rocksdb/port/port_posix.cc
Peter Dillinger 13ded69484 Built-in support for generating unique IDs, bug fix (#8708)
Summary:
Env::GenerateUniqueId() works fine on Windows and on POSIX
where /proc/sys/kernel/random/uuid exists. Our other implementation is
flawed and easily produces collision in a new multi-threaded test.
As we rely more heavily on DB session ID uniqueness, this becomes a
serious issue.

This change combines several individually suitable entropy sources
for reliable generation of random unique IDs, with goal of uniqueness
and portability, not cryptographic strength nor maximum speed.

Specifically:
* Moves code for getting UUIDs from the OS to port::GenerateRfcUuid
rather than in Env implementation details. Callers are now told whether
the operation fails or succeeds.
* Adds an internal API GenerateRawUniqueId for generating high-quality
128-bit unique identifiers, by combining entropy from three "tracks":
  * Lots of info from default Env like time, process id, and hostname.
  * std::random_device
  * port::GenerateRfcUuid (when working)
* Built-in implementations of Env::GenerateUniqueId() will now always
produce an RFC 4122 UUID string, either from platform-specific API or
by converting the output of GenerateRawUniqueId.

DB session IDs now use GenerateRawUniqueId while DB IDs (not as
critical) try to use port::GenerateRfcUuid but fall back on
GenerateRawUniqueId with conversion to an RFC 4122 UUID.

GenerateRawUniqueId is declared and defined under env/ rather than util/
or even port/ because of the Env dependency.

Likely follow-up: enhance GenerateRawUniqueId to be faster after the
first call and to guarantee uniqueness within the lifetime of a single
process (imparting the same property onto DB session IDs).

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8708

Test Plan:
A new mini-stress test in env_test checks the various public
and internal APIs for uniqueness, including each track of
GenerateRawUniqueId individually. We can't hope to verify anywhere close
to 128 bits of entropy, but it can at least detect flaws as bad as the
old code. Serial execution of the new tests takes about 350 ms on
my machine.

Reviewed By: zhichao-cao, mrambacher

Differential Revision: D30563780

Pulled By: pdillinger

fbshipit-source-id: de4c9ff4b2f581cf784fcedb5f39f16e5185c364
2021-08-30 15:20:41 -07:00

286 lines
7.4 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#if !defined(OS_WIN)
#include "port/port_posix.h"
#include <assert.h>
#if defined(__i386__) || defined(__x86_64__)
#include <cpuid.h>
#endif
#include <errno.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <cstdlib>
#include <fstream>
#include <string>
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
// We want to give users opportunity to default all the mutexes to adaptive if
// not specified otherwise. This enables a quick way to conduct various
// performance related experiements.
//
// NB! Support for adaptive mutexes is turned on by definining
// ROCKSDB_PTHREAD_ADAPTIVE_MUTEX during the compilation. If you use RocksDB
// build environment then this happens automatically; otherwise it's up to the
// consumer to define the identifier.
#ifdef ROCKSDB_DEFAULT_TO_ADAPTIVE_MUTEX
extern const bool kDefaultToAdaptiveMutex = true;
#else
extern const bool kDefaultToAdaptiveMutex = false;
#endif
namespace port {
static int PthreadCall(const char* label, int result) {
if (result != 0 && result != ETIMEDOUT) {
fprintf(stderr, "pthread %s: %s\n", label, errnoStr(result).c_str());
abort();
}
return result;
}
Mutex::Mutex(bool adaptive) {
(void) adaptive;
#ifdef ROCKSDB_PTHREAD_ADAPTIVE_MUTEX
if (!adaptive) {
PthreadCall("init mutex", pthread_mutex_init(&mu_, nullptr));
} else {
pthread_mutexattr_t mutex_attr;
PthreadCall("init mutex attr", pthread_mutexattr_init(&mutex_attr));
PthreadCall("set mutex attr",
pthread_mutexattr_settype(&mutex_attr,
PTHREAD_MUTEX_ADAPTIVE_NP));
PthreadCall("init mutex", pthread_mutex_init(&mu_, &mutex_attr));
PthreadCall("destroy mutex attr",
pthread_mutexattr_destroy(&mutex_attr));
}
#else
PthreadCall("init mutex", pthread_mutex_init(&mu_, nullptr));
#endif // ROCKSDB_PTHREAD_ADAPTIVE_MUTEX
}
Mutex::~Mutex() { PthreadCall("destroy mutex", pthread_mutex_destroy(&mu_)); }
void Mutex::Lock() {
PthreadCall("lock", pthread_mutex_lock(&mu_));
#ifndef NDEBUG
locked_ = true;
#endif
}
void Mutex::Unlock() {
#ifndef NDEBUG
locked_ = false;
#endif
PthreadCall("unlock", pthread_mutex_unlock(&mu_));
}
void Mutex::AssertHeld() {
#ifndef NDEBUG
assert(locked_);
#endif
}
CondVar::CondVar(Mutex* mu)
: mu_(mu) {
PthreadCall("init cv", pthread_cond_init(&cv_, nullptr));
}
CondVar::~CondVar() { PthreadCall("destroy cv", pthread_cond_destroy(&cv_)); }
void CondVar::Wait() {
#ifndef NDEBUG
mu_->locked_ = false;
#endif
PthreadCall("wait", pthread_cond_wait(&cv_, &mu_->mu_));
#ifndef NDEBUG
mu_->locked_ = true;
#endif
}
bool CondVar::TimedWait(uint64_t abs_time_us) {
struct timespec ts;
ts.tv_sec = static_cast<time_t>(abs_time_us / 1000000);
ts.tv_nsec = static_cast<suseconds_t>((abs_time_us % 1000000) * 1000);
#ifndef NDEBUG
mu_->locked_ = false;
#endif
int err = pthread_cond_timedwait(&cv_, &mu_->mu_, &ts);
#ifndef NDEBUG
mu_->locked_ = true;
#endif
if (err == ETIMEDOUT) {
return true;
}
if (err != 0) {
PthreadCall("timedwait", err);
}
return false;
}
void CondVar::Signal() {
PthreadCall("signal", pthread_cond_signal(&cv_));
}
void CondVar::SignalAll() {
PthreadCall("broadcast", pthread_cond_broadcast(&cv_));
}
RWMutex::RWMutex() {
PthreadCall("init mutex", pthread_rwlock_init(&mu_, nullptr));
}
RWMutex::~RWMutex() { PthreadCall("destroy mutex", pthread_rwlock_destroy(&mu_)); }
void RWMutex::ReadLock() { PthreadCall("read lock", pthread_rwlock_rdlock(&mu_)); }
void RWMutex::WriteLock() { PthreadCall("write lock", pthread_rwlock_wrlock(&mu_)); }
void RWMutex::ReadUnlock() { PthreadCall("read unlock", pthread_rwlock_unlock(&mu_)); }
void RWMutex::WriteUnlock() { PthreadCall("write unlock", pthread_rwlock_unlock(&mu_)); }
int PhysicalCoreID() {
#if defined(ROCKSDB_SCHED_GETCPU_PRESENT) && defined(__x86_64__) && \
(__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 22))
// sched_getcpu uses VDSO getcpu() syscall since 2.22. I believe Linux offers VDSO
// support only on x86_64. This is the fastest/preferred method if available.
int cpuno = sched_getcpu();
if (cpuno < 0) {
return -1;
}
return cpuno;
#elif defined(__x86_64__) || defined(__i386__)
// clang/gcc both provide cpuid.h, which defines __get_cpuid(), for x86_64 and i386.
unsigned eax, ebx = 0, ecx, edx;
if (!__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
return -1;
}
return ebx >> 24;
#else
// give up, the caller can generate a random number or something.
return -1;
#endif
}
void InitOnce(OnceType* once, void (*initializer)()) {
PthreadCall("once", pthread_once(once, initializer));
}
void Crash(const std::string& srcfile, int srcline) {
fprintf(stdout, "Crashing at %s:%d\n", srcfile.c_str(), srcline);
fflush(stdout);
kill(getpid(), SIGTERM);
}
int GetMaxOpenFiles() {
#if defined(RLIMIT_NOFILE)
struct rlimit no_files_limit;
if (getrlimit(RLIMIT_NOFILE, &no_files_limit) != 0) {
return -1;
}
// protect against overflow
if (static_cast<uintmax_t>(no_files_limit.rlim_cur) >=
static_cast<uintmax_t>(std::numeric_limits<int>::max())) {
return std::numeric_limits<int>::max();
}
return static_cast<int>(no_files_limit.rlim_cur);
#endif
return -1;
}
void *cacheline_aligned_alloc(size_t size) {
#if __GNUC__ < 5 && defined(__SANITIZE_ADDRESS__)
return malloc(size);
#elif ( _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600 || defined(__APPLE__))
void *m;
errno = posix_memalign(&m, CACHE_LINE_SIZE, size);
return errno ? nullptr : m;
#else
return malloc(size);
#endif
}
void cacheline_aligned_free(void *memblock) {
free(memblock);
}
static size_t GetPageSize() {
#if defined(OS_LINUX) || defined(_SC_PAGESIZE)
long v = sysconf(_SC_PAGESIZE);
if (v >= 1024) {
return static_cast<size_t>(v);
}
#endif
// Default assume 4KB
return 4U * 1024U;
}
const size_t kPageSize = GetPageSize();
void SetCpuPriority(ThreadId id, CpuPriority priority) {
#ifdef OS_LINUX
sched_param param;
param.sched_priority = 0;
switch (priority) {
case CpuPriority::kHigh:
sched_setscheduler(id, SCHED_OTHER, &param);
setpriority(PRIO_PROCESS, id, -20);
break;
case CpuPriority::kNormal:
sched_setscheduler(id, SCHED_OTHER, &param);
setpriority(PRIO_PROCESS, id, 0);
break;
case CpuPriority::kLow:
sched_setscheduler(id, SCHED_OTHER, &param);
setpriority(PRIO_PROCESS, id, 19);
break;
case CpuPriority::kIdle:
sched_setscheduler(id, SCHED_IDLE, &param);
break;
default:
assert(false);
}
#else
(void)id;
(void)priority;
#endif
}
int64_t GetProcessID() { return getpid(); }
bool GenerateRfcUuid(std::string* output) {
output->clear();
std::ifstream f("/proc/sys/kernel/random/uuid");
std::getline(f, /*&*/ *output);
if (output->size() == 36) {
return true;
} else {
output->clear();
return false;
}
}
} // namespace port
} // namespace ROCKSDB_NAMESPACE
#endif