74544d582f
Summary: Note: This PR is the 4th part of a bigger PR stack (https://github.com/facebook/rocksdb/pull/9073) and will rebase/merge only after the first three PRs (https://github.com/facebook/rocksdb/pull/9070, https://github.com/facebook/rocksdb/pull/9071, https://github.com/facebook/rocksdb/pull/9130) merge. **Context:** Similar to https://github.com/facebook/rocksdb/pull/8428, this PR is to track memory usage during (new) Bloom Filter (i.e,FastLocalBloom) and Ribbon Filter (i.e, Ribbon128) construction, moving toward the goal of [single global memory limit using block cache capacity](https://github.com/facebook/rocksdb/wiki/Projects-Being-Developed#improving-memory-efficiency). It also constrains the size of the banding portion of Ribbon Filter during construction by falling back to Bloom Filter if that banding is, at some point, larger than the available space in the cache under `LRUCacheOptions::strict_capacity_limit=true`. The option to turn on this feature is `BlockBasedTableOptions::reserve_table_builder_memory = true` which by default is set to `false`. We [decided](https://github.com/facebook/rocksdb/pull/9073#discussion_r741548409) not to have separate option for separate memory user in table building therefore their memory accounting are all bundled under one general option. **Summary:** - Reserved/released cache for creation/destruction of three main memory users with the passed-in `FilterBuildingContext::cache_res_mgr` during filter construction: - hash entries (i.e`hash_entries`.size(), we bucket-charge hash entries during insertion for performance), - banding (Ribbon Filter only, `bytes_coeff_rows` +`bytes_result_rows` + `bytes_backtrack`), - final filter (i.e, `mutable_buf`'s size). - Implementation details: in order to use `CacheReservationManager::CacheReservationHandle` to account final filter's memory, we have to store the `CacheReservationManager` object and `CacheReservationHandle` for final filter in `XXPH3BitsFilterBuilder` as well as explicitly delete the filter bits builder when done with the final filter in block based table. - Added option fo run `filter_bench` with this memory reservation feature Pull Request resolved: https://github.com/facebook/rocksdb/pull/9073 Test Plan: - Added new tests in `db_bloom_filter_test` to verify filter construction peak cache reservation under combination of `BlockBasedTable::Rep::FilterType` (e.g, `kFullFilter`, `kPartitionedFilter`), `BloomFilterPolicy::Mode`(e.g, `kFastLocalBloom`, `kStandard128Ribbon`, `kDeprecatedBlock`) and `BlockBasedTableOptions::reserve_table_builder_memory` - To address the concern for slow test: tests with memory reservation under `kFullFilter` + `kStandard128Ribbon` and `kPartitionedFilter` take around **3000 - 6000 ms** and others take around **1500 - 2000 ms**, in total adding **20000 - 25000 ms** to the test suit running locally - Added new test in `bloom_test` to verify Ribbon Filter fallback on large banding in FullFilter - Added test in `filter_bench` to verify that this feature does not significantly slow down Bloom/Ribbon Filter construction speed. Local result averaged over **20** run as below: - FastLocalBloom - baseline `./filter_bench -impl=2 -quick -runs 20 | grep 'Build avg'`: - **Build avg ns/key: 29.56295** (DEBUG_LEVEL=1), **29.98153** (DEBUG_LEVEL=0) - new feature (expected to be similar as above)`./filter_bench -impl=2 -quick -runs 20 -reserve_table_builder_memory=true | grep 'Build avg'`: - **Build avg ns/key: 30.99046** (DEBUG_LEVEL=1), **30.48867** (DEBUG_LEVEL=0) - new feature of RibbonFilter with fallback (expected to be similar as above) `./filter_bench -impl=2 -quick -runs 20 -reserve_table_builder_memory=true -strict_capacity_limit=true | grep 'Build avg'` : - **Build avg ns/key: 31.146975** (DEBUG_LEVEL=1), **30.08165** (DEBUG_LEVEL=0) - Ribbon128 - baseline `./filter_bench -impl=3 -quick -runs 20 | grep 'Build avg'`: - **Build avg ns/key: 129.17585** (DEBUG_LEVEL=1), **130.5225** (DEBUG_LEVEL=0) - new feature (expected to be similar as above) `./filter_bench -impl=3 -quick -runs 20 -reserve_table_builder_memory=true | grep 'Build avg' `: - **Build avg ns/key: 131.61645** (DEBUG_LEVEL=1), **132.98075** (DEBUG_LEVEL=0) - new feature of RibbonFilter with fallback (expected to be a lot faster than above due to fallback) `./filter_bench -impl=3 -quick -runs 20 -reserve_table_builder_memory=true -strict_capacity_limit=true | grep 'Build avg'` : - **Build avg ns/key: 52.032965** (DEBUG_LEVEL=1), **52.597825** (DEBUG_LEVEL=0) - And the warning message of `"Cache reservation for Ribbon filter banding failed due to cache full"` is indeed logged to console. Reviewed By: pdillinger Differential Revision: D31991348 Pulled By: hx235 fbshipit-source-id: 9336b2c60f44d530063da518ceaf56dac5f9df8e
808 lines
28 KiB
C++
808 lines
28 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
|
|
#if !defined(GFLAGS) || defined(ROCKSDB_LITE)
|
|
#include <cstdio>
|
|
int main() {
|
|
fprintf(stderr, "filter_bench requires gflags and !ROCKSDB_LITE\n");
|
|
return 1;
|
|
}
|
|
#else
|
|
|
|
#include <cinttypes>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
#include "memory/arena.h"
|
|
#include "port/port.h"
|
|
#include "port/stack_trace.h"
|
|
#include "rocksdb/cache.h"
|
|
#include "rocksdb/system_clock.h"
|
|
#include "table/block_based/filter_policy_internal.h"
|
|
#include "table/block_based/full_filter_block.h"
|
|
#include "table/block_based/mock_block_based_table.h"
|
|
#include "table/plain/plain_table_bloom.h"
|
|
#include "util/cast_util.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/hash.h"
|
|
#include "util/random.h"
|
|
#include "util/stderr_logger.h"
|
|
#include "util/stop_watch.h"
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
using GFLAGS_NAMESPACE::RegisterFlagValidator;
|
|
using GFLAGS_NAMESPACE::SetUsageMessage;
|
|
|
|
DEFINE_uint32(seed, 0, "Seed for random number generators");
|
|
|
|
DEFINE_double(working_mem_size_mb, 200,
|
|
"MB of memory to get up to among all filters, unless "
|
|
"m_keys_total_max is specified.");
|
|
|
|
DEFINE_uint32(average_keys_per_filter, 10000,
|
|
"Average number of keys per filter");
|
|
|
|
DEFINE_double(vary_key_count_ratio, 0.4,
|
|
"Vary number of keys by up to +/- vary_key_count_ratio * "
|
|
"average_keys_per_filter.");
|
|
|
|
DEFINE_uint32(key_size, 24, "Average number of bytes for each key");
|
|
|
|
DEFINE_bool(vary_key_alignment, true,
|
|
"Whether to vary key alignment (default: at least 32-bit "
|
|
"alignment)");
|
|
|
|
DEFINE_uint32(vary_key_size_log2_interval, 5,
|
|
"Use same key size 2^n times, then change. Key size varies from "
|
|
"-2 to +2 bytes vs. average, unless n>=30 to fix key size.");
|
|
|
|
DEFINE_uint32(batch_size, 8, "Number of keys to group in each batch");
|
|
|
|
DEFINE_double(bits_per_key, 10.0, "Bits per key setting for filters");
|
|
|
|
DEFINE_double(m_queries, 200, "Millions of queries for each test mode");
|
|
|
|
DEFINE_double(m_keys_total_max, 0,
|
|
"Maximum total keys added to filters, in millions. "
|
|
"0 (default) disables. Non-zero overrides working_mem_size_mb "
|
|
"option.");
|
|
|
|
DEFINE_bool(use_full_block_reader, false,
|
|
"Use FullFilterBlockReader interface rather than FilterBitsReader");
|
|
|
|
DEFINE_bool(use_plain_table_bloom, false,
|
|
"Use PlainTableBloom structure and interface rather than "
|
|
"FilterBitsReader/FullFilterBlockReader");
|
|
|
|
DEFINE_bool(new_builder, false,
|
|
"Whether to create a new builder for each new filter");
|
|
|
|
DEFINE_uint32(impl, 0,
|
|
"Select filter implementation. Without -use_plain_table_bloom:"
|
|
"0 = legacy full Bloom filter, 1 = block-based Bloom filter, "
|
|
"2 = format_version 5 Bloom filter, 3 = Ribbon128 filter. With "
|
|
"-use_plain_table_bloom: 0 = no locality, 1 = locality.");
|
|
|
|
DEFINE_bool(net_includes_hashing, false,
|
|
"Whether query net ns/op times should include hashing. "
|
|
"(if not, dry run will include hashing) "
|
|
"(build times always include hashing)");
|
|
|
|
DEFINE_bool(optimize_filters_for_memory, false,
|
|
"Setting for BlockBasedTableOptions::optimize_filters_for_memory");
|
|
|
|
DEFINE_uint32(block_cache_capacity_MB, 8,
|
|
"Setting for "
|
|
"LRUCacheOptions::capacity");
|
|
|
|
DEFINE_bool(reserve_table_builder_memory, false,
|
|
"Setting for "
|
|
"BlockBasedTableOptions::reserve_table_builder_memory");
|
|
|
|
DEFINE_bool(strict_capacity_limit, false,
|
|
"Setting for "
|
|
"LRUCacheOptions::strict_capacity_limit");
|
|
|
|
DEFINE_bool(quick, false, "Run more limited set of tests, fewer queries");
|
|
|
|
DEFINE_bool(best_case, false, "Run limited tests only for best-case");
|
|
|
|
DEFINE_bool(allow_bad_fp_rate, false, "Continue even if FP rate is bad");
|
|
|
|
DEFINE_bool(legend, false,
|
|
"Print more information about interpreting results instead of "
|
|
"running tests");
|
|
|
|
DEFINE_uint32(runs, 1, "Number of times to rebuild and run benchmark tests");
|
|
|
|
void _always_assert_fail(int line, const char *file, const char *expr) {
|
|
fprintf(stderr, "%s: %d: Assertion %s failed\n", file, line, expr);
|
|
abort();
|
|
}
|
|
|
|
#define ALWAYS_ASSERT(cond) \
|
|
((cond) ? (void)0 : ::_always_assert_fail(__LINE__, __FILE__, #cond))
|
|
|
|
#ifndef NDEBUG
|
|
// This could affect build times enough that we should not include it for
|
|
// accurate speed tests
|
|
#define PREDICT_FP_RATE
|
|
#endif
|
|
|
|
using ROCKSDB_NAMESPACE::Arena;
|
|
using ROCKSDB_NAMESPACE::BlockContents;
|
|
using ROCKSDB_NAMESPACE::BloomFilterPolicy;
|
|
using ROCKSDB_NAMESPACE::BloomHash;
|
|
using ROCKSDB_NAMESPACE::BuiltinFilterBitsBuilder;
|
|
using ROCKSDB_NAMESPACE::CachableEntry;
|
|
using ROCKSDB_NAMESPACE::Cache;
|
|
using ROCKSDB_NAMESPACE::EncodeFixed32;
|
|
using ROCKSDB_NAMESPACE::FastRange32;
|
|
using ROCKSDB_NAMESPACE::FilterBitsReader;
|
|
using ROCKSDB_NAMESPACE::FilterBuildingContext;
|
|
using ROCKSDB_NAMESPACE::FullFilterBlockReader;
|
|
using ROCKSDB_NAMESPACE::GetSliceHash;
|
|
using ROCKSDB_NAMESPACE::GetSliceHash64;
|
|
using ROCKSDB_NAMESPACE::Lower32of64;
|
|
using ROCKSDB_NAMESPACE::LRUCacheOptions;
|
|
using ROCKSDB_NAMESPACE::ParsedFullFilterBlock;
|
|
using ROCKSDB_NAMESPACE::PlainTableBloomV1;
|
|
using ROCKSDB_NAMESPACE::Random32;
|
|
using ROCKSDB_NAMESPACE::Slice;
|
|
using ROCKSDB_NAMESPACE::static_cast_with_check;
|
|
using ROCKSDB_NAMESPACE::StderrLogger;
|
|
using ROCKSDB_NAMESPACE::mock::MockBlockBasedTableTester;
|
|
|
|
struct KeyMaker {
|
|
KeyMaker(size_t avg_size)
|
|
: smallest_size_(avg_size -
|
|
(FLAGS_vary_key_size_log2_interval >= 30 ? 2 : 0)),
|
|
buf_size_(avg_size + 11), // pad to vary key size and alignment
|
|
buf_(new char[buf_size_]) {
|
|
memset(buf_.get(), 0, buf_size_);
|
|
assert(smallest_size_ > 8);
|
|
}
|
|
size_t smallest_size_;
|
|
size_t buf_size_;
|
|
std::unique_ptr<char[]> buf_;
|
|
|
|
// Returns a unique(-ish) key based on the given parameter values. Each
|
|
// call returns a Slice from the same buffer so previously returned
|
|
// Slices should be considered invalidated.
|
|
Slice Get(uint32_t filter_num, uint32_t val_num) {
|
|
size_t start = FLAGS_vary_key_alignment ? val_num % 4 : 0;
|
|
size_t len = smallest_size_;
|
|
if (FLAGS_vary_key_size_log2_interval < 30) {
|
|
// To get range [avg_size - 2, avg_size + 2]
|
|
// use range [smallest_size, smallest_size + 4]
|
|
len += FastRange32(
|
|
(val_num >> FLAGS_vary_key_size_log2_interval) * 1234567891, 5);
|
|
}
|
|
char * data = buf_.get() + start;
|
|
// Populate key data such that all data makes it into a key of at
|
|
// least 8 bytes. We also don't want all the within-filter key
|
|
// variance confined to a contiguous 32 bits, because then a 32 bit
|
|
// hash function can "cheat" the false positive rate by
|
|
// approximating a perfect hash.
|
|
EncodeFixed32(data, val_num);
|
|
EncodeFixed32(data + 4, filter_num + val_num);
|
|
// ensure clearing leftovers from different alignment
|
|
EncodeFixed32(data + 8, 0);
|
|
return Slice(data, len);
|
|
}
|
|
};
|
|
|
|
void PrintWarnings() {
|
|
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
|
|
fprintf(stdout,
|
|
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
|
|
#endif
|
|
#ifndef NDEBUG
|
|
fprintf(stdout,
|
|
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
|
|
#endif
|
|
}
|
|
|
|
struct FilterInfo {
|
|
uint32_t filter_id_ = 0;
|
|
std::unique_ptr<const char[]> owner_;
|
|
Slice filter_;
|
|
uint32_t keys_added_ = 0;
|
|
std::unique_ptr<FilterBitsReader> reader_;
|
|
std::unique_ptr<FullFilterBlockReader> full_block_reader_;
|
|
std::unique_ptr<PlainTableBloomV1> plain_table_bloom_;
|
|
uint64_t outside_queries_ = 0;
|
|
uint64_t false_positives_ = 0;
|
|
};
|
|
|
|
enum TestMode {
|
|
kSingleFilter,
|
|
kBatchPrepared,
|
|
kBatchUnprepared,
|
|
kFiftyOneFilter,
|
|
kEightyTwentyFilter,
|
|
kRandomFilter,
|
|
};
|
|
|
|
static const std::vector<TestMode> allTestModes = {
|
|
kSingleFilter, kBatchPrepared, kBatchUnprepared,
|
|
kFiftyOneFilter, kEightyTwentyFilter, kRandomFilter,
|
|
};
|
|
|
|
static const std::vector<TestMode> quickTestModes = {
|
|
kSingleFilter,
|
|
kRandomFilter,
|
|
};
|
|
|
|
static const std::vector<TestMode> bestCaseTestModes = {
|
|
kSingleFilter,
|
|
};
|
|
|
|
const char *TestModeToString(TestMode tm) {
|
|
switch (tm) {
|
|
case kSingleFilter:
|
|
return "Single filter";
|
|
case kBatchPrepared:
|
|
return "Batched, prepared";
|
|
case kBatchUnprepared:
|
|
return "Batched, unprepared";
|
|
case kFiftyOneFilter:
|
|
return "Skewed 50% in 1%";
|
|
case kEightyTwentyFilter:
|
|
return "Skewed 80% in 20%";
|
|
case kRandomFilter:
|
|
return "Random filter";
|
|
}
|
|
return "Bad TestMode";
|
|
}
|
|
|
|
// Do just enough to keep some data dependence for the
|
|
// compiler / CPU
|
|
static uint32_t DryRunNoHash(Slice &s) {
|
|
uint32_t sz = static_cast<uint32_t>(s.size());
|
|
if (sz >= 4) {
|
|
return sz + s.data()[3];
|
|
} else {
|
|
return sz;
|
|
}
|
|
}
|
|
|
|
static uint32_t DryRunHash32(Slice &s) {
|
|
// Same perf characteristics as GetSliceHash()
|
|
return BloomHash(s);
|
|
}
|
|
|
|
static uint32_t DryRunHash64(Slice &s) {
|
|
return Lower32of64(GetSliceHash64(s));
|
|
}
|
|
|
|
struct FilterBench : public MockBlockBasedTableTester {
|
|
std::vector<KeyMaker> kms_;
|
|
std::vector<FilterInfo> infos_;
|
|
Random32 random_;
|
|
std::ostringstream fp_rate_report_;
|
|
Arena arena_;
|
|
double m_queries_;
|
|
StderrLogger stderr_logger_;
|
|
|
|
FilterBench()
|
|
: MockBlockBasedTableTester(new BloomFilterPolicy(
|
|
FLAGS_bits_per_key,
|
|
static_cast<BloomFilterPolicy::Mode>(FLAGS_impl))),
|
|
random_(FLAGS_seed),
|
|
m_queries_(0) {
|
|
for (uint32_t i = 0; i < FLAGS_batch_size; ++i) {
|
|
kms_.emplace_back(FLAGS_key_size < 8 ? 8 : FLAGS_key_size);
|
|
}
|
|
ioptions_.logger = &stderr_logger_;
|
|
table_options_.optimize_filters_for_memory =
|
|
FLAGS_optimize_filters_for_memory;
|
|
if (FLAGS_reserve_table_builder_memory) {
|
|
table_options_.reserve_table_builder_memory = true;
|
|
table_options_.no_block_cache = false;
|
|
LRUCacheOptions lo;
|
|
lo.capacity = FLAGS_block_cache_capacity_MB * 1024 * 1024;
|
|
lo.num_shard_bits = 0; // 2^0 shard
|
|
lo.strict_capacity_limit = FLAGS_strict_capacity_limit;
|
|
std::shared_ptr<Cache> cache(NewLRUCache(lo));
|
|
table_options_.block_cache = cache;
|
|
}
|
|
}
|
|
|
|
void Go();
|
|
|
|
double RandomQueryTest(uint32_t inside_threshold, bool dry_run,
|
|
TestMode mode);
|
|
};
|
|
|
|
void FilterBench::Go() {
|
|
if (FLAGS_use_plain_table_bloom && FLAGS_use_full_block_reader) {
|
|
throw std::runtime_error(
|
|
"Can't combine -use_plain_table_bloom and -use_full_block_reader");
|
|
}
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
if (FLAGS_impl > 1) {
|
|
throw std::runtime_error(
|
|
"-impl must currently be >= 0 and <= 1 for Plain table");
|
|
}
|
|
} else {
|
|
if (FLAGS_impl == 1) {
|
|
throw std::runtime_error(
|
|
"Block-based filter not currently supported by filter_bench");
|
|
}
|
|
if (FLAGS_impl > 3) {
|
|
throw std::runtime_error(
|
|
"-impl must currently be 0, 2, or 3 for Block-based table");
|
|
}
|
|
}
|
|
|
|
if (FLAGS_vary_key_count_ratio < 0.0 || FLAGS_vary_key_count_ratio > 1.0) {
|
|
throw std::runtime_error("-vary_key_count_ratio must be >= 0.0 and <= 1.0");
|
|
}
|
|
|
|
// For example, average_keys_per_filter = 100, vary_key_count_ratio = 0.1.
|
|
// Varys up to +/- 10 keys. variance_range = 21 (generating value 0..20).
|
|
// variance_offset = 10, so value - offset average value is always 0.
|
|
const uint32_t variance_range =
|
|
1 + 2 * static_cast<uint32_t>(FLAGS_vary_key_count_ratio *
|
|
FLAGS_average_keys_per_filter);
|
|
const uint32_t variance_offset = variance_range / 2;
|
|
|
|
const std::vector<TestMode> &testModes =
|
|
FLAGS_best_case ? bestCaseTestModes
|
|
: FLAGS_quick ? quickTestModes : allTestModes;
|
|
|
|
m_queries_ = FLAGS_m_queries;
|
|
double working_mem_size_mb = FLAGS_working_mem_size_mb;
|
|
if (FLAGS_quick) {
|
|
m_queries_ /= 7.0;
|
|
} else if (FLAGS_best_case) {
|
|
m_queries_ /= 3.0;
|
|
working_mem_size_mb /= 10.0;
|
|
}
|
|
|
|
std::cout << "Building..." << std::endl;
|
|
|
|
std::unique_ptr<BuiltinFilterBitsBuilder> builder;
|
|
|
|
size_t total_memory_used = 0;
|
|
size_t total_size = 0;
|
|
size_t total_keys_added = 0;
|
|
#ifdef PREDICT_FP_RATE
|
|
double weighted_predicted_fp_rate = 0.0;
|
|
#endif
|
|
size_t max_total_keys;
|
|
size_t max_mem;
|
|
if (FLAGS_m_keys_total_max > 0) {
|
|
max_total_keys = static_cast<size_t>(1000000 * FLAGS_m_keys_total_max);
|
|
max_mem = SIZE_MAX;
|
|
} else {
|
|
max_total_keys = SIZE_MAX;
|
|
max_mem = static_cast<size_t>(1024 * 1024 * working_mem_size_mb);
|
|
}
|
|
|
|
ROCKSDB_NAMESPACE::StopWatchNano timer(
|
|
ROCKSDB_NAMESPACE::SystemClock::Default().get(), true);
|
|
|
|
infos_.clear();
|
|
while ((working_mem_size_mb == 0 || total_size < max_mem) &&
|
|
total_keys_added < max_total_keys) {
|
|
uint32_t filter_id = random_.Next();
|
|
uint32_t keys_to_add = FLAGS_average_keys_per_filter +
|
|
FastRange32(random_.Next(), variance_range) -
|
|
variance_offset;
|
|
if (max_total_keys - total_keys_added < keys_to_add) {
|
|
keys_to_add = static_cast<uint32_t>(max_total_keys - total_keys_added);
|
|
}
|
|
infos_.emplace_back();
|
|
FilterInfo &info = infos_.back();
|
|
info.filter_id_ = filter_id;
|
|
info.keys_added_ = keys_to_add;
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
info.plain_table_bloom_.reset(new PlainTableBloomV1());
|
|
info.plain_table_bloom_->SetTotalBits(
|
|
&arena_, static_cast<uint32_t>(keys_to_add * FLAGS_bits_per_key),
|
|
FLAGS_impl, 0 /*huge_page*/, nullptr /*logger*/);
|
|
for (uint32_t i = 0; i < keys_to_add; ++i) {
|
|
uint32_t hash = GetSliceHash(kms_[0].Get(filter_id, i));
|
|
info.plain_table_bloom_->AddHash(hash);
|
|
}
|
|
info.filter_ = info.plain_table_bloom_->GetRawData();
|
|
} else {
|
|
if (!builder) {
|
|
builder.reset(
|
|
static_cast_with_check<BuiltinFilterBitsBuilder>(GetBuilder()));
|
|
}
|
|
for (uint32_t i = 0; i < keys_to_add; ++i) {
|
|
builder->AddKey(kms_[0].Get(filter_id, i));
|
|
}
|
|
info.filter_ = builder->Finish(&info.owner_);
|
|
#ifdef PREDICT_FP_RATE
|
|
weighted_predicted_fp_rate +=
|
|
keys_to_add *
|
|
builder->EstimatedFpRate(keys_to_add, info.filter_.size());
|
|
#endif
|
|
if (FLAGS_new_builder) {
|
|
builder.reset();
|
|
}
|
|
info.reader_.reset(
|
|
table_options_.filter_policy->GetFilterBitsReader(info.filter_));
|
|
CachableEntry<ParsedFullFilterBlock> block(
|
|
new ParsedFullFilterBlock(table_options_.filter_policy.get(),
|
|
BlockContents(info.filter_)),
|
|
nullptr /* cache */, nullptr /* cache_handle */,
|
|
true /* own_value */);
|
|
info.full_block_reader_.reset(
|
|
new FullFilterBlockReader(table_.get(), std::move(block)));
|
|
}
|
|
total_size += info.filter_.size();
|
|
#ifdef ROCKSDB_MALLOC_USABLE_SIZE
|
|
total_memory_used +=
|
|
malloc_usable_size(const_cast<char *>(info.filter_.data()));
|
|
#endif // ROCKSDB_MALLOC_USABLE_SIZE
|
|
total_keys_added += keys_to_add;
|
|
}
|
|
|
|
uint64_t elapsed_nanos = timer.ElapsedNanos();
|
|
double ns = double(elapsed_nanos) / total_keys_added;
|
|
std::cout << "Build avg ns/key: " << ns << std::endl;
|
|
std::cout << "Number of filters: " << infos_.size() << std::endl;
|
|
std::cout << "Total size (MB): " << total_size / 1024.0 / 1024.0 << std::endl;
|
|
if (total_memory_used > 0) {
|
|
std::cout << "Reported total allocated memory (MB): "
|
|
<< total_memory_used / 1024.0 / 1024.0 << std::endl;
|
|
std::cout << "Reported internal fragmentation: "
|
|
<< (total_memory_used - total_size) * 100.0 / total_size << "%"
|
|
<< std::endl;
|
|
}
|
|
|
|
double bpk = total_size * 8.0 / total_keys_added;
|
|
std::cout << "Bits/key stored: " << bpk << std::endl;
|
|
#ifdef PREDICT_FP_RATE
|
|
std::cout << "Predicted FP rate %: "
|
|
<< 100.0 * (weighted_predicted_fp_rate / total_keys_added)
|
|
<< std::endl;
|
|
#endif
|
|
if (!FLAGS_quick && !FLAGS_best_case) {
|
|
double tolerable_rate = std::pow(2.0, -(bpk - 1.0) / (1.4 + bpk / 50.0));
|
|
std::cout << "Best possible FP rate %: " << 100.0 * std::pow(2.0, -bpk)
|
|
<< std::endl;
|
|
std::cout << "Tolerable FP rate %: " << 100.0 * tolerable_rate << std::endl;
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Verifying..." << std::endl;
|
|
|
|
uint32_t outside_q_per_f =
|
|
static_cast<uint32_t>(m_queries_ * 1000000 / infos_.size());
|
|
uint64_t fps = 0;
|
|
for (uint32_t i = 0; i < infos_.size(); ++i) {
|
|
FilterInfo &info = infos_[i];
|
|
for (uint32_t j = 0; j < info.keys_added_; ++j) {
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
uint32_t hash = GetSliceHash(kms_[0].Get(info.filter_id_, j));
|
|
ALWAYS_ASSERT(info.plain_table_bloom_->MayContainHash(hash));
|
|
} else {
|
|
ALWAYS_ASSERT(
|
|
info.reader_->MayMatch(kms_[0].Get(info.filter_id_, j)));
|
|
}
|
|
}
|
|
for (uint32_t j = 0; j < outside_q_per_f; ++j) {
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
uint32_t hash =
|
|
GetSliceHash(kms_[0].Get(info.filter_id_, j | 0x80000000));
|
|
fps += info.plain_table_bloom_->MayContainHash(hash);
|
|
} else {
|
|
fps += info.reader_->MayMatch(
|
|
kms_[0].Get(info.filter_id_, j | 0x80000000));
|
|
}
|
|
}
|
|
}
|
|
std::cout << " No FNs :)" << std::endl;
|
|
double prelim_rate = double(fps) / outside_q_per_f / infos_.size();
|
|
std::cout << " Prelim FP rate %: " << (100.0 * prelim_rate) << std::endl;
|
|
|
|
if (!FLAGS_allow_bad_fp_rate) {
|
|
ALWAYS_ASSERT(prelim_rate < tolerable_rate);
|
|
}
|
|
}
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Mixed inside/outside queries..." << std::endl;
|
|
// 50% each inside and outside
|
|
uint32_t inside_threshold = UINT32_MAX / 2;
|
|
for (TestMode tm : testModes) {
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double f = RandomQueryTest(inside_threshold, /*dry_run*/ false, tm);
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double d = RandomQueryTest(inside_threshold, /*dry_run*/ true, tm);
|
|
std::cout << " " << TestModeToString(tm) << " net ns/op: " << (f - d)
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!FLAGS_quick) {
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Inside queries (mostly)..." << std::endl;
|
|
// Do about 95% inside queries rather than 100% so that branch predictor
|
|
// can't give itself an artifically crazy advantage.
|
|
inside_threshold = UINT32_MAX / 20 * 19;
|
|
for (TestMode tm : testModes) {
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double f = RandomQueryTest(inside_threshold, /*dry_run*/ false, tm);
|
|
random_.Seed(FLAGS_seed + 1);
|
|
double d = RandomQueryTest(inside_threshold, /*dry_run*/ true, tm);
|
|
std::cout << " " << TestModeToString(tm) << " net ns/op: " << (f - d)
|
|
<< std::endl;
|
|
}
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Outside queries (mostly)..." << std::endl;
|
|
// Do about 95% outside queries rather than 100% so that branch predictor
|
|
// can't give itself an artifically crazy advantage.
|
|
inside_threshold = UINT32_MAX / 20;
|
|
for (TestMode tm : testModes) {
|
|
random_.Seed(FLAGS_seed + 2);
|
|
double f = RandomQueryTest(inside_threshold, /*dry_run*/ false, tm);
|
|
random_.Seed(FLAGS_seed + 2);
|
|
double d = RandomQueryTest(inside_threshold, /*dry_run*/ true, tm);
|
|
std::cout << " " << TestModeToString(tm) << " net ns/op: " << (f - d)
|
|
<< std::endl;
|
|
}
|
|
}
|
|
std::cout << fp_rate_report_.str();
|
|
|
|
std::cout << "----------------------------" << std::endl;
|
|
std::cout << "Done. (For more info, run with -legend or -help.)" << std::endl;
|
|
}
|
|
|
|
double FilterBench::RandomQueryTest(uint32_t inside_threshold, bool dry_run,
|
|
TestMode mode) {
|
|
for (auto &info : infos_) {
|
|
info.outside_queries_ = 0;
|
|
info.false_positives_ = 0;
|
|
}
|
|
|
|
auto dry_run_hash_fn = DryRunNoHash;
|
|
if (!FLAGS_net_includes_hashing) {
|
|
if (FLAGS_impl < 2 || FLAGS_use_plain_table_bloom) {
|
|
dry_run_hash_fn = DryRunHash32;
|
|
} else {
|
|
dry_run_hash_fn = DryRunHash64;
|
|
}
|
|
}
|
|
|
|
uint32_t num_infos = static_cast<uint32_t>(infos_.size());
|
|
uint32_t dry_run_hash = 0;
|
|
uint64_t max_queries = static_cast<uint64_t>(m_queries_ * 1000000 + 0.50);
|
|
// Some filters may be considered secondary in order to implement skewed
|
|
// queries. num_primary_filters is the number that are to be treated as
|
|
// equal, and any remainder will be treated as secondary.
|
|
uint32_t num_primary_filters = num_infos;
|
|
// The proportion (when divided by 2^32 - 1) of filter queries going to
|
|
// the primary filters (default = all). The remainder of queries are
|
|
// against secondary filters.
|
|
uint32_t primary_filter_threshold = 0xffffffff;
|
|
if (mode == kSingleFilter) {
|
|
// 100% of queries to 1 filter
|
|
num_primary_filters = 1;
|
|
} else if (mode == kFiftyOneFilter) {
|
|
if (num_infos < 50) {
|
|
return 0.0; // skip
|
|
}
|
|
// 50% of queries
|
|
primary_filter_threshold /= 2;
|
|
// to 1% of filters
|
|
num_primary_filters = (num_primary_filters + 99) / 100;
|
|
} else if (mode == kEightyTwentyFilter) {
|
|
if (num_infos < 5) {
|
|
return 0.0; // skip
|
|
}
|
|
// 80% of queries
|
|
primary_filter_threshold = primary_filter_threshold / 5 * 4;
|
|
// to 20% of filters
|
|
num_primary_filters = (num_primary_filters + 4) / 5;
|
|
} else if (mode == kRandomFilter) {
|
|
if (num_infos == 1) {
|
|
return 0.0; // skip
|
|
}
|
|
}
|
|
uint32_t batch_size = 1;
|
|
std::unique_ptr<Slice[]> batch_slices;
|
|
std::unique_ptr<Slice *[]> batch_slice_ptrs;
|
|
std::unique_ptr<bool[]> batch_results;
|
|
if (mode == kBatchPrepared || mode == kBatchUnprepared) {
|
|
batch_size = static_cast<uint32_t>(kms_.size());
|
|
}
|
|
|
|
batch_slices.reset(new Slice[batch_size]);
|
|
batch_slice_ptrs.reset(new Slice *[batch_size]);
|
|
batch_results.reset(new bool[batch_size]);
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
batch_results[i] = false;
|
|
batch_slice_ptrs[i] = &batch_slices[i];
|
|
}
|
|
|
|
ROCKSDB_NAMESPACE::StopWatchNano timer(
|
|
ROCKSDB_NAMESPACE::SystemClock::Default().get(), true);
|
|
|
|
for (uint64_t q = 0; q < max_queries; q += batch_size) {
|
|
bool inside_this_time = random_.Next() <= inside_threshold;
|
|
|
|
uint32_t filter_index;
|
|
if (random_.Next() <= primary_filter_threshold) {
|
|
filter_index = random_.Uniformish(num_primary_filters);
|
|
} else {
|
|
// secondary
|
|
filter_index = num_primary_filters +
|
|
random_.Uniformish(num_infos - num_primary_filters);
|
|
}
|
|
FilterInfo &info = infos_[filter_index];
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
if (inside_this_time) {
|
|
batch_slices[i] =
|
|
kms_[i].Get(info.filter_id_, random_.Uniformish(info.keys_added_));
|
|
} else {
|
|
batch_slices[i] =
|
|
kms_[i].Get(info.filter_id_, random_.Uniformish(info.keys_added_) |
|
|
uint32_t{0x80000000});
|
|
info.outside_queries_++;
|
|
}
|
|
}
|
|
// TODO: implement batched interface to full block reader
|
|
// TODO: implement batched interface to plain table bloom
|
|
if (mode == kBatchPrepared && !FLAGS_use_full_block_reader &&
|
|
!FLAGS_use_plain_table_bloom) {
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
batch_results[i] = false;
|
|
}
|
|
if (dry_run) {
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
batch_results[i] = true;
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
}
|
|
} else {
|
|
info.reader_->MayMatch(batch_size, batch_slice_ptrs.get(),
|
|
batch_results.get());
|
|
}
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
if (inside_this_time) {
|
|
ALWAYS_ASSERT(batch_results[i]);
|
|
} else {
|
|
info.false_positives_ += batch_results[i];
|
|
}
|
|
}
|
|
} else {
|
|
for (uint32_t i = 0; i < batch_size; ++i) {
|
|
bool may_match;
|
|
if (FLAGS_use_plain_table_bloom) {
|
|
if (dry_run) {
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
may_match = true;
|
|
} else {
|
|
uint32_t hash = GetSliceHash(batch_slices[i]);
|
|
may_match = info.plain_table_bloom_->MayContainHash(hash);
|
|
}
|
|
} else if (FLAGS_use_full_block_reader) {
|
|
if (dry_run) {
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
may_match = true;
|
|
} else {
|
|
may_match = info.full_block_reader_->KeyMayMatch(
|
|
batch_slices[i],
|
|
/*prefix_extractor=*/nullptr,
|
|
/*block_offset=*/ROCKSDB_NAMESPACE::kNotValid,
|
|
/*no_io=*/false, /*const_ikey_ptr=*/nullptr,
|
|
/*get_context=*/nullptr,
|
|
/*lookup_context=*/nullptr);
|
|
}
|
|
} else {
|
|
if (dry_run) {
|
|
dry_run_hash += dry_run_hash_fn(batch_slices[i]);
|
|
may_match = true;
|
|
} else {
|
|
may_match = info.reader_->MayMatch(batch_slices[i]);
|
|
}
|
|
}
|
|
if (inside_this_time) {
|
|
ALWAYS_ASSERT(may_match);
|
|
} else {
|
|
info.false_positives_ += may_match;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t elapsed_nanos = timer.ElapsedNanos();
|
|
double ns = double(elapsed_nanos) / max_queries;
|
|
|
|
if (!FLAGS_quick) {
|
|
if (dry_run) {
|
|
// Printing part of hash prevents dry run components from being optimized
|
|
// away by compiler
|
|
std::cout << " Dry run (" << std::hex << (dry_run_hash & 0xfffff)
|
|
<< std::dec << ") ";
|
|
} else {
|
|
std::cout << " Gross filter ";
|
|
}
|
|
std::cout << "ns/op: " << ns << std::endl;
|
|
}
|
|
|
|
if (!dry_run) {
|
|
fp_rate_report_.str("");
|
|
uint64_t q = 0;
|
|
uint64_t fp = 0;
|
|
double worst_fp_rate = 0.0;
|
|
double best_fp_rate = 1.0;
|
|
for (auto &info : infos_) {
|
|
q += info.outside_queries_;
|
|
fp += info.false_positives_;
|
|
if (info.outside_queries_ > 0) {
|
|
double fp_rate = double(info.false_positives_) / info.outside_queries_;
|
|
worst_fp_rate = std::max(worst_fp_rate, fp_rate);
|
|
best_fp_rate = std::min(best_fp_rate, fp_rate);
|
|
}
|
|
}
|
|
fp_rate_report_ << " Average FP rate %: " << 100.0 * fp / q << std::endl;
|
|
if (!FLAGS_quick && !FLAGS_best_case) {
|
|
fp_rate_report_ << " Worst FP rate %: " << 100.0 * worst_fp_rate
|
|
<< std::endl;
|
|
fp_rate_report_ << " Best FP rate %: " << 100.0 * best_fp_rate
|
|
<< std::endl;
|
|
fp_rate_report_ << " Best possible bits/key: "
|
|
<< -std::log(double(fp) / q) / std::log(2.0) << std::endl;
|
|
}
|
|
}
|
|
return ns;
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
|
|
SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
|
|
" [-quick] [OTHER OPTIONS]...");
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
PrintWarnings();
|
|
|
|
if (FLAGS_legend) {
|
|
std::cout
|
|
<< "Legend:" << std::endl
|
|
<< " \"Inside\" - key that was added to filter" << std::endl
|
|
<< " \"Outside\" - key that was not added to filter" << std::endl
|
|
<< " \"FN\" - false negative query (must not happen)" << std::endl
|
|
<< " \"FP\" - false positive query (OK at low rate)" << std::endl
|
|
<< " \"Dry run\" - cost of testing and hashing overhead." << std::endl
|
|
<< " \"Gross filter\" - cost of filter queries including testing "
|
|
<< "\n and hashing overhead." << std::endl
|
|
<< " \"net\" - best estimate of time in filter operation, without "
|
|
<< "\n testing and hashing overhead (gross filter - dry run)"
|
|
<< std::endl
|
|
<< " \"ns/op\" - nanoseconds per operation (key query or add)"
|
|
<< std::endl
|
|
<< " \"Single filter\" - essentially minimum cost, assuming filter"
|
|
<< "\n fits easily in L1 CPU cache." << std::endl
|
|
<< " \"Batched, prepared\" - several queries at once against a"
|
|
<< "\n randomly chosen filter, using multi-query interface."
|
|
<< std::endl
|
|
<< " \"Batched, unprepared\" - similar, but using serial calls"
|
|
<< "\n to single query interface." << std::endl
|
|
<< " \"Random filter\" - a filter is chosen at random as target"
|
|
<< "\n of each query." << std::endl
|
|
<< " \"Skewed X% in Y%\" - like \"Random filter\" except Y% of"
|
|
<< "\n the filters are designated as \"hot\" and receive X%"
|
|
<< "\n of queries." << std::endl;
|
|
} else {
|
|
FilterBench b;
|
|
for (uint32_t i = 0; i < FLAGS_runs; ++i) {
|
|
b.Go();
|
|
FLAGS_seed += 100;
|
|
b.random_.Seed(FLAGS_seed);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // !defined(GFLAGS) || defined(ROCKSDB_LITE)
|