rocksdb/db/db_bench.cc
Xing Jin 0a5afd1afc Minor fix to current codes
Summary:
Minor fix to current codes, including: coding style, output format,
comments. No major logic change. There are only 2 real changes, please see my inline comments.

Test Plan: make all check

Reviewers: haobo, dhruba, emayanke

Differential Revision: https://reviews.facebook.net/D12297
2013-08-14 23:03:57 -07:00

2289 lines
77 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <cstddef>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include "db/db_impl.h"
#include "db/version_set.h"
#include "db/db_statistics.h"
#include "leveldb/options.h"
#include "leveldb/cache.h"
#include "leveldb/db.h"
#include "leveldb/env.h"
#include "leveldb/write_batch.h"
#include "leveldb/statistics.h"
#include "port/port.h"
#include "util/bit_set.h"
#include "util/crc32c.h"
#include "util/histogram.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stack_trace.h"
#include "util/string_util.h"
#include "util/testutil.h"
#include "hdfs/env_hdfs.h"
// Comma-separated list of operations to run in the specified order
// Actual benchmarks:
// fillseq -- write N values in sequential key order in async mode
// fillrandom -- write N values in random key order in async mode
// overwrite -- overwrite N values in random key order in async mode
// fillsync -- write N/100 values in random key order in sync mode
// fill100K -- write N/1000 100K values in random order in async mode
// deleteseq -- delete N keys in sequential order
// deleterandom -- delete N keys in random order
// readseq -- read N times sequentially
// readreverse -- read N times in reverse order
// readrandom -- read N times in random order
// readmissing -- read N missing keys in random order
// readhot -- read N times in random order from 1% section of DB
// readwhilewriting -- 1 writer, N threads doing random reads
// readrandomwriterandom - N threads doing random-read, random-write
// updaterandom -- N threads doing read-modify-write for random keys
// seekrandom -- N random seeks
// crc32c -- repeated crc32c of 4K of data
// acquireload -- load N*1000 times
// Meta operations:
// compact -- Compact the entire DB
// stats -- Print DB stats
// levelstats -- Print the number of files and bytes per level
// sstables -- Print sstable info
// heapprofile -- Dump a heap profile (if supported by this port)
static const char* FLAGS_benchmarks =
"fillseq,"
"fillsync,"
"fillrandom,"
"overwrite,"
"readrandom,"
"readrandom," // Extra run to allow previous compactions to quiesce
"readseq,"
"readreverse,"
"compact,"
"readrandom,"
"readseq,"
"readreverse,"
"readwhilewriting,"
"readrandomwriterandom," // mix reads and writes based on FLAGS_readwritepercent
"updaterandom," // read-modify-write for random keys
"randomwithverify," // random reads and writes with some verification
"fill100K,"
"crc32c,"
"snappycomp,"
"snappyuncomp,"
"acquireload,"
;
// the maximum size of key in bytes
static const int MAX_KEY_SIZE = 128;
// Number of key/values to place in database
static long FLAGS_num = 1000000;
// Number of distinct keys to use. Used in RandomWithVerify to read/write
// on fewer keys so that gets are more likely to find the key and puts
// are more likely to update the same key
static long FLAGS_numdistinct = 1000;
// Number of read operations to do. If negative, do FLAGS_num reads.
static long FLAGS_reads = -1;
// When ==1 reads use ::Get, when >1 reads use an iterator
static long FLAGS_read_range = 1;
// Seed base for random number generators. When 0 it is deterministic.
static long FLAGS_seed = 0;
// Number of concurrent threads to run.
static int FLAGS_threads = 1;
// Time in seconds for the random-ops tests to run. When 0 then
// FLAGS_num & FLAGS_reads determine the test duration
static int FLAGS_duration = 0;
// Size of each value
static int FLAGS_value_size = 100;
//size of each key
static int FLAGS_key_size = 16;
// Arrange to generate values that shrink to this fraction of
// their original size after compression
static double FLAGS_compression_ratio = 0.5;
// Print histogram of operation timings
static bool FLAGS_histogram = false;
// Number of bytes to buffer in memtable before compacting
// (initialized to default value by "main")
static int FLAGS_write_buffer_size = 0;
// The number of in-memory memtables.
// Each memtable is of size FLAGS_write_buffer_size.
// This is initialized to default value of 2 in "main" function.
static int FLAGS_max_write_buffer_number = 0;
// The minimum number of write buffers that will be merged together
// before writing to storage. This is cheap because it is an
// in-memory merge. If this feature is not enabled, then all these
// write buffers are flushed to L0 as separate files and this increases
// read amplification because a get request has to check in all of these
// files. Also, an in-memory merge may result in writing less
// data to storage if there are duplicate records in each of these
// individual write buffers.
static int FLAGS_min_write_buffer_number_to_merge = 0;
// The maximum number of concurrent background compactions
// that can occur in parallel.
// This is initialized to default value of 1 in "main" function.
static int FLAGS_max_background_compactions = 0;
// style of compaction: level-based vs universal
static leveldb::CompactionStyle FLAGS_compaction_style = leveldb::kCompactionStyleLevel;
// Percentage flexibility while comparing file size
// (for universal compaction only).
static int FLAGS_universal_size_ratio = 1;
// The minimum number of files in a single compaction run
// (for universal compaction only).
static int FLAGS_compaction_universal_min_merge_width = 2;
// Number of bytes to use as a cache of uncompressed data.
// Negative means use default settings.
static long FLAGS_cache_size = -1;
// Number of bytes in a block.
static int FLAGS_block_size = 0;
// Maximum number of files to keep open at the same time (use default if == 0)
static int FLAGS_open_files = 0;
// Bloom filter bits per key.
// Negative means use default settings.
static int FLAGS_bloom_bits = -1;
// If true, do not destroy the existing database. If you set this
// flag and also specify a benchmark that wants a fresh database, that
// benchmark will fail.
static bool FLAGS_use_existing_db = false;
// Use the db with the following name.
static const char* FLAGS_db = nullptr;
// Number of shards for the block cache is 2 ** FLAGS_cache_numshardbits.
// Negative means use default settings. This is applied only
// if FLAGS_cache_size is non-negative.
static int FLAGS_cache_numshardbits = -1;
// Verify checksum for every block read from storage
static bool FLAGS_verify_checksum = false;
// Database statistics
static bool FLAGS_statistics = false;
static class std::shared_ptr<leveldb::Statistics> dbstats;
// Number of write operations to do. If negative, do FLAGS_num reads.
static long FLAGS_writes = -1;
// Per-thread rate limit on writes per second. No limit when <= 0.
// Only for the readwhilewriting test.
static int FLAGS_writes_per_second = 0;
// These default values might change if the hardcoded
// Sync all writes to disk
static bool FLAGS_sync = false;
// If true, do not wait until data is synced to disk.
static bool FLAGS_disable_data_sync = false;
// If true, issue fsync instead of fdatasync
static bool FLAGS_use_fsync = false;
// If true, do not write WAL for write.
static bool FLAGS_disable_wal = false;
// If true, create a snapshot per query when randomread benchmark is used
static bool FLAGS_use_snapshot = false;
// If true, call GetApproximateSizes per query when FLAGS_read_range is > 1
// and randomread benchmark is used
static bool FLAGS_get_approx = false;
// The total number of levels
static int FLAGS_num_levels = 7;
// Target file size at level-1
static int FLAGS_target_file_size_base = 2 * 1048576;
// A multiplier to compute target level-N file size (N >= 2)
static int FLAGS_target_file_size_multiplier = 1;
// Max bytes for level-1
static uint64_t FLAGS_max_bytes_for_level_base = 10 * 1048576;
// A multiplier to compute max bytes for level-N (N >= 2)
static int FLAGS_max_bytes_for_level_multiplier = 10;
// A vector that specifies additional fanout per level
static std::vector<int> FLAGS_max_bytes_for_level_multiplier_additional;
// Number of files in level-0 that will trigger put stop.
static int FLAGS_level0_stop_writes_trigger = 12;
// Number of files in level-0 that will slow down writes.
static int FLAGS_level0_slowdown_writes_trigger = 8;
// Number of files in level-0 when compactions start
static int FLAGS_level0_file_num_compaction_trigger = 4;
// Ratio of reads to reads/writes (expressed as percentage) for the
// ReadRandomWriteRandom workload. The default value 90 means 90% operations
// out of all reads and writes operations are reads. In other words, 9 gets
// for every 1 put.
static int FLAGS_readwritepercent = 90;
// Percentage of deletes out of reads/writes/deletes (used in RandomWithVerify
// only). RandomWithVerify calculates writepercent as
// (100 - FLAGS_readwritepercent - FLAGS_deletepercent), so FLAGS_deletepercent
// must be smaller than (100 - FLAGS_readwritepercent)
static int FLAGS_deletepercent = 2;
// Option to disable compaction triggered by read.
static int FLAGS_disable_seek_compaction = false;
// Option to delete obsolete files periodically
// Default: 0 which means that obsolete files are
// deleted after every compaction run.
static uint64_t FLAGS_delete_obsolete_files_period_micros = 0;
// Algorithm used to compress the database
static enum leveldb::CompressionType FLAGS_compression_type =
leveldb::kSnappyCompression;
// If non-negative, compression starts from this level. Levels with number
// < FLAGS_min_level_to_compress are not compressed.
// Otherwise, apply FLAGS_compression_type to all levels.
static int FLAGS_min_level_to_compress = -1;
static int FLAGS_table_cache_numshardbits = 4;
// posix or hdfs environment
static leveldb::Env* FLAGS_env = leveldb::Env::Default();
// Stats are reported every N operations when this is greater
// than zero. When 0 the interval grows over time.
static int FLAGS_stats_interval = 0;
// Reports additional stats per interval when this is greater
// than 0.
static int FLAGS_stats_per_interval = 0;
static double FLAGS_soft_rate_limit = 0;
// When not equal to 0 this make threads sleep at each stats
// reporting interval until the compaction score for all levels is
// less than or equal to this value.
static double FLAGS_hard_rate_limit = 0;
// When FLAGS_hard_rate_limit is set then this is the max time a put will be
// stalled.
static int FLAGS_rate_limit_delay_max_milliseconds = 1000;
// Control maximum bytes of overlaps in grandparent (i.e., level+2) before we
// stop building a single file in a level->level+1 compaction.
static int FLAGS_max_grandparent_overlap_factor = 10;
// Run read only benchmarks.
static bool FLAGS_read_only = false;
// Do not auto trigger compactions
static bool FLAGS_disable_auto_compactions = false;
// Cap the size of data in level-K for a compaction run
// that compacts Level-K with Level-(K+1) (for K >= 1)
static int FLAGS_source_compaction_factor = 1;
// Set the TTL for the WAL Files.
static uint64_t FLAGS_WAL_ttl_seconds = 0;
// Allow buffered io using OS buffers
static bool FLAGS_use_os_buffer;
// Allow reads to occur via mmap-ing files
static bool FLAGS_use_mmap_reads;
// Allow writes to occur via mmap-ing files
static bool FLAGS_use_mmap_writes;
// Advise random access on table file open
static bool FLAGS_advise_random_on_open =
leveldb::Options().advise_random_on_open;
// Access pattern advice when a file is compacted
static auto FLAGS_compaction_fadvice =
leveldb::Options().access_hint_on_compaction_start;
// Use multiget to access a series of keys instead of get
static bool FLAGS_use_multiget = false;
// If FLAGS_use_multiget is true, determines number of keys to group per call
// Arbitrary default. 90 is good because it agrees with FLAGS_readwritepercent
static long FLAGS_keys_per_multiget = 90;
// Print a message to user when a key is missing in a Get/MultiGet call
// TODO: Apply this flag to generic Get calls too. Currently only with Multiget
static bool FLAGS_warn_missing_keys = true;
// Use adaptive mutex
static auto FLAGS_use_adaptive_mutex =
leveldb::Options().use_adaptive_mutex;
// Allows OS to incrementally sync files to disk while they are being
// written, in the background. Issue one request for every bytes_per_sync
// written. 0 turns it off.
static auto FLAGS_bytes_per_sync =
leveldb::Options().bytes_per_sync;
// On true, deletes use bloom-filter and drop the delete if key not present
static bool FLAGS_filter_deletes = false;
namespace leveldb {
// Helper for quickly generating random data.
class RandomGenerator {
private:
std::string data_;
unsigned int pos_;
public:
RandomGenerator() {
// We use a limited amount of data over and over again and ensure
// that it is larger than the compression window (32KB), and also
// large enough to serve all typical value sizes we want to write.
Random rnd(301);
std::string piece;
while (data_.size() < (unsigned)std::max(1048576, FLAGS_value_size)) {
// Add a short fragment that is as compressible as specified
// by FLAGS_compression_ratio.
test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
data_.append(piece);
}
pos_ = 0;
}
Slice Generate(unsigned int len) {
if (pos_ + len > data_.size()) {
pos_ = 0;
assert(len < data_.size());
}
pos_ += len;
return Slice(data_.data() + pos_ - len, len);
}
};
static Slice TrimSpace(Slice s) {
unsigned int start = 0;
while (start < s.size() && isspace(s[start])) {
start++;
}
unsigned int limit = s.size();
while (limit > start && isspace(s[limit-1])) {
limit--;
}
return Slice(s.data() + start, limit - start);
}
static void AppendWithSpace(std::string* str, Slice msg) {
if (msg.empty()) return;
if (!str->empty()) {
str->push_back(' ');
}
str->append(msg.data(), msg.size());
}
class Stats {
private:
int id_;
double start_;
double finish_;
double seconds_;
long done_;
long last_report_done_;
int next_report_;
int64_t bytes_;
double last_op_finish_;
double last_report_finish_;
HistogramImpl hist_;
std::string message_;
bool exclude_from_merge_;
public:
Stats() { Start(-1); }
void Start(int id) {
id_ = id;
next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100;
last_op_finish_ = start_;
hist_.Clear();
done_ = 0;
last_report_done_ = 0;
bytes_ = 0;
seconds_ = 0;
start_ = FLAGS_env->NowMicros();
finish_ = start_;
last_report_finish_ = start_;
message_.clear();
// When set, stats from this thread won't be merged with others.
exclude_from_merge_ = false;
}
void Merge(const Stats& other) {
if (other.exclude_from_merge_)
return;
hist_.Merge(other.hist_);
done_ += other.done_;
bytes_ += other.bytes_;
seconds_ += other.seconds_;
if (other.start_ < start_) start_ = other.start_;
if (other.finish_ > finish_) finish_ = other.finish_;
// Just keep the messages from one thread
if (message_.empty()) message_ = other.message_;
}
void Stop() {
finish_ = FLAGS_env->NowMicros();
seconds_ = (finish_ - start_) * 1e-6;
}
void AddMessage(Slice msg) {
AppendWithSpace(&message_, msg);
}
void SetId(int id) { id_ = id; }
void SetExcludeFromMerge() { exclude_from_merge_ = true; }
void FinishedSingleOp(DB* db) {
if (FLAGS_histogram) {
double now = FLAGS_env->NowMicros();
double micros = now - last_op_finish_;
hist_.Add(micros);
if (micros > 20000 && !FLAGS_stats_interval) {
fprintf(stderr, "long op: %.1f micros%30s\r", micros, "");
fflush(stderr);
}
last_op_finish_ = now;
}
done_++;
if (done_ >= next_report_) {
if (!FLAGS_stats_interval) {
if (next_report_ < 1000) next_report_ += 100;
else if (next_report_ < 5000) next_report_ += 500;
else if (next_report_ < 10000) next_report_ += 1000;
else if (next_report_ < 50000) next_report_ += 5000;
else if (next_report_ < 100000) next_report_ += 10000;
else if (next_report_ < 500000) next_report_ += 50000;
else next_report_ += 100000;
fprintf(stderr, "... finished %ld ops%30s\r", done_, "");
fflush(stderr);
} else {
double now = FLAGS_env->NowMicros();
fprintf(stderr,
"%s ... thread %d: (%ld,%ld) ops and (%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n",
FLAGS_env->TimeToString((uint64_t) now/1000000).c_str(),
id_,
done_ - last_report_done_, done_,
(done_ - last_report_done_) /
((now - last_report_finish_) / 1000000.0),
done_ / ((now - start_) / 1000000.0),
(now - last_report_finish_) / 1000000.0,
(now - start_) / 1000000.0);
if (FLAGS_stats_per_interval) {
std::string stats;
if (db && db->GetProperty("leveldb.stats", &stats))
fprintf(stderr, "%s\n", stats.c_str());
}
fflush(stderr);
next_report_ += FLAGS_stats_interval;
last_report_finish_ = now;
last_report_done_ = done_;
}
}
}
void AddBytes(int64_t n) {
bytes_ += n;
}
void Report(const Slice& name) {
// Pretend at least one op was done in case we are running a benchmark
// that does not call FinishedSingleOp().
if (done_ < 1) done_ = 1;
std::string extra;
if (bytes_ > 0) {
// Rate is computed on actual elapsed time, not the sum of per-thread
// elapsed times.
double elapsed = (finish_ - start_) * 1e-6;
char rate[100];
snprintf(rate, sizeof(rate), "%6.1f MB/s",
(bytes_ / 1048576.0) / elapsed);
extra = rate;
}
AppendWithSpace(&extra, message_);
double elapsed = (finish_ - start_) * 1e-6;
double throughput = (double)done_/elapsed;
fprintf(stdout, "%-12s : %11.3f micros/op %ld ops/sec;%s%s\n",
name.ToString().c_str(),
elapsed * 1e6 / done_,
(long)throughput,
(extra.empty() ? "" : " "),
extra.c_str());
if (FLAGS_histogram) {
fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str());
}
fflush(stdout);
}
};
// State shared by all concurrent executions of the same benchmark.
struct SharedState {
port::Mutex mu;
port::CondVar cv;
int total;
// Each thread goes through the following states:
// (1) initializing
// (2) waiting for others to be initialized
// (3) running
// (4) done
long num_initialized;
long num_done;
bool start;
SharedState() : cv(&mu) { }
};
// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
int tid; // 0..n-1 when running in n threads
Random rand; // Has different seeds for different threads
Stats stats;
SharedState* shared;
/* implicit */ ThreadState(int index)
: tid(index),
rand((FLAGS_seed ? FLAGS_seed : 1000) + index) {
}
};
class Duration {
public:
Duration(int max_seconds, long max_ops) {
max_seconds_ = max_seconds;
max_ops_= max_ops;
ops_ = 0;
start_at_ = FLAGS_env->NowMicros();
}
bool Done(int increment) {
if (increment <= 0) increment = 1; // avoid Done(0) and infinite loops
ops_ += increment;
if (max_seconds_) {
// Recheck every appx 1000 ops (exact iff increment is factor of 1000)
if ((ops_/1000) != ((ops_-increment)/1000)) {
double now = FLAGS_env->NowMicros();
return ((now - start_at_) / 1000000.0) >= max_seconds_;
} else {
return false;
}
} else {
return ops_ > max_ops_;
}
}
private:
int max_seconds_;
long max_ops_;
long ops_;
double start_at_;
};
class Benchmark {
private:
shared_ptr<Cache> cache_;
const FilterPolicy* filter_policy_;
DB* db_;
long num_;
int value_size_;
int key_size_;
int entries_per_batch_;
WriteOptions write_options_;
long reads_;
long writes_;
long readwrites_;
int heap_counter_;
char keyFormat_[100]; // this string will contain the format of key. e.g "%016d"
void PrintHeader() {
PrintEnvironment();
fprintf(stdout, "Keys: %d bytes each\n", FLAGS_key_size);
fprintf(stdout, "Values: %d bytes each (%d bytes after compression)\n",
FLAGS_value_size,
static_cast<int>(FLAGS_value_size * FLAGS_compression_ratio + 0.5));
fprintf(stdout, "Entries: %ld\n", num_);
fprintf(stdout, "RawSize: %.1f MB (estimated)\n",
((static_cast<int64_t>(FLAGS_key_size + FLAGS_value_size) * num_)
/ 1048576.0));
fprintf(stdout, "FileSize: %.1f MB (estimated)\n",
(((FLAGS_key_size + FLAGS_value_size * FLAGS_compression_ratio) * num_)
/ 1048576.0));
fprintf(stdout, "Write rate limit: %d\n", FLAGS_writes_per_second);
switch (FLAGS_compression_type) {
case leveldb::kNoCompression:
fprintf(stdout, "Compression: none\n");
break;
case leveldb::kSnappyCompression:
fprintf(stdout, "Compression: snappy\n");
break;
case leveldb::kZlibCompression:
fprintf(stdout, "Compression: zlib\n");
break;
case leveldb::kBZip2Compression:
fprintf(stdout, "Compression: bzip2\n");
break;
}
PrintWarnings();
fprintf(stdout, "------------------------------------------------\n");
}
void PrintWarnings() {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
fprintf(stdout,
"WARNING: Optimization is disabled: benchmarks unnecessarily slow\n"
);
#endif
#ifndef NDEBUG
fprintf(stdout,
"WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
if (FLAGS_compression_type != leveldb::kNoCompression) {
// The test string should not be too small.
const int len = FLAGS_block_size;
char* text = (char*) malloc(len+1);
bool result = true;
const char* name = nullptr;
std::string compressed;
memset(text, (int) 'y', len);
text[len] = '\0';
switch (FLAGS_compression_type) {
case kSnappyCompression:
result = port::Snappy_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "Snappy";
break;
case kZlibCompression:
result = port::Zlib_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "Zlib";
break;
case kBZip2Compression:
result = port::BZip2_Compress(Options().compression_opts, text,
strlen(text), &compressed);
name = "BZip2";
break;
case kNoCompression:
assert(false); // cannot happen
break;
}
if (!result) {
fprintf(stdout, "WARNING: %s compression is not enabled\n", name);
} else if (name && compressed.size() >= strlen(text)) {
fprintf(stdout, "WARNING: %s compression is not effective\n", name);
}
free(text);
}
}
void PrintEnvironment() {
fprintf(stderr, "LevelDB: version %d.%d\n",
kMajorVersion, kMinorVersion);
#if defined(__linux)
time_t now = time(nullptr);
fprintf(stderr, "Date: %s", ctime(&now)); // ctime() adds newline
FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
if (cpuinfo != nullptr) {
char line[1000];
int num_cpus = 0;
std::string cpu_type;
std::string cache_size;
while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
const char* sep = strchr(line, ':');
if (sep == nullptr) {
continue;
}
Slice key = TrimSpace(Slice(line, sep - 1 - line));
Slice val = TrimSpace(Slice(sep + 1));
if (key == "model name") {
++num_cpus;
cpu_type = val.ToString();
} else if (key == "cache size") {
cache_size = val.ToString();
}
}
fclose(cpuinfo);
fprintf(stderr, "CPU: %d * %s\n", num_cpus, cpu_type.c_str());
fprintf(stderr, "CPUCache: %s\n", cache_size.c_str());
}
#endif
}
public:
Benchmark()
: cache_(FLAGS_cache_size >= 0 ?
(FLAGS_cache_numshardbits >= 1 ?
NewLRUCache(FLAGS_cache_size, FLAGS_cache_numshardbits) :
NewLRUCache(FLAGS_cache_size)) : nullptr),
filter_policy_(FLAGS_bloom_bits >= 0
? NewBloomFilterPolicy(FLAGS_bloom_bits)
: nullptr),
db_(nullptr),
num_(FLAGS_num),
value_size_(FLAGS_value_size),
key_size_(FLAGS_key_size),
entries_per_batch_(1),
reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes),
readwrites_((FLAGS_writes < 0 && FLAGS_reads < 0)? FLAGS_num :
((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)
),
heap_counter_(0) {
std::vector<std::string> files;
FLAGS_env->GetChildren(FLAGS_db, &files);
for (unsigned int i = 0; i < files.size(); i++) {
if (Slice(files[i]).starts_with("heap-")) {
FLAGS_env->DeleteFile(std::string(FLAGS_db) + "/" + files[i]);
}
}
if (!FLAGS_use_existing_db) {
DestroyDB(FLAGS_db, Options());
}
}
~Benchmark() {
delete db_;
delete filter_policy_;
}
//this function will construct string format for key. e.g "%016d"
void ConstructStrFormatForKey(char* str, int keySize) {
str[0] = '%';
str[1] = '0';
sprintf(str+2, "%dd%s", keySize, "%s");
}
unique_ptr<char []> GenerateKeyFromInt(int v, const char* suffix = "") {
unique_ptr<char []> keyInStr(new char[MAX_KEY_SIZE]);
snprintf(keyInStr.get(), MAX_KEY_SIZE, keyFormat_, v, suffix);
return keyInStr;
}
void Run() {
PrintHeader();
Open();
const char* benchmarks = FLAGS_benchmarks;
while (benchmarks != nullptr) {
const char* sep = strchr(benchmarks, ',');
Slice name;
if (sep == nullptr) {
name = benchmarks;
benchmarks = nullptr;
} else {
name = Slice(benchmarks, sep - benchmarks);
benchmarks = sep + 1;
}
// Sanitize parameters
num_ = FLAGS_num;
reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes);
value_size_ = FLAGS_value_size;
key_size_ = FLAGS_key_size;
ConstructStrFormatForKey(keyFormat_, key_size_);
entries_per_batch_ = 1;
write_options_ = WriteOptions();
if (FLAGS_sync) {
write_options_.sync = true;
}
write_options_.disableWAL = FLAGS_disable_wal;
void (Benchmark::*method)(ThreadState*) = nullptr;
bool fresh_db = false;
int num_threads = FLAGS_threads;
if (name == Slice("fillseq")) {
fresh_db = true;
method = &Benchmark::WriteSeq;
} else if (name == Slice("fillbatch")) {
fresh_db = true;
entries_per_batch_ = 1000;
method = &Benchmark::WriteSeq;
} else if (name == Slice("fillrandom")) {
fresh_db = true;
method = &Benchmark::WriteRandom;
} else if (name == Slice("filluniquerandom")) {
fresh_db = true;
if (num_threads > 1) {
fprintf(stderr, "filluniquerandom multithreaded not supported"
" set --threads=1");
exit(1);
}
method = &Benchmark::WriteUniqueRandom;
} else if (name == Slice("overwrite")) {
fresh_db = false;
method = &Benchmark::WriteRandom;
} else if (name == Slice("fillsync")) {
fresh_db = true;
num_ /= 1000;
write_options_.sync = true;
method = &Benchmark::WriteRandom;
} else if (name == Slice("fill100K")) {
fresh_db = true;
num_ /= 1000;
value_size_ = 100 * 1000;
method = &Benchmark::WriteRandom;
} else if (name == Slice("readseq")) {
method = &Benchmark::ReadSequential;
} else if (name == Slice("readreverse")) {
method = &Benchmark::ReadReverse;
} else if (name == Slice("readrandom")) {
method = &Benchmark::ReadRandom;
} else if (name == Slice("readmissing")) {
method = &Benchmark::ReadMissing;
} else if (name == Slice("seekrandom")) {
method = &Benchmark::SeekRandom;
} else if (name == Slice("readhot")) {
method = &Benchmark::ReadHot;
} else if (name == Slice("readrandomsmall")) {
reads_ /= 1000;
method = &Benchmark::ReadRandom;
} else if (name == Slice("deleteseq")) {
method = &Benchmark::DeleteSeq;
} else if (name == Slice("deleterandom")) {
method = &Benchmark::DeleteRandom;
} else if (name == Slice("readwhilewriting")) {
num_threads++; // Add extra thread for writing
method = &Benchmark::ReadWhileWriting;
} else if (name == Slice("readrandomwriterandom")) {
method = &Benchmark::ReadRandomWriteRandom;
} else if (name == Slice("updaterandom")) {
method = &Benchmark::UpdateRandom;
} else if (name == Slice("randomwithverify")) {
method = &Benchmark::RandomWithVerify;
} else if (name == Slice("compact")) {
method = &Benchmark::Compact;
} else if (name == Slice("crc32c")) {
method = &Benchmark::Crc32c;
} else if (name == Slice("acquireload")) {
method = &Benchmark::AcquireLoad;
} else if (name == Slice("snappycomp")) {
method = &Benchmark::SnappyCompress;
} else if (name == Slice("snappyuncomp")) {
method = &Benchmark::SnappyUncompress;
} else if (name == Slice("heapprofile")) {
HeapProfile();
} else if (name == Slice("stats")) {
PrintStats("leveldb.stats");
} else if (name == Slice("levelstats")) {
PrintStats("leveldb.levelstats");
} else if (name == Slice("sstables")) {
PrintStats("leveldb.sstables");
} else {
if (name != Slice()) { // No error message for empty name
fprintf(stderr, "unknown benchmark '%s'\n", name.ToString().c_str());
}
}
if (fresh_db) {
if (FLAGS_use_existing_db) {
fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
name.ToString().c_str());
method = nullptr;
} else {
delete db_;
db_ = nullptr;
DestroyDB(FLAGS_db, Options());
Open();
}
}
if (method != nullptr) {
fprintf(stdout, "DB path: [%s]\n", FLAGS_db);
RunBenchmark(num_threads, name, method);
}
}
if (FLAGS_statistics) {
fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
}
}
private:
struct ThreadArg {
Benchmark* bm;
SharedState* shared;
ThreadState* thread;
void (Benchmark::*method)(ThreadState*);
};
static void ThreadBody(void* v) {
ThreadArg* arg = reinterpret_cast<ThreadArg*>(v);
SharedState* shared = arg->shared;
ThreadState* thread = arg->thread;
{
MutexLock l(&shared->mu);
shared->num_initialized++;
if (shared->num_initialized >= shared->total) {
shared->cv.SignalAll();
}
while (!shared->start) {
shared->cv.Wait();
}
}
thread->stats.Start(thread->tid);
(arg->bm->*(arg->method))(thread);
thread->stats.Stop();
{
MutexLock l(&shared->mu);
shared->num_done++;
if (shared->num_done >= shared->total) {
shared->cv.SignalAll();
}
}
}
void RunBenchmark(int n, Slice name,
void (Benchmark::*method)(ThreadState*)) {
SharedState shared;
shared.total = n;
shared.num_initialized = 0;
shared.num_done = 0;
shared.start = false;
ThreadArg* arg = new ThreadArg[n];
for (int i = 0; i < n; i++) {
arg[i].bm = this;
arg[i].method = method;
arg[i].shared = &shared;
arg[i].thread = new ThreadState(i);
arg[i].thread->shared = &shared;
FLAGS_env->StartThread(ThreadBody, &arg[i]);
}
shared.mu.Lock();
while (shared.num_initialized < n) {
shared.cv.Wait();
}
shared.start = true;
shared.cv.SignalAll();
while (shared.num_done < n) {
shared.cv.Wait();
}
shared.mu.Unlock();
// Stats for some threads can be excluded.
Stats merge_stats;
for (int i = 0; i < n; i++) {
merge_stats.Merge(arg[i].thread->stats);
}
merge_stats.Report(name);
for (int i = 0; i < n; i++) {
delete arg[i].thread;
}
delete[] arg;
}
void Crc32c(ThreadState* thread) {
// Checksum about 500MB of data total
const int size = 4096;
const char* label = "(4K per op)";
std::string data(size, 'x');
int64_t bytes = 0;
uint32_t crc = 0;
while (bytes < 500 * 1048576) {
crc = crc32c::Value(data.data(), size);
thread->stats.FinishedSingleOp(nullptr);
bytes += size;
}
// Print so result is not dead
fprintf(stderr, "... crc=0x%x\r", static_cast<unsigned int>(crc));
thread->stats.AddBytes(bytes);
thread->stats.AddMessage(label);
}
void AcquireLoad(ThreadState* thread) {
int dummy;
port::AtomicPointer ap(&dummy);
int count = 0;
void *ptr = nullptr;
thread->stats.AddMessage("(each op is 1000 loads)");
while (count < 100000) {
for (int i = 0; i < 1000; i++) {
ptr = ap.Acquire_Load();
}
count++;
thread->stats.FinishedSingleOp(nullptr);
}
if (ptr == nullptr) exit(1); // Disable unused variable warning.
}
void SnappyCompress(ThreadState* thread) {
RandomGenerator gen;
Slice input = gen.Generate(Options().block_size);
int64_t bytes = 0;
int64_t produced = 0;
bool ok = true;
std::string compressed;
while (ok && bytes < 1024 * 1048576) { // Compress 1G
ok = port::Snappy_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
produced += compressed.size();
bytes += input.size();
thread->stats.FinishedSingleOp(nullptr);
}
if (!ok) {
thread->stats.AddMessage("(snappy failure)");
} else {
char buf[100];
snprintf(buf, sizeof(buf), "(output: %.1f%%)",
(produced * 100.0) / bytes);
thread->stats.AddMessage(buf);
thread->stats.AddBytes(bytes);
}
}
void SnappyUncompress(ThreadState* thread) {
RandomGenerator gen;
Slice input = gen.Generate(Options().block_size);
std::string compressed;
bool ok = port::Snappy_Compress(Options().compression_opts, input.data(),
input.size(), &compressed);
int64_t bytes = 0;
char* uncompressed = new char[input.size()];
while (ok && bytes < 1024 * 1048576) { // Compress 1G
ok = port::Snappy_Uncompress(compressed.data(), compressed.size(),
uncompressed);
bytes += input.size();
thread->stats.FinishedSingleOp(nullptr);
}
delete[] uncompressed;
if (!ok) {
thread->stats.AddMessage("(snappy failure)");
} else {
thread->stats.AddBytes(bytes);
}
}
void Open() {
assert(db_ == nullptr);
Options options;
options.create_if_missing = !FLAGS_use_existing_db;
options.block_cache = cache_;
if (cache_ == nullptr) {
options.no_block_cache = true;
}
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
options.max_background_compactions = FLAGS_max_background_compactions;
options.compaction_style = FLAGS_compaction_style;
options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio;
options.compaction_options_universal.min_merge_width =
FLAGS_compaction_universal_min_merge_width;
options.block_size = FLAGS_block_size;
options.filter_policy = filter_policy_;
options.max_open_files = FLAGS_open_files;
options.statistics = dbstats;
options.env = FLAGS_env;
options.disableDataSync = FLAGS_disable_data_sync;
options.use_fsync = FLAGS_use_fsync;
options.num_levels = FLAGS_num_levels;
options.target_file_size_base = FLAGS_target_file_size_base;
options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
options.max_bytes_for_level_multiplier =
FLAGS_max_bytes_for_level_multiplier;
options.filter_deletes = FLAGS_filter_deletes;
if (FLAGS_max_bytes_for_level_multiplier_additional.size() > 0) {
if (FLAGS_max_bytes_for_level_multiplier_additional.size() !=
(unsigned int)FLAGS_num_levels) {
fprintf(stderr, "Insufficient number of fanouts specified %d\n",
(int)FLAGS_max_bytes_for_level_multiplier_additional.size());
exit(1);
}
options.max_bytes_for_level_multiplier_additional =
FLAGS_max_bytes_for_level_multiplier_additional;
}
options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
options.level0_file_num_compaction_trigger =
FLAGS_level0_file_num_compaction_trigger;
options.level0_slowdown_writes_trigger =
FLAGS_level0_slowdown_writes_trigger;
options.compression = FLAGS_compression_type;
options.WAL_ttl_seconds = FLAGS_WAL_ttl_seconds;
if (FLAGS_min_level_to_compress >= 0) {
assert(FLAGS_min_level_to_compress <= FLAGS_num_levels);
options.compression_per_level.resize(FLAGS_num_levels);
for (int i = 0; i < FLAGS_min_level_to_compress; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = FLAGS_min_level_to_compress;
i < FLAGS_num_levels; i++) {
options.compression_per_level[i] = FLAGS_compression_type;
}
}
options.disable_seek_compaction = FLAGS_disable_seek_compaction;
options.delete_obsolete_files_period_micros =
FLAGS_delete_obsolete_files_period_micros;
options.soft_rate_limit = FLAGS_soft_rate_limit;
options.hard_rate_limit = FLAGS_hard_rate_limit;
options.rate_limit_delay_max_milliseconds =
FLAGS_rate_limit_delay_max_milliseconds;
options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
options.max_grandparent_overlap_factor =
FLAGS_max_grandparent_overlap_factor;
options.disable_auto_compactions = FLAGS_disable_auto_compactions;
options.source_compaction_factor = FLAGS_source_compaction_factor;
// fill storage options
options.allow_os_buffer = FLAGS_use_os_buffer;
options.allow_mmap_reads = FLAGS_use_mmap_reads;
options.allow_mmap_writes = FLAGS_use_mmap_writes;
options.advise_random_on_open = FLAGS_advise_random_on_open;
options.access_hint_on_compaction_start = FLAGS_compaction_fadvice;
options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
options.bytes_per_sync = FLAGS_bytes_per_sync;
Status s;
if(FLAGS_read_only) {
s = DB::OpenForReadOnly(options, FLAGS_db, &db_);
} else {
s = DB::Open(options, FLAGS_db, &db_);
}
if (!s.ok()) {
fprintf(stderr, "open error: %s\n", s.ToString().c_str());
exit(1);
}
if (FLAGS_min_level_to_compress >= 0) {
options.compression_per_level.clear();
}
}
enum WriteMode {
RANDOM, SEQUENTIAL, UNIQUE_RANDOM
};
void WriteSeq(ThreadState* thread) {
DoWrite(thread, SEQUENTIAL);
}
void WriteRandom(ThreadState* thread) {
DoWrite(thread, RANDOM);
}
void WriteUniqueRandom(ThreadState* thread) {
DoWrite(thread, UNIQUE_RANDOM);
}
void DoWrite(ThreadState* thread, WriteMode write_mode) {
const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0;
const int num_ops = writes_ == 0 ? num_ : writes_ ;
Duration duration(test_duration, num_ops);
unique_ptr<BitSet> bit_set;
if (write_mode == UNIQUE_RANDOM) {
bit_set.reset(new BitSet(num_ops));
}
if (num_ != FLAGS_num) {
char msg[100];
snprintf(msg, sizeof(msg), "(%ld ops)", num_);
thread->stats.AddMessage(msg);
}
RandomGenerator gen;
WriteBatch batch;
Status s;
int64_t bytes = 0;
int i = 0;
while (!duration.Done(entries_per_batch_)) {
batch.Clear();
for (int j = 0; j < entries_per_batch_; j++) {
int k = 0;
switch(write_mode) {
case SEQUENTIAL:
k = i +j;
break;
case RANDOM:
k = thread->rand.Next() % FLAGS_num;
break;
case UNIQUE_RANDOM:
{
int t = thread->rand.Next() % FLAGS_num;
if (!bit_set->test(t)) {
// best case
k = t;
} else {
bool found = false;
// look forward
for (size_t i = t + 1; i < bit_set->size(); ++i) {
if (!bit_set->test(i)) {
found = true;
k = i;
break;
}
}
if (!found) {
for (size_t i = t; i-- > 0;) {
if (!bit_set->test(i)) {
found = true;
k = i;
break;
}
}
}
}
bit_set->set(k);
break;
}
};
unique_ptr<char []> key = GenerateKeyFromInt(k);
batch.Put(key.get(), gen.Generate(value_size_));
bytes += value_size_ + strlen(key.get());
thread->stats.FinishedSingleOp(db_);
}
s = db_->Write(write_options_, &batch);
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
i += entries_per_batch_;
}
thread->stats.AddBytes(bytes);
}
void ReadSequential(ThreadState* thread) {
Iterator* iter = db_->NewIterator(ReadOptions(FLAGS_verify_checksum, true));
long i = 0;
int64_t bytes = 0;
for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedSingleOp(db_);
++i;
}
delete iter;
thread->stats.AddBytes(bytes);
}
void ReadReverse(ThreadState* thread) {
Iterator* iter = db_->NewIterator(ReadOptions(FLAGS_verify_checksum, true));
long i = 0;
int64_t bytes = 0;
for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
bytes += iter->key().size() + iter->value().size();
thread->stats.FinishedSingleOp(db_);
++i;
}
delete iter;
thread->stats.AddBytes(bytes);
}
// Calls MultiGet over a list of keys from a random distribution.
// Returns the total number of keys found.
long MultiGetRandom(ReadOptions& options, int num_keys,
Random& rand, int range, const char* suffix) {
assert(num_keys > 0);
std::vector<Slice> keys(num_keys);
std::vector<std::string> values(num_keys);
std::vector<unique_ptr<char []> > gen_keys(num_keys);
int i;
long k;
// Fill the keys vector
for(i=0; i<num_keys; ++i) {
k = rand.Next() % range;
gen_keys[i] = GenerateKeyFromInt(k,suffix);
keys[i] = gen_keys[i].get();
}
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
// Apply the operation
std::vector<Status> statuses = db_->MultiGet(options, keys, &values);
assert((long)statuses.size() == num_keys);
assert((long)keys.size() == num_keys); // Should always be the case.
assert((long)values.size() == num_keys);
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
options.snapshot = nullptr;
}
// Count number found
long found = 0;
for(i=0; i<num_keys; ++i) {
if (statuses[i].ok()){
++found;
} else if (FLAGS_warn_missing_keys == true) {
// Key not found, or error.
fprintf(stderr, "get error: %s\n", statuses[i].ToString().c_str());
}
}
return found;
}
void ReadRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
Duration duration(FLAGS_duration, reads_);
long found = 0;
if (FLAGS_use_multiget) { // MultiGet
const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group
long keys_left = reads_;
// Recalculate number of keys per group, and call MultiGet until done
long num_keys;
while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) {
found += MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, "");
thread->stats.FinishedSingleOp(db_);
keys_left -= num_keys;
}
} else { // Regular case. Do one "get" at a time Get
Iterator* iter = db_->NewIterator(options);
std::string value;
while (!duration.Done(1)) {
const int k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
if (FLAGS_read_range < 2) {
if (db_->Get(options, key.get(), &value).ok()) {
found++;
}
} else {
Slice skey(key.get());
int count = 1;
if (FLAGS_get_approx) {
unique_ptr<char []> key2 =
GenerateKeyFromInt(k + (int) FLAGS_read_range);
Slice skey2(key2.get());
Range range(skey, skey2);
uint64_t sizes;
db_->GetApproximateSizes(&range, 1, &sizes);
}
for (iter->Seek(skey);
iter->Valid() && count <= FLAGS_read_range;
++count, iter->Next()) {
found++;
}
}
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
options.snapshot = nullptr;
}
thread->stats.FinishedSingleOp(db_);
}
delete iter;
}
char msg[100];
snprintf(msg, sizeof(msg), "(%ld of %ld found)", found, reads_);
thread->stats.AddMessage(msg);
}
void ReadMissing(ThreadState* thread) {
FLAGS_warn_missing_keys = false; // Never warn about missing keys
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
if (FLAGS_use_multiget) {
const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group
long keys_left = reads_;
// Recalculate number of keys per group, and call MultiGet until done
long num_keys;
long found;
while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) {
found = MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, ".");
// We should not find any key since the key we try to get has a
// different suffix
assert(!found);
thread->stats.FinishedSingleOp(db_);
keys_left -= num_keys;
}
} else { // Regular case (not MultiGet)
std::string value;
Status s;
while (!duration.Done(1)) {
const int k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k, ".");
s = db_->Get(options, key.get(), &value);
assert(!s.ok() && s.IsNotFound());
thread->stats.FinishedSingleOp(db_);
}
}
}
void ReadHot(ThreadState* thread) {
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
const long range = (FLAGS_num + 99) / 100;
long found = 0;
if (FLAGS_use_multiget) {
const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group
long keys_left = reads_;
// Recalculate number of keys per group, and call MultiGet until done
long num_keys;
while(num_keys = std::min(keys_left, kpg), !duration.Done(num_keys)) {
found += MultiGetRandom(options, num_keys, thread->rand, range, "");
thread->stats.FinishedSingleOp(db_);
keys_left -= num_keys;
}
} else {
std::string value;
while (!duration.Done(1)) {
const int k = thread->rand.Next() % range;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (db_->Get(options, key.get(), &value).ok()){
++found;
}
thread->stats.FinishedSingleOp(db_);
}
}
char msg[100];
snprintf(msg, sizeof(msg), "(%ld of %ld found)", found, reads_);
thread->stats.AddMessage(msg);
}
void SeekRandom(ThreadState* thread) {
Duration duration(FLAGS_duration, reads_);
ReadOptions options(FLAGS_verify_checksum, true);
std::string value;
long found = 0;
while (!duration.Done(1)) {
Iterator* iter = db_->NewIterator(options);
const int k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
iter->Seek(key.get());
if (iter->Valid() && iter->key() == key.get()) found++;
delete iter;
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg), "(%ld of %ld found)", found, num_);
thread->stats.AddMessage(msg);
}
void DoDelete(ThreadState* thread, bool seq) {
WriteBatch batch;
Status s;
Duration duration(seq ? 0 : FLAGS_duration, num_);
long i = 0;
while (!duration.Done(entries_per_batch_)) {
batch.Clear();
for (int j = 0; j < entries_per_batch_; j++) {
const int k = seq ? i+j : (thread->rand.Next() % FLAGS_num);
unique_ptr<char []> key = GenerateKeyFromInt(k);
batch.Delete(key.get());
thread->stats.FinishedSingleOp(db_);
}
s = db_->Write(write_options_, &batch);
if (!s.ok()) {
fprintf(stderr, "del error: %s\n", s.ToString().c_str());
exit(1);
}
++i;
}
}
void DeleteSeq(ThreadState* thread) {
DoDelete(thread, true);
}
void DeleteRandom(ThreadState* thread) {
DoDelete(thread, false);
}
void ReadWhileWriting(ThreadState* thread) {
if (thread->tid > 0) {
ReadRandom(thread);
} else {
// Special thread that keeps writing until other threads are done.
RandomGenerator gen;
double last = FLAGS_env->NowMicros();
int writes_per_second_by_10 = 0;
int num_writes = 0;
// --writes_per_second rate limit is enforced per 100 milliseconds
// intervals to avoid a burst of writes at the start of each second.
if (FLAGS_writes_per_second > 0)
writes_per_second_by_10 = FLAGS_writes_per_second / 10;
// Don't merge stats from this thread with the readers.
thread->stats.SetExcludeFromMerge();
while (true) {
{
MutexLock l(&thread->shared->mu);
if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
// Other threads have finished
break;
}
}
const int k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedSingleOp(db_);
++num_writes;
if (writes_per_second_by_10 && num_writes >= writes_per_second_by_10) {
double now = FLAGS_env->NowMicros();
double usecs_since_last = now - last;
num_writes = 0;
last = now;
if (usecs_since_last < 100000.0) {
FLAGS_env->SleepForMicroseconds(100000.0 - usecs_since_last);
last = FLAGS_env->NowMicros();
}
}
}
}
}
// Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status PutMany(const WriteOptions& writeoptions,
const Slice& key, const Slice& value) {
std::string suffixes[3] = {"2", "1", "0"};
std::string keys[3];
WriteBatch batch;
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Put(keys[i], value);
}
s = db_->Write(writeoptions, &batch);
return s;
}
// Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V)
// in DB atomically i.e in a single batch. Also refer GetMany.
Status DeleteMany(const WriteOptions& writeoptions,
const Slice& key) {
std::string suffixes[3] = {"1", "2", "0"};
std::string keys[3];
WriteBatch batch;
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
batch.Delete(keys[i]);
}
s = db_->Write(writeoptions, &batch);
return s;
}
// Given a key K and value V, this gets values for K+"0", K+"1" and K+"2"
// in the same snapshot, and verifies that all the values are identical.
// ASSUMES that PutMany was used to put (K, V) into the DB.
Status GetMany(const ReadOptions& readoptions,
const Slice& key, std::string* value) {
std::string suffixes[3] = {"0", "1", "2"};
std::string keys[3];
Slice key_slices[3];
std::string values[3];
ReadOptions readoptionscopy = readoptions;
readoptionscopy.snapshot = db_->GetSnapshot();
Status s;
for (int i = 0; i < 3; i++) {
keys[i] = key.ToString() + suffixes[i];
key_slices[i] = keys[i];
s = db_->Get(readoptionscopy, key_slices[i], value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
values[i] = "";
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (s.IsNotFound()) {
values[i] = "";
} else {
values[i] = *value;
}
}
db_->ReleaseSnapshot(readoptionscopy.snapshot);
if ((values[0] != values[1]) || (values[1] != values[2])) {
fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n",
key.ToString().c_str(), values[0].c_str(), values[1].c_str(),
values[2].c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
}
return s;
}
// Differs from readrandomwriterandom in the following ways:
// (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs.
// (b) Does deletes as well (per FLAGS_deletepercent)
// (c) In order to achieve high % of 'found' during lookups, and to do
// multiple writes (including puts and deletes) it uses upto
// FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys.
// (d) Does not have a MultiGet option.
void RandomWithVerify(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long found = 0;
int get_weight = 0;
int put_weight = 0;
int delete_weight = 0;
long gets_done = 0;
long puts_done = 0;
long deletes_done = 0;
// the number of iterations is the larger of read_ or write_
for (long i = 0; i < readwrites_; i++) {
const int k = thread->rand.Next() % (FLAGS_numdistinct);
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (get_weight == 0 && put_weight == 0 && delete_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
delete_weight = FLAGS_deletepercent;
put_weight = 100 - get_weight - delete_weight;
}
if (get_weight > 0) {
// do all the gets first
Status s = GetMany(options, key.get(), &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "getmany error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
gets_done++;
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s = PutMany(write_options_, key.get(), gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "putmany error: %s\n", s.ToString().c_str());
exit(1);
}
put_weight--;
puts_done++;
} else if (delete_weight > 0) {
Status s = DeleteMany(write_options_, key.get());
if (!s.ok()) {
fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str());
exit(1);
}
delete_weight--;
deletes_done++;
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg), "( get:%ld put:%ld del:%ld total:%ld found:%ld)",
gets_done, puts_done, deletes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
// This is different from ReadWhileWriting because it does not use
// an extra thread.
void ReadRandomWriteRandom(ThreadState* thread) {
if (FLAGS_use_multiget){
// Separate function for multiget (for ease of reading)
ReadRandomWriteRandomMultiGet(thread);
return;
}
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long found = 0;
int get_weight = 0;
int put_weight = 0;
long reads_done = 0;
long writes_done = 0;
Duration duration(FLAGS_duration, readwrites_);
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
const int k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (get_weight == 0 && put_weight == 0) {
// one batch completed, reinitialize for next batch
get_weight = FLAGS_readwritepercent;
put_weight = 100 - get_weight;
}
if (get_weight > 0) {
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
if (FLAGS_get_approx) {
char key2[100];
snprintf(key2, sizeof(key2), "%016d", k + 1);
Slice skey2(key2);
Slice skey(key2);
Range range(skey, skey2);
uint64_t sizes;
db_->GetApproximateSizes(&range, 1, &sizes);
}
// do all the gets first
Status s = db_->Get(options, key.get(), &value);
if (!s.ok() && !s.IsNotFound()) {
fprintf(stderr, "get error: %s\n", s.ToString().c_str());
// we continue after error rather than exiting so that we can
// find more errors if any
} else if (!s.IsNotFound()) {
found++;
}
get_weight--;
reads_done++;
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
}
} else if (put_weight > 0) {
// then do all the corresponding number of puts
// for all the gets we have done earlier
Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
put_weight--;
writes_done++;
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg), "( reads:%ld writes:%ld total:%ld found:%ld)",
reads_done, writes_done, readwrites_, found);
thread->stats.AddMessage(msg);
}
// ReadRandomWriteRandom (with multiget)
// Does FLAGS_keys_per_multiget reads (per multiget), followed by some puts.
// FLAGS_readwritepercent will specify the ratio of gets to puts.
// e.g.: If FLAGS_keys_per_multiget == 100 and FLAGS_readwritepercent == 75
// Then each block will do 100 multigets and 33 puts
// So there are 133 operations in-total: 100 of them (75%) are gets, and 33
// of them (25%) are puts.
void ReadRandomWriteRandomMultiGet(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
// For multiget
const long& kpg = FLAGS_keys_per_multiget; // keys per multiget group
long keys_left = readwrites_; // number of keys still left to read
long num_keys; // number of keys to read in current group
long num_put_keys; // number of keys to put in current group
long found = 0;
long reads_done = 0;
long writes_done = 0;
long multigets_done = 0;
// the number of iterations is the larger of read_ or write_
Duration duration(FLAGS_duration, readwrites_);
while(true) {
// Read num_keys keys, then write num_put_keys keys.
// The ratio of num_keys to num_put_keys is always FLAGS_readwritepercent
// And num_keys is set to be FLAGS_keys_per_multiget (kpg)
// num_put_keys is calculated accordingly (to maintain the ratio)
// Note: On the final iteration, num_keys and num_put_keys will be smaller
num_keys = std::min(keys_left*(FLAGS_readwritepercent + 99)/100, kpg);
num_put_keys = num_keys * (100-FLAGS_readwritepercent)
/ FLAGS_readwritepercent;
// This will break the loop when duration is complete
if (duration.Done(num_keys + num_put_keys)) {
break;
}
// A quick check to make sure our formula doesn't break on edge cases
assert(num_keys >= 1);
assert(num_keys + num_put_keys <= keys_left);
// Apply the MultiGet operations
found += MultiGetRandom(options, num_keys, thread->rand, FLAGS_num, "");
++multigets_done;
reads_done+=num_keys;
thread->stats.FinishedSingleOp(db_);
// Now do the puts
int i;
long k;
for(i=0; i<num_put_keys; ++i) {
k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
Status s = db_->Put(write_options_, key.get(),
gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
writes_done++;
thread->stats.FinishedSingleOp(db_);
}
keys_left -= (num_keys + num_put_keys);
}
char msg[100];
snprintf(msg, sizeof(msg),
"( reads:%ld writes:%ld total:%ld multiget_ops:%ld found:%ld)",
reads_done, writes_done, readwrites_, multigets_done, found);
thread->stats.AddMessage(msg);
}
//
// Read-modify-write for random keys
//
// TODO: Implement MergeOperator tests here (Read-modify-write)
void UpdateRandom(ThreadState* thread) {
ReadOptions options(FLAGS_verify_checksum, true);
RandomGenerator gen;
std::string value;
long found = 0;
Duration duration(FLAGS_duration, readwrites_);
// the number of iterations is the larger of read_ or write_
while (!duration.Done(1)) {
const int k = thread->rand.Next() % FLAGS_num;
unique_ptr<char []> key = GenerateKeyFromInt(k);
if (FLAGS_use_snapshot) {
options.snapshot = db_->GetSnapshot();
}
if (FLAGS_get_approx) {
char key2[100];
snprintf(key2, sizeof(key2), "%016d", k + 1);
Slice skey2(key2);
Slice skey(key2);
Range range(skey, skey2);
uint64_t sizes;
db_->GetApproximateSizes(&range, 1, &sizes);
}
if (db_->Get(options, key.get(), &value).ok()) {
found++;
}
if (FLAGS_use_snapshot) {
db_->ReleaseSnapshot(options.snapshot);
}
Status s = db_->Put(write_options_, key.get(), gen.Generate(value_size_));
if (!s.ok()) {
fprintf(stderr, "put error: %s\n", s.ToString().c_str());
exit(1);
}
thread->stats.FinishedSingleOp(db_);
}
char msg[100];
snprintf(msg, sizeof(msg), "( updates:%ld found:%ld)", readwrites_, found);
thread->stats.AddMessage(msg);
}
void Compact(ThreadState* thread) {
db_->CompactRange(nullptr, nullptr);
}
void PrintStats(const char* key) {
std::string stats;
if (!db_->GetProperty(key, &stats)) {
stats = "(failed)";
}
fprintf(stdout, "\n%s\n", stats.c_str());
}
static void WriteToFile(void* arg, const char* buf, int n) {
reinterpret_cast<WritableFile*>(arg)->Append(Slice(buf, n));
}
void HeapProfile() {
char fname[100];
EnvOptions soptions;
snprintf(fname, sizeof(fname), "%s/heap-%04d", FLAGS_db, ++heap_counter_);
unique_ptr<WritableFile> file;
Status s = FLAGS_env->NewWritableFile(fname, &file, soptions);
if (!s.ok()) {
fprintf(stderr, "%s\n", s.ToString().c_str());
return;
}
bool ok = port::GetHeapProfile(WriteToFile, file.get());
if (!ok) {
fprintf(stderr, "heap profiling not supported\n");
FLAGS_env->DeleteFile(fname);
}
}
};
} // namespace leveldb
int main(int argc, char** argv) {
leveldb::InstallStackTraceHandler();
FLAGS_write_buffer_size = leveldb::Options().write_buffer_size;
FLAGS_max_write_buffer_number = leveldb::Options().max_write_buffer_number;
FLAGS_min_write_buffer_number_to_merge =
leveldb::Options().min_write_buffer_number_to_merge;
FLAGS_open_files = leveldb::Options().max_open_files;
FLAGS_max_background_compactions =
leveldb::Options().max_background_compactions;
FLAGS_compaction_style = leveldb::Options().compaction_style;
FLAGS_universal_size_ratio =
leveldb::Options().compaction_options_universal.size_ratio;
FLAGS_compaction_universal_min_merge_width =
leveldb::Options().compaction_options_universal.min_merge_width;
// Compression test code above refers to FLAGS_block_size
FLAGS_block_size = leveldb::Options().block_size;
FLAGS_use_os_buffer = leveldb::EnvOptions().use_os_buffer;
FLAGS_use_mmap_reads = leveldb::EnvOptions().use_mmap_reads;
FLAGS_use_mmap_writes = leveldb::EnvOptions().use_mmap_writes;
std::string default_db_path;
for (int i = 1; i < argc; i++) {
double d;
int n;
long l;
char junk;
char buf[2048];
char str[512];
if (leveldb::Slice(argv[i]).starts_with("--benchmarks=")) {
FLAGS_benchmarks = argv[i] + strlen("--benchmarks=");
} else if (sscanf(argv[i], "--compression_ratio=%lf%c", &d, &junk) == 1) {
FLAGS_compression_ratio = d;
} else if (sscanf(argv[i], "--histogram=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_histogram = n;
} else if (sscanf(argv[i], "--use_existing_db=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_existing_db = n;
} else if (sscanf(argv[i], "--num=%ld%c", &l, &junk) == 1) {
FLAGS_num = l;
} else if (sscanf(argv[i], "--numdistinct=%ld%c", &l, &junk) == 1) {
FLAGS_numdistinct = l;
} else if (sscanf(argv[i], "--reads=%d%c", &n, &junk) == 1) {
FLAGS_reads = n;
} else if (sscanf(argv[i], "--read_range=%d%c", &n, &junk) == 1) {
FLAGS_read_range = n;
} else if (sscanf(argv[i], "--duration=%d%c", &n, &junk) == 1) {
FLAGS_duration = n;
} else if (sscanf(argv[i], "--seed=%ld%c", &l, &junk) == 1) {
FLAGS_seed = l;
} else if (sscanf(argv[i], "--threads=%d%c", &n, &junk) == 1) {
FLAGS_threads = n;
} else if (sscanf(argv[i], "--value_size=%d%c", &n, &junk) == 1) {
FLAGS_value_size = n;
} else if (sscanf(argv[i], "--key_size=%d%c", &n, &junk) == 1) {
if (MAX_KEY_SIZE < n) {
fprintf(stderr, "key_size should not be larger than %d\n", MAX_KEY_SIZE);
exit(1);
} else {
FLAGS_key_size = n;
}
} else if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) {
FLAGS_write_buffer_size = n;
} else if (sscanf(argv[i], "--max_write_buffer_number=%d%c", &n, &junk) == 1) {
FLAGS_max_write_buffer_number = n;
} else if (sscanf(argv[i], "--min_write_buffer_number_to_merge=%d%c",
&n, &junk) == 1) {
FLAGS_min_write_buffer_number_to_merge = n;
} else if (sscanf(argv[i], "--max_background_compactions=%d%c", &n, &junk)
== 1) {
FLAGS_max_background_compactions = n;
} else if (sscanf(argv[i], "--compaction_style=%d%c", &n, &junk) == 1) {
FLAGS_compaction_style = (leveldb::CompactionStyle)n;
} else if (sscanf(argv[i], "--universal_size_ratio=%d%c", &n, &junk) == 1) {
FLAGS_universal_size_ratio = n;
} else if (sscanf(argv[i], "--universal_min_merge_width=%d%c",
&n, &junk) == 1) {
FLAGS_compaction_universal_min_merge_width = n;
} else if (sscanf(argv[i], "--cache_size=%ld%c", &l, &junk) == 1) {
FLAGS_cache_size = l;
} else if (sscanf(argv[i], "--block_size=%d%c", &n, &junk) == 1) {
FLAGS_block_size = n;
} else if (sscanf(argv[i], "--cache_numshardbits=%d%c", &n, &junk) == 1) {
if (n < 20) {
FLAGS_cache_numshardbits = n;
} else {
fprintf(stderr, "The cache cannot be sharded into 2**%d pieces\n", n);
exit(1);
}
} else if (sscanf(argv[i], "--table_cache_numshardbits=%d%c",
&n, &junk) == 1) {
if (n <= 0 || n > 20) {
fprintf(stderr, "The cache cannot be sharded into 2**%d pieces\n", n);
exit(1);
}
FLAGS_table_cache_numshardbits = n;
} else if (sscanf(argv[i], "--bloom_bits=%d%c", &n, &junk) == 1) {
FLAGS_bloom_bits = n;
} else if (sscanf(argv[i], "--open_files=%d%c", &n, &junk) == 1) {
FLAGS_open_files = n;
} else if (strncmp(argv[i], "--db=", 5) == 0) {
FLAGS_db = argv[i] + 5;
} else if (sscanf(argv[i], "--verify_checksum=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_verify_checksum = n;
} else if (sscanf(argv[i], "--bufferedio=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_os_buffer = n;
} else if (sscanf(argv[i], "--mmap_read=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_mmap_reads = n;
} else if (sscanf(argv[i], "--mmap_write=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_mmap_writes = n;
} else if (sscanf(argv[i], "--statistics=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
if (n == 1) {
dbstats = leveldb::CreateDBStatistics();
FLAGS_statistics = true;
}
} else if (sscanf(argv[i], "--writes=%d%c", &n, &junk) == 1) {
FLAGS_writes = n;
} else if (sscanf(argv[i], "--writes_per_second=%d%c", &n, &junk) == 1) {
FLAGS_writes_per_second = n;
} else if (sscanf(argv[i], "--sync=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_sync = n;
} else if (sscanf(argv[i], "--readwritepercent=%d%c", &n, &junk) == 1 &&
n > 0 && n < 100) {
FLAGS_readwritepercent = n;
} else if (sscanf(argv[i], "--deletepercent=%d%c", &n, &junk) == 1 &&
n > 0 && n < 100) {
FLAGS_deletepercent = n;
} else if (sscanf(argv[i], "--disable_data_sync=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_disable_data_sync = n;
} else if (sscanf(argv[i], "--use_fsync=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_fsync = n;
} else if (sscanf(argv[i], "--disable_wal=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_disable_wal = n;
} else if (sscanf(argv[i], "--use_snapshot=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_snapshot = n;
} else if (sscanf(argv[i], "--get_approx=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_get_approx = n;
} else if (sscanf(argv[i], "--hdfs=%s", buf) == 1) {
FLAGS_env = new leveldb::HdfsEnv(buf);
} else if (sscanf(argv[i], "--num_levels=%d%c",
&n, &junk) == 1) {
FLAGS_num_levels = n;
} else if (sscanf(argv[i], "--target_file_size_base=%d%c",
&n, &junk) == 1) {
FLAGS_target_file_size_base = n;
} else if ( sscanf(argv[i], "--target_file_size_multiplier=%d%c",
&n, &junk) == 1) {
FLAGS_target_file_size_multiplier = n;
} else if (
sscanf(argv[i], "--max_bytes_for_level_base=%ld%c", &l, &junk) == 1) {
FLAGS_max_bytes_for_level_base = l;
} else if (sscanf(argv[i], "--max_bytes_for_level_multiplier=%d%c",
&n, &junk) == 1) {
FLAGS_max_bytes_for_level_multiplier = n;
} else if (sscanf(argv[i],"--level0_stop_writes_trigger=%d%c",
&n, &junk) == 1) {
FLAGS_level0_stop_writes_trigger = n;
} else if (sscanf(argv[i],
"--max_bytes_for_level_multiplier_additional=%s%c",
str, &junk) == 1) {
std::vector<std::string> fanout = leveldb::stringSplit(str, ',');
for (unsigned int j= 0; j < fanout.size(); j++) {
FLAGS_max_bytes_for_level_multiplier_additional.push_back(
std::stoi(fanout[j]));
}
} else if (sscanf(argv[i],"--level0_slowdown_writes_trigger=%d%c",
&n, &junk) == 1) {
FLAGS_level0_slowdown_writes_trigger = n;
} else if (sscanf(argv[i],"--level0_file_num_compaction_trigger=%d%c",
&n, &junk) == 1) {
FLAGS_level0_file_num_compaction_trigger = n;
} else if (strncmp(argv[i], "--compression_type=", 19) == 0) {
const char* ctype = argv[i] + 19;
if (!strcasecmp(ctype, "none"))
FLAGS_compression_type = leveldb::kNoCompression;
else if (!strcasecmp(ctype, "snappy"))
FLAGS_compression_type = leveldb::kSnappyCompression;
else if (!strcasecmp(ctype, "zlib"))
FLAGS_compression_type = leveldb::kZlibCompression;
else if (!strcasecmp(ctype, "bzip2"))
FLAGS_compression_type = leveldb::kBZip2Compression;
else {
fprintf(stdout, "Cannot parse %s\n", argv[i]);
}
} else if (sscanf(argv[i], "--min_level_to_compress=%d%c", &n, &junk) == 1
&& n >= 0) {
FLAGS_min_level_to_compress = n;
} else if (sscanf(argv[i], "--disable_seek_compaction=%d%c", &n, &junk) == 1
&& (n == 0 || n == 1)) {
FLAGS_disable_seek_compaction = n;
} else if (sscanf(argv[i], "--delete_obsolete_files_period_micros=%ld%c",
&l, &junk) == 1) {
FLAGS_delete_obsolete_files_period_micros = l;
} else if (sscanf(argv[i], "--stats_interval=%d%c", &n, &junk) == 1 &&
n >= 0 && n < 2000000000) {
FLAGS_stats_interval = n;
} else if (sscanf(argv[i], "--stats_per_interval=%d%c", &n, &junk) == 1
&& (n == 0 || n == 1)) {
FLAGS_stats_per_interval = n;
} else if (sscanf(argv[i], "--soft_rate_limit=%lf%c", &d, &junk) == 1 &&
d > 0.0) {
FLAGS_soft_rate_limit = d;
} else if (sscanf(argv[i], "--hard_rate_limit=%lf%c", &d, &junk) == 1 &&
d > 1.0) {
FLAGS_hard_rate_limit = d;
} else if (sscanf(argv[i],
"--rate_limit_delay_max_milliseconds=%d%c", &n, &junk) == 1
&& n >= 0) {
FLAGS_rate_limit_delay_max_milliseconds = n;
} else if (sscanf(argv[i], "--readonly=%d%c", &n, &junk) == 1 &&
(n == 0 || n ==1 )) {
FLAGS_read_only = n;
} else if (sscanf(argv[i], "--max_grandparent_overlap_factor=%d%c",
&n, &junk) == 1) {
FLAGS_max_grandparent_overlap_factor = n;
} else if (sscanf(argv[i], "--disable_auto_compactions=%d%c",
&n, &junk) == 1 && (n == 0 || n ==1)) {
FLAGS_disable_auto_compactions = n;
} else if (sscanf(argv[i], "--source_compaction_factor=%d%c",
&n, &junk) == 1 && n > 0) {
FLAGS_source_compaction_factor = n;
} else if (sscanf(argv[i], "--wal_ttl=%d%c", &n, &junk) == 1) {
FLAGS_WAL_ttl_seconds = static_cast<uint64_t>(n);
} else if (sscanf(argv[i], "--advise_random_on_open=%d%c", &n, &junk) == 1
&& (n == 0 || n ==1 )) {
FLAGS_advise_random_on_open = n;
} else if (sscanf(argv[i], "--compaction_fadvice=%s", buf) == 1) {
if (!strcasecmp(buf, "NONE"))
FLAGS_compaction_fadvice = leveldb::Options::NONE;
else if (!strcasecmp(buf, "NORMAL"))
FLAGS_compaction_fadvice = leveldb::Options::NORMAL;
else if (!strcasecmp(buf, "SEQUENTIAL"))
FLAGS_compaction_fadvice = leveldb::Options::SEQUENTIAL;
else if (!strcasecmp(buf, "WILLNEED"))
FLAGS_compaction_fadvice = leveldb::Options::WILLNEED;
else {
fprintf(stdout, "Unknown compaction fadvice:%s\n", buf);
}
} else if (sscanf(argv[i], "--use_adaptive_mutex=%d%c", &n, &junk) == 1
&& (n == 0 || n ==1 )) {
FLAGS_use_adaptive_mutex = n;
} else if (sscanf(argv[i], "--use_multiget=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_multiget = n;
} else if (sscanf(argv[i], "--keys_per_multiget=%d%c",
&n, &junk) == 1) {
FLAGS_keys_per_multiget = n;
} else if (sscanf(argv[i], "--bytes_per_sync=%ld%c", &l, &junk) == 1) {
FLAGS_bytes_per_sync = l;
} else if (sscanf(argv[i], "--filter_deletes=%d%c", &n, &junk)
== 1 && (n == 0 || n ==1 )) {
FLAGS_filter_deletes = n;
} else {
fprintf(stderr, "Invalid flag '%s'\n", argv[i]);
exit(1);
}
}
// The number of background threads should be at least as much the
// max number of concurrent compactions.
FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions);
// Choose a location for the test database if none given with --db=<path>
if (FLAGS_db == nullptr) {
leveldb::Env::Default()->GetTestDirectory(&default_db_path);
default_db_path += "/dbbench";
FLAGS_db = default_db_path.c_str();
}
leveldb::Benchmark benchmark;
benchmark.Run();
return 0;
}