other);
}
MeasureTime(stats_, BYTES_PER_WRITE, total_byte_size);
if (write_options.disableWAL) {
has_unpersisted_data_.store(true, std::memory_order_relaxed);
}
PERF_TIMER_STOP(write_pre_and_post_process_time);
if (status.ok() && !write_options.disableWAL) {
PERF_TIMER_GUARD(write_wal_time);
status = WriteToWAL(write_group, cur_log_writer, need_log_sync,
need_log_dir_sync, current_sequence);
if (log_used != nullptr) {
*log_used = logfile_number_;
}
}
if (status.ok()) {
PERF_TIMER_GUARD(write_memtable_time);
if (!parallel) {
w.status = WriteBatchInternal::InsertInto(
write_group, current_sequence, column_family_memtables_.get(),
&flush_scheduler_, write_options.ignore_missing_column_families,
0 /*recovery_log_number*/, this);
} else {
pg.leader = &w;
pg.last_writer = last_writer;
pg.last_sequence = last_sequence;
pg.running.store(static_cast<uint32_t>(write_group.size()),
std::memory_order_relaxed);
write_thread_.LaunchParallelFollowers(&pg, current_sequence);
in_parallel_group = true;
// Each parallel follower is doing each own writes. The leader should
// also do its own.
if (w.ShouldWriteToMemtable()) {
ColumnFamilyMemTablesImpl column_family_memtables(
versions_->GetColumnFamilySet());
assert(w.sequence == current_sequence);
WriteBatchInternal::SetSequence(w.batch, w.sequence);
w.status = WriteBatchInternal::InsertInto(
&w, &column_family_memtables, &flush_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/,
this, true /*concurrent_memtable_writes*/);
}
}
}
}
PERF_TIMER_START(write_pre_and_post_process_time);
//
// Is setting bg_error_ enough here? This will at least stop
// compaction and fail any further writes.
if (immutable_db_options_.paranoid_checks && !status.ok() &&
!w.CallbackFailed() && !status.IsBusy() && !status.IsIncomplete()) {
mutex_.Lock();
if (bg_error_.ok()) {
bg_error_ = status; // stop compaction & fail any further writes
}
mutex_.Unlock();
}
if (logs_getting_synced) {
mutex_.Lock();
MarkLogsSynced(logfile_number_, need_log_dir_sync, status);
mutex_.Unlock();
}
bool should_exit_batch_group = true;
if (in_parallel_group) {
// CompleteParallelWorker returns true if this thread should
// handle exit, false means somebody else did
should_exit_batch_group = write_thread_.CompleteParallelWorker(&w);
}
if (should_exit_batch_group) {
versions_->SetLastSequence(last_sequence);
UpdateBackgroundError(w.status);
write_thread_.ExitAsBatchGroupLeader(&w, last_writer, w.status);
}
if (status.ok()) {
status = w.FinalStatus();
}
return status;
}
void DBImpl::UpdateBackgroundError(const Status& memtable_insert_status) {
// A non-OK status here indicates that the state implied by the
// WAL has diverged from the in-memory state. This could be
// because of a corrupt write_batch (very bad), or because the
// client specified an invalid column family and didn't specify
// ignore_missing_column_families.
if (!memtable_insert_status.ok()) {
mutex_.Lock();
assert(bg_error_.ok());
bg_error_ = memtable_insert_status;
mutex_.Unlock();
}
}
Status DBImpl::PreprocessWrite(const WriteOptions& write_options,
bool need_log_sync, bool* logs_getting_synced,
WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr && logs_getting_synced != nullptr);
Status status;
assert(!single_column_family_mode_ ||
versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1);
if (UNLIKELY(status.ok() && !single_column_family_mode_ &&
total_log_size_ > GetMaxTotalWalSize())) {
status = HandleWALFull(write_context);
}
if (UNLIKELY(status.ok() && write_buffer_manager_->ShouldFlush())) {
// Before a new memtable is added in SwitchMemtable(),
// write_buffer_manager_->ShouldFlush() will keep returning true. If another
// thread is writing to another DB with the same write buffer, they may also
// be flushed. We may end up with flushing much more DBs than needed. It's
// suboptimal but still correct.
status = HandleWriteBufferFull(write_context);
}
if (UNLIKELY(status.ok() && !bg_error_.ok())) {
return bg_error_;
}
if (UNLIKELY(status.ok() && !flush_scheduler_.Empty())) {
status = ScheduleFlushes(write_context);
}
if (UNLIKELY(status.ok() && (write_controller_.IsStopped() ||
write_controller_.NeedsDelay()))) {
PERF_TIMER_GUARD(write_delay_time);
// We don't know size of curent batch so that we always use the size
// for previous one. It might create a fairness issue that expiration
// might happen for smaller writes but larger writes can go through.
// Can optimize it if it is an issue.
status = DelayWrite(last_batch_group_size_, write_options);
}
if (status.ok() && need_log_sync) {
// Wait until the parallel syncs are finished. Any sync process has to sync
// the front log too so it is enough to check the status of front()
// We do a while loop since log_sync_cv_ is signalled when any sync is
// finished
// Note: there does not seem to be a reason to wait for parallel sync at
// this early step but it is not important since parallel sync (SyncWAL) and
// need_log_sync are usually not used together.
while (logs_.front().getting_synced) {
log_sync_cv_.Wait();
}
for (auto& log : logs_) {
assert(!log.getting_synced);
// This is just to prevent the logs to be synced by a parallel SyncWAL
// call. We will do the actual syncing later after we will write to the
// WAL.
// Note: there does not seem to be a reason to set this early before we
// actually write to the WAL
log.getting_synced = true;
}
*logs_getting_synced = true;
}
return status;
}
Status DBImpl::WriteToWAL(const autovector<WriteThread::Writer*>& write_group,
log::Writer* log_writer, bool need_log_sync,
bool need_log_dir_sync, SequenceNumber sequence) {
Status status;
WriteBatch* merged_batch = nullptr;
size_t write_with_wal = 0;
if (write_group.size() == 1 && write_group[0]->ShouldWriteToWAL() &&
write_group[0]->batch->GetWalTerminationPoint().is_cleared()) {
// we simply write the first WriteBatch to WAL if the group only
// contains one batch, that batch should be written to the WAL,
// and the batch is not wanting to be truncated
merged_batch = write_group[0]->batch;
write_group[0]->log_used = logfile_number_;
write_with_wal = 1;
} else {
// WAL needs all of the batches flattened into a single batch.
// We could avoid copying here with an iov-like AddRecord
// interface
merged_batch = &tmp_batch_;
for (auto writer : write_group) {
if (writer->ShouldWriteToWAL()) {
WriteBatchInternal::Append(merged_batch, writer->batch,
/*WAL_only*/ true);
write_with_wal++;
}
writer->log_used = logfile_number_;
}
}
WriteBatchInternal::SetSequence(merged_batch, sequence);
Slice log_entry = WriteBatchInternal::Contents(merged_batch);
status = log_writer->AddRecord(log_entry);
total_log_size_ += log_entry.size();
alive_log_files_.back().AddSize(log_entry.size());
log_empty_ = false;
uint64_t log_size = log_entry.size();
if (status.ok() && need_log_sync) {
StopWatch sw(env_, stats_, WAL_FILE_SYNC_MICROS);
// It's safe to access logs_ with unlocked mutex_ here because:
// - we've set getting_synced=true for all logs,
// so other threads won't pop from logs_ while we're here,
// - only writer thread can push to logs_, and we're in
// writer thread, so no one will push to logs_,
// - as long as other threads don't modify it, it's safe to read
// from std::deque from multiple threads concurrently.
for (auto& log : logs_) {
status = log.writer->file()->Sync(immutable_db_options_.use_fsync);
if (!status.ok()) {
break;
}
}
if (status.ok() && need_log_dir_sync) {
// We only sync WAL directory the first time WAL syncing is
// requested, so that in case users never turn on WAL sync,
// we can avoid the disk I/O in the write code path.
status = directories_.GetWalDir()->Fsync();
}
}
if (merged_batch == &tmp_batch_) {
tmp_batch_.Clear();
}
if (status.ok()) {
auto stats = default_cf_internal_stats_;
if (need_log_sync) {
stats->AddDBStats(InternalStats::WAL_FILE_SYNCED, 1);
RecordTick(stats_, WAL_FILE_SYNCED);
}
stats->AddDBStats(InternalStats::WAL_FILE_BYTES, log_size);
RecordTick(stats_, WAL_FILE_BYTES, log_size);
stats->AddDBStats(InternalStats::WRITE_WITH_WAL, write_with_wal);
RecordTick(stats_, WRITE_WITH_WAL, write_with_wal);
}
return status;
}
Status DBImpl::HandleWALFull(WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr);
Status status;
if (alive_log_files_.begin()->getting_flushed) {
return status;
}
auto oldest_alive_log = alive_log_files_.begin()->number;
auto oldest_log_with_uncommited_prep = FindMinLogContainingOutstandingPrep();
if (allow_2pc() &&
oldest_log_with_uncommited_prep > 0 &&
oldest_log_with_uncommited_prep <= oldest_alive_log) {
if (unable_to_flush_oldest_log_) {
// we already attempted to flush all column families dependent on
// the oldest alive log but the log still contained uncommited transactions.
// the oldest alive log STILL contains uncommited transaction so there
// is still nothing that we can do.
return status;
} else {
ROCKS_LOG_WARN(
immutable_db_options_.info_log,
"Unable to release oldest log due to uncommited transaction");
unable_to_flush_oldest_log_ = true;
}
} else {
// we only mark this log as getting flushed if we have successfully
// flushed all data in this log. If this log contains outstanding prepared
// transactions then we cannot flush this log until those transactions are commited.
unable_to_flush_oldest_log_ = false;
alive_log_files_.begin()->getting_flushed = true;
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Flushing all column families with data in WAL number %" PRIu64
". Total log size is %" PRIu64
" while max_total_wal_size is %" PRIu64,
oldest_alive_log, total_log_size_.load(), GetMaxTotalWalSize());
// no need to refcount because drop is happening in write thread, so can't
// happen while we're in the write thread
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
if (cfd->OldestLogToKeep() <= oldest_alive_log) {
status = SwitchMemtable(cfd, write_context);
if (!status.ok()) {
break;
}
cfd->imm()->FlushRequested();
SchedulePendingFlush(cfd);
}
}
MaybeScheduleFlushOrCompaction();
return status;
}
Status DBImpl::HandleWriteBufferFull(WriteContext* write_context) {
mutex_.AssertHeld();
assert(write_context != nullptr);
Status status;
// Before a new memtable is added in SwitchMemtable(),
// write_buffer_manager_->ShouldFlush() will keep returning true. If another
// thread is writing to another DB with the same write buffer, they may also
// be flushed. We may end up with flushing much more DBs than needed. It's
// suboptimal but still correct.
ROCKS_LOG_INFO(
immutable_db_options_.info_log,
"Flushing column family with largest mem table size. Write buffer is "
"using %" PRIu64 " bytes out of a total of %" PRIu64 ".",
write_buffer_manager_->memory_usage(),
write_buffer_manager_->buffer_size());
// no need to refcount because drop is happening in write thread, so can't
// happen while we're in the write thread
ColumnFamilyData* cfd_picked = nullptr;
SequenceNumber seq_num_for_cf_picked = kMaxSequenceNumber;
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
if (!cfd->mem()->IsEmpty()) {
// We only consider active mem table, hoping immutable memtable is
// already in the process of flushing.
uint64_t seq = cfd->mem()->GetCreationSeq();
if (cfd_picked == nullptr || seq < seq_num_for_cf_picked) {
cfd_picked = cfd;
seq_num_for_cf_picked = seq;
}
}
}
if (cfd_picked != nullptr) {
status = SwitchMemtable(cfd_picked, write_context);
if (status.ok()) {
cfd_picked->imm()->FlushRequested();
SchedulePendingFlush(cfd_picked);
MaybeScheduleFlushOrCompaction();
}
}
return status;
}
uint64_t DBImpl::GetMaxTotalWalSize() const {
mutex_.AssertHeld();
return mutable_db_options_.max_total_wal_size == 0
? 4 * max_total_in_memory_state_
: mutable_db_options_.max_total_wal_size;
}
// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::DelayWrite(uint64_t num_bytes,
const WriteOptions& write_options) {
uint64_t time_delayed = 0;
bool delayed = false;
{
StopWatch sw(env_, stats_, WRITE_STALL, &time_delayed);
uint64_t delay = write_controller_.GetDelay(env_, num_bytes);
if (delay > 0) {
if (write_options.no_slowdown) {
return Status::Incomplete();
}
TEST_SYNC_POINT("DBImpl::DelayWrite:Sleep");
mutex_.Unlock();
// We will delay the write until we have slept for delay ms or
// we don't need a delay anymore
const uint64_t kDelayInterval = 1000;
uint64_t stall_end = sw.start_time() + delay;
while (write_controller_.NeedsDelay()) {
if (env_->NowMicros() >= stall_end) {
// We already delayed this write `delay` microseconds
break;
}
delayed = true;
// Sleep for 0.001 seconds
env_->SleepForMicroseconds(kDelayInterval);
}
mutex_.Lock();
}
while (bg_error_.ok() && write_controller_.IsStopped()) {
if (write_options.no_slowdown) {
return Status::Incomplete();
}
delayed = true;
TEST_SYNC_POINT("DBImpl::DelayWrite:Wait");
bg_cv_.Wait();
}
}
assert(!delayed || !write_options.no_slowdown);
if (delayed) {
default_cf_internal_stats_->AddDBStats(InternalStats::WRITE_STALL_MICROS,
time_delayed);
RecordTick(stats_, STALL_MICROS, time_delayed);
}
return bg_error_;
}
Status DBImpl::ScheduleFlushes(WriteContext* context) {
ColumnFamilyData* cfd;
while ((cfd = flush_scheduler_.TakeNextColumnFamily()) != nullptr) {
auto status = SwitchMemtable(cfd, context);
if (cfd->Unref()) {
delete cfd;
}
if (!status.ok()) {
return status;
}
}
return Status::OK();
}
#ifndef ROCKSDB_LITE
void DBImpl::NotifyOnMemTableSealed(ColumnFamilyData* cfd,
const MemTableInfo& mem_table_info) {
if (immutable_db_options_.listeners.size() == 0U) {
return;
}
if (shutting_down_.load(std::memory_order_acquire)) {
return;
}
for (auto listener : immutable_db_options_.listeners) {
listener->OnMemTableSealed(mem_table_info);
}
}
#endif // ROCKSDB_LITE
// REQUIRES: mutex_ is held
// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::SwitchMemtable(ColumnFamilyData* cfd, WriteContext* context) {
mutex_.AssertHeld();
unique_ptr<WritableFile> lfile;
log::Writer* new_log = nullptr;
MemTable* new_mem = nullptr;
// Attempt to switch to a new memtable and trigger flush of old.
// Do this without holding the dbmutex lock.
assert(versions_->prev_log_number() == 0);
bool creating_new_log = !log_empty_;
uint64_t recycle_log_number = 0;
if (creating_new_log && immutable_db_options_.recycle_log_file_num &&
!log_recycle_files.empty()) {
recycle_log_number = log_recycle_files.front();
log_recycle_files.pop_front();
}
uint64_t new_log_number =
creating_new_log ? versions_->NewFileNumber() : logfile_number_;
SuperVersion* new_superversion = nullptr;
const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions();
// Set current_memtble_info for memtable sealed callback
#ifndef ROCKSDB_LITE
MemTableInfo memtable_info;
memtable_info.cf_name = cfd->GetName();
memtable_info.first_seqno = cfd->mem()->GetFirstSequenceNumber();
memtable_info.earliest_seqno = cfd->mem()->GetEarliestSequenceNumber();
memtable_info.num_entries = cfd->mem()->num_entries();
memtable_info.num_deletes = cfd->mem()->num_deletes();
#endif // ROCKSDB_LITE
// Log this later after lock release. It may be outdated, e.g., if background
// flush happens before logging, but that should be ok.
int num_imm_unflushed = cfd->imm()->NumNotFlushed();
DBOptions db_options =
BuildDBOptions(immutable_db_options_, mutable_db_options_);
const auto preallocate_block_size =
GetWalPreallocateBlockSize(mutable_cf_options.write_buffer_size);
mutex_.Unlock();
Status s;
{
if (creating_new_log) {
EnvOptions opt_env_opt =
env_->OptimizeForLogWrite(env_options_, db_options);
if (recycle_log_number) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"reusing log %" PRIu64 " from recycle list\n",
recycle_log_number);
s = env_->ReuseWritableFile(
LogFileName(immutable_db_options_.wal_dir, new_log_number),
LogFileName(immutable_db_options_.wal_dir, recycle_log_number),
&lfile, opt_env_opt);
} else {
s = NewWritableFile(
env_, LogFileName(immutable_db_options_.wal_dir, new_log_number),
&lfile, opt_env_opt);
}
if (s.ok()) {
// Our final size should be less than write_buffer_size
// (compression, etc) but err on the side of caution.
// use preallocate_block_size instead
// of calling GetWalPreallocateBlockSize()
lfile->SetPreallocationBlockSize(preallocate_block_size);
unique_ptr<WritableFileWriter> file_writer(
new WritableFileWriter(std::move(lfile), opt_env_opt));
new_log =
new log::Writer(std::move(file_writer), new_log_number,
immutable_db_options_.recycle_log_file_num > 0);
}
}
if (s.ok()) {
SequenceNumber seq = versions_->LastSequence();
new_mem = cfd->ConstructNewMemtable(mutable_cf_options, seq);
new_superversion = new SuperVersion();
}
#ifndef ROCKSDB_LITE
// PLEASE NOTE: We assume that there are no failable operations
// after lock is acquired below since we are already notifying
// client about mem table becoming immutable.
NotifyOnMemTableSealed(cfd, memtable_info);
#endif //ROCKSDB_LITE
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"[%s] New memtable created with log file: #%" PRIu64
". Immutable memtables: %d.\n",
cfd->GetName().c_str(), new_log_number, num_imm_unflushed);
mutex_.Lock();
if (!s.ok()) {
// how do we fail if we're not creating new log?
assert(creating_new_log);
assert(!new_mem);
assert(!new_log);
return s;
}
if (creating_new_log) {
logfile_number_ = new_log_number;
assert(new_log != nullptr);
log_empty_ = true;
log_dir_synced_ = false;
logs_.emplace_back(logfile_number_, new_log);
alive_log_files_.push_back(LogFileNumberSize(logfile_number_));
}
for (auto loop_cfd : *versions_->GetColumnFamilySet()) {
// all this is just optimization to delete logs that
// are no longer needed -- if CF is empty, that means it
// doesn't need that particular log to stay alive, so we just
// advance the log number. no need to persist this in the manifest
if (loop_cfd->mem()->GetFirstSequenceNumber() == 0 &&
loop_cfd->imm()->NumNotFlushed() == 0) {
if (creating_new_log) {
loop_cfd->SetLogNumber(logfile_number_);
}
loop_cfd->mem()->SetCreationSeq(versions_->LastSequence());
}
}
cfd->mem()->SetNextLogNumber(logfile_number_);
cfd->imm()->Add(cfd->mem(), &context->memtables_to_free_);
new_mem->Ref();
cfd->SetMemtable(new_mem);
context->superversions_to_free_.push_back(InstallSuperVersionAndScheduleWork(
cfd, new_superversion, mutable_cf_options));
return s;
}
size_t DBImpl::GetWalPreallocateBlockSize(uint64_t write_buffer_size) const {
mutex_.AssertHeld();
size_t bsize = write_buffer_size / 10 + write_buffer_size;
// Some users might set very high write_buffer_size and rely on
// max_total_wal_size or other parameters to control the WAL size.
if (mutable_db_options_.max_total_wal_size > 0) {
bsize = std::min<size_t>(bsize, mutable_db_options_.max_total_wal_size);
}
if (immutable_db_options_.db_write_buffer_size > 0) {
bsize = std::min<size_t>(bsize, immutable_db_options_.db_write_buffer_size);
}
if (immutable_db_options_.write_buffer_manager &&
immutable_db_options_.write_buffer_manager->enabled()) {
bsize = std::min<size_t>(
bsize, immutable_db_options_.write_buffer_manager->buffer_size());
}
return bsize;
}
// Default implementations of convenience methods that subclasses of DB
// can call if they wish
Status DB::Put(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
// Pre-allocate size of write batch conservatively.
// 8 bytes are taken by header, 4 bytes for count, 1 byte for type,
// and we allocate 11 extra bytes for key length, as well as value length.
WriteBatch batch(key.size() + value.size() + 24);
batch.Put(column_family, key, value);
return Write(opt, &batch);
}
Status DB::Delete(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key) {
WriteBatch batch;
batch.Delete(column_family, key);
return Write(opt, &batch);
}
Status DB::SingleDelete(const WriteOptions& opt,
ColumnFamilyHandle* column_family, const Slice& key) {
WriteBatch batch;
batch.SingleDelete(column_family, key);
return Write(opt, &batch);
}
Status DB::DeleteRange(const WriteOptions& opt,
ColumnFamilyHandle* column_family,
const Slice& begin_key, const Slice& end_key) {
WriteBatch batch;
batch.DeleteRange(column_family, begin_key, end_key);
return Write(opt, &batch);
}
Status DB::Merge(const WriteOptions& opt, ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
WriteBatch batch;
batch.Merge(column_family, key, value);
return Write(opt, &batch);
}
} // namespace rocksdb