cngzhnp 64324e329e Support pragma once in all header files and cleanup some warnings (#4339)
Summary:
As you know, almost all compilers support "pragma once" keyword instead of using include guards. To be keep consistency between header files, all header files are edited.

Besides this, try to fix some warnings about loss of data.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4339

Differential Revision: D9654990

Pulled By: ajkr

fbshipit-source-id: c2cf3d2d03a599847684bed81378c401920ca848
2018-09-05 18:13:31 -07:00

350 lines
11 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// A Status encapsulates the result of an operation. It may indicate success,
// or it may indicate an error with an associated error message.
//
// Multiple threads can invoke const methods on a Status without
// external synchronization, but if any of the threads may call a
// non-const method, all threads accessing the same Status must use
// external synchronization.
#pragma once
#include <string>
#include "rocksdb/slice.h"
namespace rocksdb {
class Status {
public:
// Create a success status.
Status() : code_(kOk), subcode_(kNone), sev_(kNoError), state_(nullptr) {}
~Status() { delete[] state_; }
// Copy the specified status.
Status(const Status& s);
Status& operator=(const Status& s);
Status(Status&& s)
#if !(defined _MSC_VER) || ((defined _MSC_VER) && (_MSC_VER >= 1900))
noexcept
#endif
;
Status& operator=(Status&& s)
#if !(defined _MSC_VER) || ((defined _MSC_VER) && (_MSC_VER >= 1900))
noexcept
#endif
;
bool operator==(const Status& rhs) const;
bool operator!=(const Status& rhs) const;
enum Code : unsigned char {
kOk = 0,
kNotFound = 1,
kCorruption = 2,
kNotSupported = 3,
kInvalidArgument = 4,
kIOError = 5,
kMergeInProgress = 6,
kIncomplete = 7,
kShutdownInProgress = 8,
kTimedOut = 9,
kAborted = 10,
kBusy = 11,
kExpired = 12,
kTryAgain = 13,
kCompactionTooLarge = 14
};
Code code() const { return code_; }
enum SubCode : unsigned char {
kNone = 0,
kMutexTimeout = 1,
kLockTimeout = 2,
kLockLimit = 3,
kNoSpace = 4,
kDeadlock = 5,
kStaleFile = 6,
kMemoryLimit = 7,
kSpaceLimit = 8,
kMaxSubCode
};
SubCode subcode() const { return subcode_; }
enum Severity : unsigned char {
kNoError = 0,
kSoftError = 1,
kHardError = 2,
kFatalError = 3,
kUnrecoverableError = 4,
kMaxSeverity
};
Status(const Status& s, Severity sev);
Severity severity() const { return sev_; }
// Returns a C style string indicating the message of the Status
const char* getState() const { return state_; }
// Return a success status.
static Status OK() { return Status(); }
// Return error status of an appropriate type.
static Status NotFound(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kNotFound, msg, msg2);
}
// Fast path for not found without malloc;
static Status NotFound(SubCode msg = kNone) { return Status(kNotFound, msg); }
static Status Corruption(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kCorruption, msg, msg2);
}
static Status Corruption(SubCode msg = kNone) {
return Status(kCorruption, msg);
}
static Status NotSupported(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kNotSupported, msg, msg2);
}
static Status NotSupported(SubCode msg = kNone) {
return Status(kNotSupported, msg);
}
static Status InvalidArgument(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kInvalidArgument, msg, msg2);
}
static Status InvalidArgument(SubCode msg = kNone) {
return Status(kInvalidArgument, msg);
}
static Status IOError(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kIOError, msg, msg2);
}
static Status IOError(SubCode msg = kNone) { return Status(kIOError, msg); }
static Status MergeInProgress(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kMergeInProgress, msg, msg2);
}
static Status MergeInProgress(SubCode msg = kNone) {
return Status(kMergeInProgress, msg);
}
static Status Incomplete(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kIncomplete, msg, msg2);
}
static Status Incomplete(SubCode msg = kNone) {
return Status(kIncomplete, msg);
}
static Status ShutdownInProgress(SubCode msg = kNone) {
return Status(kShutdownInProgress, msg);
}
static Status ShutdownInProgress(const Slice& msg,
const Slice& msg2 = Slice()) {
return Status(kShutdownInProgress, msg, msg2);
}
static Status Aborted(SubCode msg = kNone) { return Status(kAborted, msg); }
static Status Aborted(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kAborted, msg, msg2);
}
static Status Busy(SubCode msg = kNone) { return Status(kBusy, msg); }
static Status Busy(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kBusy, msg, msg2);
}
static Status TimedOut(SubCode msg = kNone) { return Status(kTimedOut, msg); }
static Status TimedOut(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kTimedOut, msg, msg2);
}
static Status Expired(SubCode msg = kNone) { return Status(kExpired, msg); }
static Status Expired(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kExpired, msg, msg2);
}
static Status TryAgain(SubCode msg = kNone) { return Status(kTryAgain, msg); }
static Status TryAgain(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kTryAgain, msg, msg2);
}
static Status CompactionTooLarge(SubCode msg = kNone) {
return Status(kCompactionTooLarge, msg);
}
static Status CompactionTooLarge(const Slice& msg,
const Slice& msg2 = Slice()) {
return Status(kCompactionTooLarge, msg, msg2);
}
static Status NoSpace() { return Status(kIOError, kNoSpace); }
static Status NoSpace(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kIOError, kNoSpace, msg, msg2);
}
static Status MemoryLimit() { return Status(kAborted, kMemoryLimit); }
static Status MemoryLimit(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kAborted, kMemoryLimit, msg, msg2);
}
static Status SpaceLimit() { return Status(kIOError, kSpaceLimit); }
static Status SpaceLimit(const Slice& msg, const Slice& msg2 = Slice()) {
return Status(kIOError, kSpaceLimit, msg, msg2);
}
// Returns true iff the status indicates success.
bool ok() const { return code() == kOk; }
// Returns true iff the status indicates a NotFound error.
bool IsNotFound() const { return code() == kNotFound; }
// Returns true iff the status indicates a Corruption error.
bool IsCorruption() const { return code() == kCorruption; }
// Returns true iff the status indicates a NotSupported error.
bool IsNotSupported() const { return code() == kNotSupported; }
// Returns true iff the status indicates an InvalidArgument error.
bool IsInvalidArgument() const { return code() == kInvalidArgument; }
// Returns true iff the status indicates an IOError.
bool IsIOError() const { return code() == kIOError; }
// Returns true iff the status indicates an MergeInProgress.
bool IsMergeInProgress() const { return code() == kMergeInProgress; }
// Returns true iff the status indicates Incomplete
bool IsIncomplete() const { return code() == kIncomplete; }
// Returns true iff the status indicates Shutdown In progress
bool IsShutdownInProgress() const { return code() == kShutdownInProgress; }
bool IsTimedOut() const { return code() == kTimedOut; }
bool IsAborted() const { return code() == kAborted; }
bool IsLockLimit() const {
return code() == kAborted && subcode() == kLockLimit;
}
// Returns true iff the status indicates that a resource is Busy and
// temporarily could not be acquired.
bool IsBusy() const { return code() == kBusy; }
bool IsDeadlock() const { return code() == kBusy && subcode() == kDeadlock; }
// Returns true iff the status indicated that the operation has Expired.
bool IsExpired() const { return code() == kExpired; }
// Returns true iff the status indicates a TryAgain error.
// This usually means that the operation failed, but may succeed if
// re-attempted.
bool IsTryAgain() const { return code() == kTryAgain; }
// Returns true iff the status indicates the proposed compaction is too large
bool IsCompactionTooLarge() const { return code() == kCompactionTooLarge; }
// Returns true iff the status indicates a NoSpace error
// This is caused by an I/O error returning the specific "out of space"
// error condition. Stricto sensu, an NoSpace error is an I/O error
// with a specific subcode, enabling users to take the appropriate action
// if needed
bool IsNoSpace() const {
return (code() == kIOError) && (subcode() == kNoSpace);
}
// Returns true iff the status indicates a memory limit error. There may be
// cases where we limit the memory used in certain operations (eg. the size
// of a write batch) in order to avoid out of memory exceptions.
bool IsMemoryLimit() const {
return (code() == kAborted) && (subcode() == kMemoryLimit);
}
// Return a string representation of this status suitable for printing.
// Returns the string "OK" for success.
std::string ToString() const;
private:
// A nullptr state_ (which is always the case for OK) means the message
// is empty.
// of the following form:
// state_[0..3] == length of message
// state_[4..] == message
Code code_;
SubCode subcode_;
Severity sev_;
const char* state_;
explicit Status(Code _code, SubCode _subcode = kNone)
: code_(_code), subcode_(_subcode), sev_(kNoError), state_(nullptr) {}
Status(Code _code, SubCode _subcode, const Slice& msg, const Slice& msg2);
Status(Code _code, const Slice& msg, const Slice& msg2)
: Status(_code, kNone, msg, msg2) {}
static const char* CopyState(const char* s);
};
inline Status::Status(const Status& s) : code_(s.code_), subcode_(s.subcode_), sev_(s.sev_) {
state_ = (s.state_ == nullptr) ? nullptr : CopyState(s.state_);
}
inline Status::Status(const Status& s, Severity sev)
: code_(s.code_), subcode_(s.subcode_), sev_(sev) {
state_ = (s.state_ == nullptr) ? nullptr : CopyState(s.state_);
}
inline Status& Status::operator=(const Status& s) {
// The following condition catches both aliasing (when this == &s),
// and the common case where both s and *this are ok.
if (this != &s) {
code_ = s.code_;
subcode_ = s.subcode_;
sev_ = s.sev_;
delete[] state_;
state_ = (s.state_ == nullptr) ? nullptr : CopyState(s.state_);
}
return *this;
}
inline Status::Status(Status&& s)
#if !(defined _MSC_VER) || ((defined _MSC_VER) && (_MSC_VER >= 1900))
noexcept
#endif
: Status() {
*this = std::move(s);
}
inline Status& Status::operator=(Status&& s)
#if !(defined _MSC_VER) || ((defined _MSC_VER) && (_MSC_VER >= 1900))
noexcept
#endif
{
if (this != &s) {
code_ = std::move(s.code_);
s.code_ = kOk;
subcode_ = std::move(s.subcode_);
s.subcode_ = kNone;
sev_ = std::move(s.sev_);
s.sev_ = kNoError;
delete[] state_;
state_ = nullptr;
std::swap(state_, s.state_);
}
return *this;
}
inline bool Status::operator==(const Status& rhs) const {
return (code_ == rhs.code_);
}
inline bool Status::operator!=(const Status& rhs) const {
return !(*this == rhs);
}
} // namespace rocksdb