rocksdb/db/memtable.cc
Andrew Kryczka bda9def2d4 Use skiplist rep for range tombstone memtable
Summary: somehow missed committing this update in D62217

Test Plan: make check

Reviewers: sdong

Reviewed By: sdong

Subscribers: andrewkr, dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D65361
2016-12-08 19:03:02 -08:00

845 lines
30 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/memtable.h"
#include <memory>
#include <algorithm>
#include <limits>
#include "db/dbformat.h"
#include "db/merge_context.h"
#include "db/merge_helper.h"
#include "db/pinned_iterators_manager.h"
#include "rocksdb/comparator.h"
#include "rocksdb/env.h"
#include "rocksdb/iterator.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/write_buffer_manager.h"
#include "table/internal_iterator.h"
#include "table/merger.h"
#include "util/arena.h"
#include "util/coding.h"
#include "util/murmurhash.h"
#include "util/mutexlock.h"
#include "util/perf_context_imp.h"
#include "util/statistics.h"
#include "util/stop_watch.h"
namespace rocksdb {
MemTableOptions::MemTableOptions(const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options)
: write_buffer_size(mutable_cf_options.write_buffer_size),
arena_block_size(mutable_cf_options.arena_block_size),
memtable_prefix_bloom_bits(
static_cast<uint32_t>(
static_cast<double>(mutable_cf_options.write_buffer_size) *
mutable_cf_options.memtable_prefix_bloom_size_ratio) *
8u),
memtable_huge_page_size(mutable_cf_options.memtable_huge_page_size),
inplace_update_support(ioptions.inplace_update_support),
inplace_update_num_locks(mutable_cf_options.inplace_update_num_locks),
inplace_callback(ioptions.inplace_callback),
max_successive_merges(mutable_cf_options.max_successive_merges),
statistics(ioptions.statistics),
merge_operator(ioptions.merge_operator),
info_log(ioptions.info_log) {}
MemTable::MemTable(const InternalKeyComparator& cmp,
const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options,
WriteBufferManager* write_buffer_manager,
SequenceNumber earliest_seq)
: comparator_(cmp),
moptions_(ioptions, mutable_cf_options),
refs_(0),
kArenaBlockSize(OptimizeBlockSize(moptions_.arena_block_size)),
arena_(moptions_.arena_block_size,
mutable_cf_options.memtable_huge_page_size),
allocator_(&arena_, write_buffer_manager),
table_(ioptions.memtable_factory->CreateMemTableRep(
comparator_, &allocator_, ioptions.prefix_extractor,
ioptions.info_log)),
range_del_table_(SkipListFactory().CreateMemTableRep(
comparator_, &allocator_, nullptr /* transform */,
ioptions.info_log)),
data_size_(0),
num_entries_(0),
num_deletes_(0),
flush_in_progress_(false),
flush_completed_(false),
file_number_(0),
first_seqno_(0),
earliest_seqno_(earliest_seq),
mem_next_logfile_number_(0),
min_prep_log_referenced_(0),
locks_(moptions_.inplace_update_support
? moptions_.inplace_update_num_locks
: 0),
prefix_extractor_(ioptions.prefix_extractor),
flush_state_(FLUSH_NOT_REQUESTED),
env_(ioptions.env) {
UpdateFlushState();
// something went wrong if we need to flush before inserting anything
assert(!ShouldScheduleFlush());
if (prefix_extractor_ && moptions_.memtable_prefix_bloom_bits > 0) {
prefix_bloom_.reset(new DynamicBloom(
&allocator_, moptions_.memtable_prefix_bloom_bits,
ioptions.bloom_locality, 6 /* hard coded 6 probes */, nullptr,
moptions_.memtable_huge_page_size, ioptions.info_log));
}
}
MemTable::~MemTable() { assert(refs_ == 0); }
size_t MemTable::ApproximateMemoryUsage() {
size_t arena_usage = arena_.ApproximateMemoryUsage();
size_t table_usage = table_->ApproximateMemoryUsage();
table_usage += range_del_table_->ApproximateMemoryUsage();
// let MAX_USAGE = std::numeric_limits<size_t>::max()
// then if arena_usage + total_usage >= MAX_USAGE, return MAX_USAGE.
// the following variation is to avoid numeric overflow.
if (arena_usage >= std::numeric_limits<size_t>::max() - table_usage) {
return std::numeric_limits<size_t>::max();
}
// otherwise, return the actual usage
return arena_usage + table_usage;
}
bool MemTable::ShouldFlushNow() const {
// In a lot of times, we cannot allocate arena blocks that exactly matches the
// buffer size. Thus we have to decide if we should over-allocate or
// under-allocate.
// This constant variable can be interpreted as: if we still have more than
// "kAllowOverAllocationRatio * kArenaBlockSize" space left, we'd try to over
// allocate one more block.
const double kAllowOverAllocationRatio = 0.6;
// If arena still have room for new block allocation, we can safely say it
// shouldn't flush.
auto allocated_memory = table_->ApproximateMemoryUsage() +
range_del_table_->ApproximateMemoryUsage() +
arena_.MemoryAllocatedBytes();
// if we can still allocate one more block without exceeding the
// over-allocation ratio, then we should not flush.
if (allocated_memory + kArenaBlockSize <
moptions_.write_buffer_size +
kArenaBlockSize * kAllowOverAllocationRatio) {
return false;
}
// if user keeps adding entries that exceeds moptions.write_buffer_size,
// we need to flush earlier even though we still have much available
// memory left.
if (allocated_memory > moptions_.write_buffer_size +
kArenaBlockSize * kAllowOverAllocationRatio) {
return true;
}
// In this code path, Arena has already allocated its "last block", which
// means the total allocatedmemory size is either:
// (1) "moderately" over allocated the memory (no more than `0.6 * arena
// block size`. Or,
// (2) the allocated memory is less than write buffer size, but we'll stop
// here since if we allocate a new arena block, we'll over allocate too much
// more (half of the arena block size) memory.
//
// In either case, to avoid over-allocate, the last block will stop allocation
// when its usage reaches a certain ratio, which we carefully choose "0.75
// full" as the stop condition because it addresses the following issue with
// great simplicity: What if the next inserted entry's size is
// bigger than AllocatedAndUnused()?
//
// The answer is: if the entry size is also bigger than 0.25 *
// kArenaBlockSize, a dedicated block will be allocated for it; otherwise
// arena will anyway skip the AllocatedAndUnused() and allocate a new, empty
// and regular block. In either case, we *overly* over-allocated.
//
// Therefore, setting the last block to be at most "0.75 full" avoids both
// cases.
//
// NOTE: the average percentage of waste space of this approach can be counted
// as: "arena block size * 0.25 / write buffer size". User who specify a small
// write buffer size and/or big arena block size may suffer.
return arena_.AllocatedAndUnused() < kArenaBlockSize / 4;
}
void MemTable::UpdateFlushState() {
auto state = flush_state_.load(std::memory_order_relaxed);
if (state == FLUSH_NOT_REQUESTED && ShouldFlushNow()) {
// ignore CAS failure, because that means somebody else requested
// a flush
flush_state_.compare_exchange_strong(state, FLUSH_REQUESTED,
std::memory_order_relaxed,
std::memory_order_relaxed);
}
}
int MemTable::KeyComparator::operator()(const char* prefix_len_key1,
const char* prefix_len_key2) const {
// Internal keys are encoded as length-prefixed strings.
Slice k1 = GetLengthPrefixedSlice(prefix_len_key1);
Slice k2 = GetLengthPrefixedSlice(prefix_len_key2);
return comparator.Compare(k1, k2);
}
int MemTable::KeyComparator::operator()(const char* prefix_len_key,
const Slice& key)
const {
// Internal keys are encoded as length-prefixed strings.
Slice a = GetLengthPrefixedSlice(prefix_len_key);
return comparator.Compare(a, key);
}
Slice MemTableRep::UserKey(const char* key) const {
Slice slice = GetLengthPrefixedSlice(key);
return Slice(slice.data(), slice.size() - 8);
}
KeyHandle MemTableRep::Allocate(const size_t len, char** buf) {
*buf = allocator_->Allocate(len);
return static_cast<KeyHandle>(*buf);
}
// Encode a suitable internal key target for "target" and return it.
// Uses *scratch as scratch space, and the returned pointer will point
// into this scratch space.
const char* EncodeKey(std::string* scratch, const Slice& target) {
scratch->clear();
PutVarint32(scratch, static_cast<uint32_t>(target.size()));
scratch->append(target.data(), target.size());
return scratch->data();
}
class MemTableIterator : public InternalIterator {
public:
MemTableIterator(const MemTable& mem, const ReadOptions& read_options,
Arena* arena, bool use_range_del_table = false)
: bloom_(nullptr),
prefix_extractor_(mem.prefix_extractor_),
comparator_(mem.comparator_),
valid_(false),
arena_mode_(arena != nullptr),
value_pinned_(!mem.GetMemTableOptions()->inplace_update_support) {
if (use_range_del_table) {
iter_ = mem.range_del_table_->GetIterator(arena);
} else if (prefix_extractor_ != nullptr && !read_options.total_order_seek) {
bloom_ = mem.prefix_bloom_.get();
iter_ = mem.table_->GetDynamicPrefixIterator(arena);
} else {
iter_ = mem.table_->GetIterator(arena);
}
}
~MemTableIterator() {
#ifndef NDEBUG
// Assert that the MemTableIterator is never deleted while
// Pinning is Enabled.
assert(!pinned_iters_mgr_ ||
(pinned_iters_mgr_ && !pinned_iters_mgr_->PinningEnabled()));
#endif
if (arena_mode_) {
iter_->~Iterator();
} else {
delete iter_;
}
}
#ifndef NDEBUG
virtual void SetPinnedItersMgr(
PinnedIteratorsManager* pinned_iters_mgr) override {
pinned_iters_mgr_ = pinned_iters_mgr;
}
PinnedIteratorsManager* pinned_iters_mgr_ = nullptr;
#endif
virtual bool Valid() const override { return valid_; }
virtual void Seek(const Slice& k) override {
PERF_TIMER_GUARD(seek_on_memtable_time);
PERF_COUNTER_ADD(seek_on_memtable_count, 1);
if (bloom_ != nullptr) {
if (!bloom_->MayContain(
prefix_extractor_->Transform(ExtractUserKey(k)))) {
PERF_COUNTER_ADD(bloom_memtable_miss_count, 1);
valid_ = false;
return;
} else {
PERF_COUNTER_ADD(bloom_memtable_hit_count, 1);
}
}
iter_->Seek(k, nullptr);
valid_ = iter_->Valid();
}
virtual void SeekForPrev(const Slice& k) override {
PERF_TIMER_GUARD(seek_on_memtable_time);
PERF_COUNTER_ADD(seek_on_memtable_count, 1);
if (bloom_ != nullptr) {
if (!bloom_->MayContain(
prefix_extractor_->Transform(ExtractUserKey(k)))) {
PERF_COUNTER_ADD(bloom_memtable_miss_count, 1);
valid_ = false;
return;
} else {
PERF_COUNTER_ADD(bloom_memtable_hit_count, 1);
}
}
iter_->Seek(k, nullptr);
valid_ = iter_->Valid();
if (!Valid()) {
SeekToLast();
}
while (Valid() && comparator_.comparator.Compare(k, key()) < 0) {
Prev();
}
}
virtual void SeekToFirst() override {
iter_->SeekToFirst();
valid_ = iter_->Valid();
}
virtual void SeekToLast() override {
iter_->SeekToLast();
valid_ = iter_->Valid();
}
virtual void Next() override {
assert(Valid());
iter_->Next();
valid_ = iter_->Valid();
}
virtual void Prev() override {
assert(Valid());
iter_->Prev();
valid_ = iter_->Valid();
}
virtual Slice key() const override {
assert(Valid());
return GetLengthPrefixedSlice(iter_->key());
}
virtual Slice value() const override {
assert(Valid());
Slice key_slice = GetLengthPrefixedSlice(iter_->key());
return GetLengthPrefixedSlice(key_slice.data() + key_slice.size());
}
virtual Status status() const override { return Status::OK(); }
virtual bool IsKeyPinned() const override {
// memtable data is always pinned
return true;
}
virtual bool IsValuePinned() const override {
// memtable value is always pinned, except if we allow inplace update.
return value_pinned_;
}
private:
DynamicBloom* bloom_;
const SliceTransform* const prefix_extractor_;
const MemTable::KeyComparator comparator_;
MemTableRep::Iterator* iter_;
bool valid_;
bool arena_mode_;
bool value_pinned_;
// No copying allowed
MemTableIterator(const MemTableIterator&);
void operator=(const MemTableIterator&);
};
InternalIterator* MemTable::NewIterator(const ReadOptions& read_options,
Arena* arena) {
assert(arena != nullptr);
auto mem = arena->AllocateAligned(sizeof(MemTableIterator));
return new (mem) MemTableIterator(*this, read_options, arena);
}
InternalIterator* MemTable::NewRangeTombstoneIterator(
const ReadOptions& read_options, Arena* arena) {
assert(arena != nullptr);
auto mem = arena->AllocateAligned(sizeof(MemTableIterator));
return new (mem) MemTableIterator(*this, read_options, arena,
true /* use_range_del_table */);
}
port::RWMutex* MemTable::GetLock(const Slice& key) {
static murmur_hash hash;
return &locks_[hash(key) % locks_.size()];
}
uint64_t MemTable::ApproximateSize(const Slice& start_ikey,
const Slice& end_ikey) {
uint64_t entry_count = table_->ApproximateNumEntries(start_ikey, end_ikey);
entry_count += range_del_table_->ApproximateNumEntries(start_ikey, end_ikey);
if (entry_count == 0) {
return 0;
}
uint64_t n = num_entries_.load(std::memory_order_relaxed);
if (n == 0) {
return 0;
}
if (entry_count > n) {
// (range_del_)table_->ApproximateNumEntries() is just an estimate so it can
// be larger than actual entries we have. Cap it to entries we have to limit
// the inaccuracy.
entry_count = n;
}
uint64_t data_size = data_size_.load(std::memory_order_relaxed);
return entry_count * (data_size / n);
}
void MemTable::Add(SequenceNumber s, ValueType type,
const Slice& key, /* user key */
const Slice& value, bool allow_concurrent,
MemTablePostProcessInfo* post_process_info) {
// Format of an entry is concatenation of:
// key_size : varint32 of internal_key.size()
// key bytes : char[internal_key.size()]
// value_size : varint32 of value.size()
// value bytes : char[value.size()]
uint32_t key_size = static_cast<uint32_t>(key.size());
uint32_t val_size = static_cast<uint32_t>(value.size());
uint32_t internal_key_size = key_size + 8;
const uint32_t encoded_len = VarintLength(internal_key_size) +
internal_key_size + VarintLength(val_size) +
val_size;
char* buf = nullptr;
std::unique_ptr<MemTableRep>& table =
type == kTypeRangeDeletion ? range_del_table_ : table_;
KeyHandle handle = table->Allocate(encoded_len, &buf);
char* p = EncodeVarint32(buf, internal_key_size);
memcpy(p, key.data(), key_size);
p += key_size;
uint64_t packed = PackSequenceAndType(s, type);
EncodeFixed64(p, packed);
p += 8;
p = EncodeVarint32(p, val_size);
memcpy(p, value.data(), val_size);
assert((unsigned)(p + val_size - buf) == (unsigned)encoded_len);
if (!allow_concurrent) {
table->Insert(handle);
// this is a bit ugly, but is the way to avoid locked instructions
// when incrementing an atomic
num_entries_.store(num_entries_.load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
data_size_.store(data_size_.load(std::memory_order_relaxed) + encoded_len,
std::memory_order_relaxed);
if (type == kTypeDeletion) {
num_deletes_.store(num_deletes_.load(std::memory_order_relaxed) + 1,
std::memory_order_relaxed);
}
if (prefix_bloom_) {
assert(prefix_extractor_);
prefix_bloom_->Add(prefix_extractor_->Transform(key));
}
// The first sequence number inserted into the memtable
assert(first_seqno_ == 0 || s > first_seqno_);
if (first_seqno_ == 0) {
first_seqno_.store(s, std::memory_order_relaxed);
if (earliest_seqno_ == kMaxSequenceNumber) {
earliest_seqno_.store(GetFirstSequenceNumber(),
std::memory_order_relaxed);
}
assert(first_seqno_.load() >= earliest_seqno_.load());
}
assert(post_process_info == nullptr);
UpdateFlushState();
} else {
table->InsertConcurrently(handle);
assert(post_process_info != nullptr);
post_process_info->num_entries++;
post_process_info->data_size += encoded_len;
if (type == kTypeDeletion) {
post_process_info->num_deletes++;
}
if (prefix_bloom_) {
assert(prefix_extractor_);
prefix_bloom_->AddConcurrently(prefix_extractor_->Transform(key));
}
// atomically update first_seqno_ and earliest_seqno_.
uint64_t cur_seq_num = first_seqno_.load(std::memory_order_relaxed);
while ((cur_seq_num == 0 || s < cur_seq_num) &&
!first_seqno_.compare_exchange_weak(cur_seq_num, s)) {
}
uint64_t cur_earliest_seqno =
earliest_seqno_.load(std::memory_order_relaxed);
while (
(cur_earliest_seqno == kMaxSequenceNumber || s < cur_earliest_seqno) &&
!first_seqno_.compare_exchange_weak(cur_earliest_seqno, s)) {
}
}
}
// Callback from MemTable::Get()
namespace {
struct Saver {
Status* status;
const LookupKey* key;
bool* found_final_value; // Is value set correctly? Used by KeyMayExist
bool* merge_in_progress;
std::string* value;
SequenceNumber seq;
const MergeOperator* merge_operator;
// the merge operations encountered;
MergeContext* merge_context;
MemTable* mem;
Logger* logger;
Statistics* statistics;
bool inplace_update_support;
Env* env_;
};
} // namespace
static bool SaveValue(void* arg, const char* entry) {
Saver* s = reinterpret_cast<Saver*>(arg);
MergeContext* merge_context = s->merge_context;
const MergeOperator* merge_operator = s->merge_operator;
assert(s != nullptr && merge_context != nullptr);
// entry format is:
// klength varint32
// userkey char[klength-8]
// tag uint64
// vlength varint32
// value char[vlength]
// Check that it belongs to same user key. We do not check the
// sequence number since the Seek() call above should have skipped
// all entries with overly large sequence numbers.
uint32_t key_length;
const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
if (s->mem->GetInternalKeyComparator().user_comparator()->Equal(
Slice(key_ptr, key_length - 8), s->key->user_key())) {
// Correct user key
const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8);
ValueType type;
UnPackSequenceAndType(tag, &s->seq, &type);
switch (type) {
case kTypeValue: {
if (s->inplace_update_support) {
s->mem->GetLock(s->key->user_key())->ReadLock();
}
Slice v = GetLengthPrefixedSlice(key_ptr + key_length);
*(s->status) = Status::OK();
if (*(s->merge_in_progress)) {
*(s->status) = MergeHelper::TimedFullMerge(
merge_operator, s->key->user_key(), &v,
merge_context->GetOperands(), s->value, s->logger, s->statistics,
s->env_);
} else if (s->value != nullptr) {
s->value->assign(v.data(), v.size());
}
if (s->inplace_update_support) {
s->mem->GetLock(s->key->user_key())->ReadUnlock();
}
*(s->found_final_value) = true;
return false;
}
case kTypeDeletion:
case kTypeSingleDeletion: {
if (*(s->merge_in_progress)) {
*(s->status) = MergeHelper::TimedFullMerge(
merge_operator, s->key->user_key(), nullptr,
merge_context->GetOperands(), s->value, s->logger, s->statistics,
s->env_);
} else {
*(s->status) = Status::NotFound();
}
*(s->found_final_value) = true;
return false;
}
case kTypeMerge: {
if (!merge_operator) {
*(s->status) = Status::InvalidArgument(
"merge_operator is not properly initialized.");
// Normally we continue the loop (return true) when we see a merge
// operand. But in case of an error, we should stop the loop
// immediately and pretend we have found the value to stop further
// seek. Otherwise, the later call will override this error status.
*(s->found_final_value) = true;
return false;
}
Slice v = GetLengthPrefixedSlice(key_ptr + key_length);
*(s->merge_in_progress) = true;
merge_context->PushOperand(
v, s->inplace_update_support == false /* operand_pinned */);
return true;
}
default:
assert(false);
return true;
}
}
// s->state could be Corrupt, merge or notfound
return false;
}
bool MemTable::Get(const LookupKey& key, std::string* value, Status* s,
MergeContext* merge_context, SequenceNumber* seq) {
// The sequence number is updated synchronously in version_set.h
if (IsEmpty()) {
// Avoiding recording stats for speed.
return false;
}
PERF_TIMER_GUARD(get_from_memtable_time);
Slice user_key = key.user_key();
bool found_final_value = false;
bool merge_in_progress = s->IsMergeInProgress();
bool const may_contain =
nullptr == prefix_bloom_
? false
: prefix_bloom_->MayContain(prefix_extractor_->Transform(user_key));
if (prefix_bloom_ && !may_contain) {
// iter is null if prefix bloom says the key does not exist
PERF_COUNTER_ADD(bloom_memtable_miss_count, 1);
*seq = kMaxSequenceNumber;
} else {
if (prefix_bloom_) {
PERF_COUNTER_ADD(bloom_memtable_hit_count, 1);
}
Saver saver;
saver.status = s;
saver.found_final_value = &found_final_value;
saver.merge_in_progress = &merge_in_progress;
saver.key = &key;
saver.value = value;
saver.seq = kMaxSequenceNumber;
saver.mem = this;
saver.merge_context = merge_context;
saver.merge_operator = moptions_.merge_operator;
saver.logger = moptions_.info_log;
saver.inplace_update_support = moptions_.inplace_update_support;
saver.statistics = moptions_.statistics;
saver.env_ = env_;
table_->Get(key, &saver, SaveValue);
*seq = saver.seq;
}
// No change to value, since we have not yet found a Put/Delete
if (!found_final_value && merge_in_progress) {
*s = Status::MergeInProgress();
}
PERF_COUNTER_ADD(get_from_memtable_count, 1);
return found_final_value;
}
void MemTable::Update(SequenceNumber seq,
const Slice& key,
const Slice& value) {
LookupKey lkey(key, seq);
Slice mem_key = lkey.memtable_key();
std::unique_ptr<MemTableRep::Iterator> iter(
table_->GetDynamicPrefixIterator());
iter->Seek(lkey.internal_key(), mem_key.data());
if (iter->Valid()) {
// entry format is:
// key_length varint32
// userkey char[klength-8]
// tag uint64
// vlength varint32
// value char[vlength]
// Check that it belongs to same user key. We do not check the
// sequence number since the Seek() call above should have skipped
// all entries with overly large sequence numbers.
const char* entry = iter->key();
uint32_t key_length = 0;
const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
if (comparator_.comparator.user_comparator()->Equal(
Slice(key_ptr, key_length - 8), lkey.user_key())) {
// Correct user key
const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8);
ValueType type;
SequenceNumber unused;
UnPackSequenceAndType(tag, &unused, &type);
switch (type) {
case kTypeValue: {
Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length);
uint32_t prev_size = static_cast<uint32_t>(prev_value.size());
uint32_t new_size = static_cast<uint32_t>(value.size());
// Update value, if new value size <= previous value size
if (new_size <= prev_size ) {
char* p = EncodeVarint32(const_cast<char*>(key_ptr) + key_length,
new_size);
WriteLock wl(GetLock(lkey.user_key()));
memcpy(p, value.data(), value.size());
assert((unsigned)((p + value.size()) - entry) ==
(unsigned)(VarintLength(key_length) + key_length +
VarintLength(value.size()) + value.size()));
return;
}
}
default:
// If the latest value is kTypeDeletion, kTypeMerge or kTypeLogData
// we don't have enough space for update inplace
Add(seq, kTypeValue, key, value);
return;
}
}
}
// key doesn't exist
Add(seq, kTypeValue, key, value);
}
bool MemTable::UpdateCallback(SequenceNumber seq,
const Slice& key,
const Slice& delta) {
LookupKey lkey(key, seq);
Slice memkey = lkey.memtable_key();
std::unique_ptr<MemTableRep::Iterator> iter(
table_->GetDynamicPrefixIterator());
iter->Seek(lkey.internal_key(), memkey.data());
if (iter->Valid()) {
// entry format is:
// key_length varint32
// userkey char[klength-8]
// tag uint64
// vlength varint32
// value char[vlength]
// Check that it belongs to same user key. We do not check the
// sequence number since the Seek() call above should have skipped
// all entries with overly large sequence numbers.
const char* entry = iter->key();
uint32_t key_length = 0;
const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
if (comparator_.comparator.user_comparator()->Equal(
Slice(key_ptr, key_length - 8), lkey.user_key())) {
// Correct user key
const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8);
ValueType type;
uint64_t unused;
UnPackSequenceAndType(tag, &unused, &type);
switch (type) {
case kTypeValue: {
Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length);
uint32_t prev_size = static_cast<uint32_t>(prev_value.size());
char* prev_buffer = const_cast<char*>(prev_value.data());
uint32_t new_prev_size = prev_size;
std::string str_value;
WriteLock wl(GetLock(lkey.user_key()));
auto status = moptions_.inplace_callback(prev_buffer, &new_prev_size,
delta, &str_value);
if (status == UpdateStatus::UPDATED_INPLACE) {
// Value already updated by callback.
assert(new_prev_size <= prev_size);
if (new_prev_size < prev_size) {
// overwrite the new prev_size
char* p = EncodeVarint32(const_cast<char*>(key_ptr) + key_length,
new_prev_size);
if (VarintLength(new_prev_size) < VarintLength(prev_size)) {
// shift the value buffer as well.
memcpy(p, prev_buffer, new_prev_size);
}
}
RecordTick(moptions_.statistics, NUMBER_KEYS_UPDATED);
UpdateFlushState();
return true;
} else if (status == UpdateStatus::UPDATED) {
Add(seq, kTypeValue, key, Slice(str_value));
RecordTick(moptions_.statistics, NUMBER_KEYS_WRITTEN);
UpdateFlushState();
return true;
} else if (status == UpdateStatus::UPDATE_FAILED) {
// No action required. Return.
UpdateFlushState();
return true;
}
}
default:
break;
}
}
}
// If the latest value is not kTypeValue
// or key doesn't exist
return false;
}
size_t MemTable::CountSuccessiveMergeEntries(const LookupKey& key) {
Slice memkey = key.memtable_key();
// A total ordered iterator is costly for some memtablerep (prefix aware
// reps). By passing in the user key, we allow efficient iterator creation.
// The iterator only needs to be ordered within the same user key.
std::unique_ptr<MemTableRep::Iterator> iter(
table_->GetDynamicPrefixIterator());
iter->Seek(key.internal_key(), memkey.data());
size_t num_successive_merges = 0;
for (; iter->Valid(); iter->Next()) {
const char* entry = iter->key();
uint32_t key_length = 0;
const char* iter_key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length);
if (!comparator_.comparator.user_comparator()->Equal(
Slice(iter_key_ptr, key_length - 8), key.user_key())) {
break;
}
const uint64_t tag = DecodeFixed64(iter_key_ptr + key_length - 8);
ValueType type;
uint64_t unused;
UnPackSequenceAndType(tag, &unused, &type);
if (type != kTypeMerge) {
break;
}
++num_successive_merges;
}
return num_successive_merges;
}
void MemTableRep::Get(const LookupKey& k, void* callback_args,
bool (*callback_func)(void* arg, const char* entry)) {
auto iter = GetDynamicPrefixIterator();
for (iter->Seek(k.internal_key(), k.memtable_key().data());
iter->Valid() && callback_func(callback_args, iter->key());
iter->Next()) {
}
}
void MemTable::RefLogContainingPrepSection(uint64_t log) {
assert(log > 0);
auto cur = min_prep_log_referenced_.load();
while ((log < cur || cur == 0) &&
!min_prep_log_referenced_.compare_exchange_strong(cur, log)) {
cur = min_prep_log_referenced_.load();
}
}
uint64_t MemTable::GetMinLogContainingPrepSection() {
return min_prep_log_referenced_.load();
}
} // namespace rocksdb