rocksdb/db/db_impl.cc
Maysam Yabandeh f46464d383 write-prepared txn: call IsInSnapshot
Summary:
This patch instruments the read path to verify each read value against an optional ReadCallback class. If the value is rejected, the reader moves on to the next value. The WritePreparedTxn makes use of this feature to skip sequence numbers that are not in the read snapshot.
Closes https://github.com/facebook/rocksdb/pull/2850

Differential Revision: D5787375

Pulled By: maysamyabandeh

fbshipit-source-id: 49d808b3062ab35e7ae98ad388f659757794184c
2017-09-11 09:14:48 -07:00

2826 lines
94 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_impl.h"
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <stdint.h>
#ifdef OS_SOLARIS
#include <alloca.h>
#endif
#include <algorithm>
#include <cstdio>
#include <map>
#include <set>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "db/builder.h"
#include "db/compaction_job.h"
#include "db/db_info_dumper.h"
#include "db/db_iter.h"
#include "db/dbformat.h"
#include "db/event_helpers.h"
#include "db/external_sst_file_ingestion_job.h"
#include "db/flush_job.h"
#include "db/forward_iterator.h"
#include "db/job_context.h"
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "db/malloc_stats.h"
#include "db/managed_iterator.h"
#include "db/memtable.h"
#include "db/memtable_list.h"
#include "db/merge_context.h"
#include "db/merge_helper.h"
#include "db/range_del_aggregator.h"
#include "db/table_cache.h"
#include "db/table_properties_collector.h"
#include "db/transaction_log_impl.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "db/write_callback.h"
#include "memtable/hash_linklist_rep.h"
#include "memtable/hash_skiplist_rep.h"
#include "monitoring/iostats_context_imp.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/thread_status_updater.h"
#include "monitoring/thread_status_util.h"
#include "options/cf_options.h"
#include "options/options_helper.h"
#include "options/options_parser.h"
#include "port/port.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/statistics.h"
#include "rocksdb/status.h"
#include "rocksdb/table.h"
#include "rocksdb/write_buffer_manager.h"
#include "table/block.h"
#include "table/block_based_table_factory.h"
#include "table/merging_iterator.h"
#include "table/table_builder.h"
#include "table/two_level_iterator.h"
#include "tools/sst_dump_tool_imp.h"
#include "util/auto_roll_logger.h"
#include "util/autovector.h"
#include "util/build_version.h"
#include "util/coding.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/file_reader_writer.h"
#include "util/file_util.h"
#include "util/filename.h"
#include "util/log_buffer.h"
#include "util/logging.h"
#include "util/mutexlock.h"
#include "util/sst_file_manager_impl.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
#include "util/sync_point.h"
namespace rocksdb {
const std::string kDefaultColumnFamilyName("default");
void DumpRocksDBBuildVersion(Logger * log);
CompressionType GetCompressionFlush(
const ImmutableCFOptions& ioptions,
const MutableCFOptions& mutable_cf_options) {
// Compressing memtable flushes might not help unless the sequential load
// optimization is used for leveled compaction. Otherwise the CPU and
// latency overhead is not offset by saving much space.
if (ioptions.compaction_style == kCompactionStyleUniversal) {
if (ioptions.compaction_options_universal.compression_size_percent < 0) {
return mutable_cf_options.compression;
} else {
return kNoCompression;
}
} else if (!ioptions.compression_per_level.empty()) {
// For leveled compress when min_level_to_compress != 0.
return ioptions.compression_per_level[0];
} else {
return mutable_cf_options.compression;
}
}
namespace {
void DumpSupportInfo(Logger* logger) {
ROCKS_LOG_HEADER(logger, "Compression algorithms supported:");
ROCKS_LOG_HEADER(logger, "\tSnappy supported: %d", Snappy_Supported());
ROCKS_LOG_HEADER(logger, "\tZlib supported: %d", Zlib_Supported());
ROCKS_LOG_HEADER(logger, "\tBzip supported: %d", BZip2_Supported());
ROCKS_LOG_HEADER(logger, "\tLZ4 supported: %d", LZ4_Supported());
ROCKS_LOG_HEADER(logger, "\tZSTDNotFinal supported: %d",
ZSTDNotFinal_Supported());
ROCKS_LOG_HEADER(logger, "\tZSTD supported: %d", ZSTD_Supported());
ROCKS_LOG_HEADER(logger, "Fast CRC32 supported: %s",
crc32c::IsFastCrc32Supported().c_str());
}
int64_t kDefaultLowPriThrottledRate = 2 * 1024 * 1024;
} // namespace
DBImpl::DBImpl(const DBOptions& options, const std::string& dbname)
: env_(options.env),
dbname_(dbname),
initial_db_options_(SanitizeOptions(dbname, options)),
immutable_db_options_(initial_db_options_),
mutable_db_options_(initial_db_options_),
stats_(immutable_db_options_.statistics.get()),
db_lock_(nullptr),
mutex_(stats_, env_, DB_MUTEX_WAIT_MICROS,
immutable_db_options_.use_adaptive_mutex),
shutting_down_(false),
bg_cv_(&mutex_),
logfile_number_(0),
log_dir_synced_(false),
log_empty_(true),
default_cf_handle_(nullptr),
log_sync_cv_(&mutex_),
total_log_size_(0),
max_total_in_memory_state_(0),
is_snapshot_supported_(true),
write_buffer_manager_(immutable_db_options_.write_buffer_manager.get()),
write_thread_(immutable_db_options_),
nonmem_write_thread_(immutable_db_options_),
write_controller_(mutable_db_options_.delayed_write_rate),
// Use delayed_write_rate as a base line to determine the initial
// low pri write rate limit. It may be adjusted later.
low_pri_write_rate_limiter_(NewGenericRateLimiter(std::min(
static_cast<int64_t>(mutable_db_options_.delayed_write_rate / 8),
kDefaultLowPriThrottledRate))),
last_batch_group_size_(0),
unscheduled_flushes_(0),
unscheduled_compactions_(0),
bg_bottom_compaction_scheduled_(0),
bg_compaction_scheduled_(0),
num_running_compactions_(0),
bg_flush_scheduled_(0),
num_running_flushes_(0),
bg_purge_scheduled_(0),
disable_delete_obsolete_files_(0),
delete_obsolete_files_last_run_(env_->NowMicros()),
last_stats_dump_time_microsec_(0),
next_job_id_(1),
has_unpersisted_data_(false),
unable_to_flush_oldest_log_(false),
env_options_(BuildDBOptions(immutable_db_options_, mutable_db_options_)),
num_running_ingest_file_(0),
#ifndef ROCKSDB_LITE
wal_manager_(immutable_db_options_, env_options_),
#endif // ROCKSDB_LITE
event_logger_(immutable_db_options_.info_log.get()),
bg_work_paused_(0),
bg_compaction_paused_(0),
refitting_level_(false),
opened_successfully_(false),
concurrent_prepare_(options.concurrent_prepare),
manual_wal_flush_(options.manual_wal_flush) {
env_->GetAbsolutePath(dbname, &db_absolute_path_);
// Reserve ten files or so for other uses and give the rest to TableCache.
// Give a large number for setting of "infinite" open files.
const int table_cache_size = (mutable_db_options_.max_open_files == -1)
? TableCache::kInfiniteCapacity
: mutable_db_options_.max_open_files - 10;
table_cache_ = NewLRUCache(table_cache_size,
immutable_db_options_.table_cache_numshardbits);
versions_.reset(new VersionSet(dbname_, &immutable_db_options_, env_options_,
table_cache_.get(), write_buffer_manager_,
&write_controller_));
column_family_memtables_.reset(
new ColumnFamilyMemTablesImpl(versions_->GetColumnFamilySet()));
DumpRocksDBBuildVersion(immutable_db_options_.info_log.get());
DumpDBFileSummary(immutable_db_options_, dbname_);
immutable_db_options_.Dump(immutable_db_options_.info_log.get());
mutable_db_options_.Dump(immutable_db_options_.info_log.get());
DumpSupportInfo(immutable_db_options_.info_log.get());
}
// Will lock the mutex_, will wait for completion if wait is true
void DBImpl::CancelAllBackgroundWork(bool wait) {
InstrumentedMutexLock l(&mutex_);
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Shutdown: canceling all background work");
if (!shutting_down_.load(std::memory_order_acquire) &&
has_unpersisted_data_.load(std::memory_order_relaxed) &&
!mutable_db_options_.avoid_flush_during_shutdown) {
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->IsDropped() && cfd->initialized() && !cfd->mem()->IsEmpty()) {
cfd->Ref();
mutex_.Unlock();
FlushMemTable(cfd, FlushOptions());
mutex_.Lock();
cfd->Unref();
}
}
versions_->GetColumnFamilySet()->FreeDeadColumnFamilies();
}
shutting_down_.store(true, std::memory_order_release);
bg_cv_.SignalAll();
if (!wait) {
return;
}
// Wait for background work to finish
while (bg_bottom_compaction_scheduled_ || bg_compaction_scheduled_ ||
bg_flush_scheduled_) {
bg_cv_.Wait();
}
}
DBImpl::~DBImpl() {
// CancelAllBackgroundWork called with false means we just set the shutdown
// marker. After this we do a variant of the waiting and unschedule work
// (to consider: moving all the waiting into CancelAllBackgroundWork(true))
CancelAllBackgroundWork(false);
int bottom_compactions_unscheduled =
env_->UnSchedule(this, Env::Priority::BOTTOM);
int compactions_unscheduled = env_->UnSchedule(this, Env::Priority::LOW);
int flushes_unscheduled = env_->UnSchedule(this, Env::Priority::HIGH);
mutex_.Lock();
bg_bottom_compaction_scheduled_ -= bottom_compactions_unscheduled;
bg_compaction_scheduled_ -= compactions_unscheduled;
bg_flush_scheduled_ -= flushes_unscheduled;
// Wait for background work to finish
while (bg_bottom_compaction_scheduled_ || bg_compaction_scheduled_ ||
bg_flush_scheduled_ || bg_purge_scheduled_) {
TEST_SYNC_POINT("DBImpl::~DBImpl:WaitJob");
bg_cv_.Wait();
}
EraseThreadStatusDbInfo();
flush_scheduler_.Clear();
while (!flush_queue_.empty()) {
auto cfd = PopFirstFromFlushQueue();
if (cfd->Unref()) {
delete cfd;
}
}
while (!compaction_queue_.empty()) {
auto cfd = PopFirstFromCompactionQueue();
if (cfd->Unref()) {
delete cfd;
}
}
if (default_cf_handle_ != nullptr) {
// we need to delete handle outside of lock because it does its own locking
mutex_.Unlock();
delete default_cf_handle_;
mutex_.Lock();
}
// Clean up obsolete files due to SuperVersion release.
// (1) Need to delete to obsolete files before closing because RepairDB()
// scans all existing files in the file system and builds manifest file.
// Keeping obsolete files confuses the repair process.
// (2) Need to check if we Open()/Recover() the DB successfully before
// deleting because if VersionSet recover fails (may be due to corrupted
// manifest file), it is not able to identify live files correctly. As a
// result, all "live" files can get deleted by accident. However, corrupted
// manifest is recoverable by RepairDB().
if (opened_successfully_) {
JobContext job_context(next_job_id_.fetch_add(1));
FindObsoleteFiles(&job_context, true);
mutex_.Unlock();
// manifest number starting from 2
job_context.manifest_file_number = 1;
if (job_context.HaveSomethingToDelete()) {
PurgeObsoleteFiles(job_context);
}
job_context.Clean();
mutex_.Lock();
}
for (auto l : logs_to_free_) {
delete l;
}
for (auto& log : logs_) {
log.ClearWriter();
}
logs_.clear();
// Table cache may have table handles holding blocks from the block cache.
// We need to release them before the block cache is destroyed. The block
// cache may be destroyed inside versions_.reset(), when column family data
// list is destroyed, so leaving handles in table cache after
// versions_.reset() may cause issues.
// Here we clean all unreferenced handles in table cache.
// Now we assume all user queries have finished, so only version set itself
// can possibly hold the blocks from block cache. After releasing unreferenced
// handles here, only handles held by version set left and inside
// versions_.reset(), we will release them. There, we need to make sure every
// time a handle is released, we erase it from the cache too. By doing that,
// we can guarantee that after versions_.reset(), table cache is empty
// so the cache can be safely destroyed.
table_cache_->EraseUnRefEntries();
for (auto& txn_entry : recovered_transactions_) {
delete txn_entry.second;
}
// versions need to be destroyed before table_cache since it can hold
// references to table_cache.
versions_.reset();
mutex_.Unlock();
if (db_lock_ != nullptr) {
env_->UnlockFile(db_lock_);
}
ROCKS_LOG_INFO(immutable_db_options_.info_log, "Shutdown complete");
LogFlush(immutable_db_options_.info_log);
}
void DBImpl::MaybeIgnoreError(Status* s) const {
if (s->ok() || immutable_db_options_.paranoid_checks) {
// No change needed
} else {
ROCKS_LOG_WARN(immutable_db_options_.info_log, "Ignoring error %s",
s->ToString().c_str());
*s = Status::OK();
}
}
const Status DBImpl::CreateArchivalDirectory() {
if (immutable_db_options_.wal_ttl_seconds > 0 ||
immutable_db_options_.wal_size_limit_mb > 0) {
std::string archivalPath = ArchivalDirectory(immutable_db_options_.wal_dir);
return env_->CreateDirIfMissing(archivalPath);
}
return Status::OK();
}
void DBImpl::PrintStatistics() {
auto dbstats = immutable_db_options_.statistics.get();
if (dbstats) {
ROCKS_LOG_WARN(immutable_db_options_.info_log, "STATISTICS:\n %s",
dbstats->ToString().c_str());
}
}
void DBImpl::MaybeDumpStats() {
mutex_.Lock();
unsigned int stats_dump_period_sec =
mutable_db_options_.stats_dump_period_sec;
mutex_.Unlock();
if (stats_dump_period_sec == 0) return;
const uint64_t now_micros = env_->NowMicros();
if (last_stats_dump_time_microsec_ + stats_dump_period_sec * 1000000 <=
now_micros) {
// Multiple threads could race in here simultaneously.
// However, the last one will update last_stats_dump_time_microsec_
// atomically. We could see more than one dump during one dump
// period in rare cases.
last_stats_dump_time_microsec_ = now_micros;
#ifndef ROCKSDB_LITE
const DBPropertyInfo* cf_property_info =
GetPropertyInfo(DB::Properties::kCFStats);
assert(cf_property_info != nullptr);
const DBPropertyInfo* db_property_info =
GetPropertyInfo(DB::Properties::kDBStats);
assert(db_property_info != nullptr);
std::string stats;
{
InstrumentedMutexLock l(&mutex_);
default_cf_internal_stats_->GetStringProperty(
*db_property_info, DB::Properties::kDBStats, &stats);
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->initialized()) {
cfd->internal_stats()->GetStringProperty(
*cf_property_info, DB::Properties::kCFStatsNoFileHistogram,
&stats);
}
}
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->initialized()) {
cfd->internal_stats()->GetStringProperty(
*cf_property_info, DB::Properties::kCFFileHistogram, &stats);
}
}
}
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"------- DUMPING STATS -------");
ROCKS_LOG_WARN(immutable_db_options_.info_log, "%s", stats.c_str());
if (immutable_db_options_.dump_malloc_stats) {
stats.clear();
DumpMallocStats(&stats);
if (!stats.empty()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"------- Malloc STATS -------");
ROCKS_LOG_WARN(immutable_db_options_.info_log, "%s", stats.c_str());
}
}
#endif // !ROCKSDB_LITE
PrintStatistics();
}
}
void DBImpl::ScheduleBgLogWriterClose(JobContext* job_context) {
if (!job_context->logs_to_free.empty()) {
for (auto l : job_context->logs_to_free) {
AddToLogsToFreeQueue(l);
}
job_context->logs_to_free.clear();
SchedulePurge();
}
}
Directory* DBImpl::Directories::GetDataDir(size_t path_id) {
assert(path_id < data_dirs_.size());
Directory* ret_dir = data_dirs_[path_id].get();
if (ret_dir == nullptr) {
// Should use db_dir_
return db_dir_.get();
}
return ret_dir;
}
Status DBImpl::SetOptions(ColumnFamilyHandle* column_family,
const std::unordered_map<std::string, std::string>& options_map) {
#ifdef ROCKSDB_LITE
return Status::NotSupported("Not supported in ROCKSDB LITE");
#else
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
if (options_map.empty()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"SetOptions() on column family [%s], empty input",
cfd->GetName().c_str());
return Status::InvalidArgument("empty input");
}
MutableCFOptions new_options;
Status s;
Status persist_options_status;
WriteThread::Writer w;
{
InstrumentedMutexLock l(&mutex_);
s = cfd->SetOptions(options_map);
if (s.ok()) {
new_options = *cfd->GetLatestMutableCFOptions();
// Append new version to recompute compaction score.
VersionEdit dummy_edit;
versions_->LogAndApply(cfd, new_options, &dummy_edit, &mutex_,
directories_.GetDbDir());
// Trigger possible flush/compactions. This has to be before we persist
// options to file, otherwise there will be a deadlock with writer
// thread.
auto* old_sv =
InstallSuperVersionAndScheduleWork(cfd, nullptr, new_options);
delete old_sv;
persist_options_status = WriteOptionsFile(
false /*need_mutex_lock*/, true /*need_enter_write_thread*/);
}
}
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"SetOptions() on column family [%s], inputs:",
cfd->GetName().c_str());
for (const auto& o : options_map) {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "%s: %s\n", o.first.c_str(),
o.second.c_str());
}
if (s.ok()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"[%s] SetOptions() succeeded", cfd->GetName().c_str());
new_options.Dump(immutable_db_options_.info_log.get());
if (!persist_options_status.ok()) {
s = persist_options_status;
}
} else {
ROCKS_LOG_WARN(immutable_db_options_.info_log, "[%s] SetOptions() failed",
cfd->GetName().c_str());
}
LogFlush(immutable_db_options_.info_log);
return s;
#endif // ROCKSDB_LITE
}
Status DBImpl::SetDBOptions(
const std::unordered_map<std::string, std::string>& options_map) {
#ifdef ROCKSDB_LITE
return Status::NotSupported("Not supported in ROCKSDB LITE");
#else
if (options_map.empty()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"SetDBOptions(), empty input.");
return Status::InvalidArgument("empty input");
}
MutableDBOptions new_options;
Status s;
Status persist_options_status;
WriteThread::Writer w;
WriteContext write_context;
{
InstrumentedMutexLock l(&mutex_);
s = GetMutableDBOptionsFromStrings(mutable_db_options_, options_map,
&new_options);
if (s.ok()) {
if (new_options.max_background_compactions >
mutable_db_options_.max_background_compactions) {
env_->IncBackgroundThreadsIfNeeded(
new_options.max_background_compactions, Env::Priority::LOW);
MaybeScheduleFlushOrCompaction();
}
write_controller_.set_max_delayed_write_rate(new_options.delayed_write_rate);
table_cache_.get()->SetCapacity(new_options.max_open_files == -1
? TableCache::kInfiniteCapacity
: new_options.max_open_files - 10);
mutable_db_options_ = new_options;
write_thread_.EnterUnbatched(&w, &mutex_);
if (total_log_size_ > GetMaxTotalWalSize()) {
Status purge_wal_status = HandleWALFull(&write_context);
if (!purge_wal_status.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Unable to purge WAL files in SetDBOptions() -- %s",
purge_wal_status.ToString().c_str());
}
}
persist_options_status = WriteOptionsFile(
false /*need_mutex_lock*/, false /*need_enter_write_thread*/);
write_thread_.ExitUnbatched(&w);
}
}
ROCKS_LOG_INFO(immutable_db_options_.info_log, "SetDBOptions(), inputs:");
for (const auto& o : options_map) {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "%s: %s\n", o.first.c_str(),
o.second.c_str());
}
if (s.ok()) {
ROCKS_LOG_INFO(immutable_db_options_.info_log, "SetDBOptions() succeeded");
new_options.Dump(immutable_db_options_.info_log.get());
if (!persist_options_status.ok()) {
if (immutable_db_options_.fail_if_options_file_error) {
s = Status::IOError(
"SetDBOptions() succeeded, but unable to persist options",
persist_options_status.ToString());
}
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Unable to persist options in SetDBOptions() -- %s",
persist_options_status.ToString().c_str());
}
} else {
ROCKS_LOG_WARN(immutable_db_options_.info_log, "SetDBOptions failed");
}
LogFlush(immutable_db_options_.info_log);
return s;
#endif // ROCKSDB_LITE
}
// return the same level if it cannot be moved
int DBImpl::FindMinimumEmptyLevelFitting(ColumnFamilyData* cfd,
const MutableCFOptions& mutable_cf_options, int level) {
mutex_.AssertHeld();
const auto* vstorage = cfd->current()->storage_info();
int minimum_level = level;
for (int i = level - 1; i > 0; --i) {
// stop if level i is not empty
if (vstorage->NumLevelFiles(i) > 0) break;
// stop if level i is too small (cannot fit the level files)
if (vstorage->MaxBytesForLevel(i) < vstorage->NumLevelBytes(level)) {
break;
}
minimum_level = i;
}
return minimum_level;
}
Status DBImpl::FlushWAL(bool sync) {
{
// We need to lock log_write_mutex_ since logs_ might change concurrently
InstrumentedMutexLock wl(&log_write_mutex_);
log::Writer* cur_log_writer = logs_.back().writer;
auto s = cur_log_writer->WriteBuffer();
if (!s.ok()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log, "WAL flush error %s",
s.ToString().c_str());
}
if (!sync) {
ROCKS_LOG_DEBUG(immutable_db_options_.info_log, "FlushWAL sync=false");
return s;
}
}
// sync = true
ROCKS_LOG_DEBUG(immutable_db_options_.info_log, "FlushWAL sync=true");
return SyncWAL();
}
Status DBImpl::SyncWAL() {
autovector<log::Writer*, 1> logs_to_sync;
bool need_log_dir_sync;
uint64_t current_log_number;
{
InstrumentedMutexLock l(&mutex_);
assert(!logs_.empty());
// This SyncWAL() call only cares about logs up to this number.
current_log_number = logfile_number_;
while (logs_.front().number <= current_log_number &&
logs_.front().getting_synced) {
log_sync_cv_.Wait();
}
// First check that logs are safe to sync in background.
for (auto it = logs_.begin();
it != logs_.end() && it->number <= current_log_number; ++it) {
if (!it->writer->file()->writable_file()->IsSyncThreadSafe()) {
return Status::NotSupported(
"SyncWAL() is not supported for this implementation of WAL file",
immutable_db_options_.allow_mmap_writes
? "try setting Options::allow_mmap_writes to false"
: Slice());
}
}
for (auto it = logs_.begin();
it != logs_.end() && it->number <= current_log_number; ++it) {
auto& log = *it;
assert(!log.getting_synced);
log.getting_synced = true;
logs_to_sync.push_back(log.writer);
}
need_log_dir_sync = !log_dir_synced_;
}
TEST_SYNC_POINT("DBWALTest::SyncWALNotWaitWrite:1");
RecordTick(stats_, WAL_FILE_SYNCED);
Status status;
for (log::Writer* log : logs_to_sync) {
status = log->file()->SyncWithoutFlush(immutable_db_options_.use_fsync);
if (!status.ok()) {
break;
}
}
if (status.ok() && need_log_dir_sync) {
status = directories_.GetWalDir()->Fsync();
}
TEST_SYNC_POINT("DBWALTest::SyncWALNotWaitWrite:2");
TEST_SYNC_POINT("DBImpl::SyncWAL:BeforeMarkLogsSynced:1");
{
InstrumentedMutexLock l(&mutex_);
MarkLogsSynced(current_log_number, need_log_dir_sync, status);
}
TEST_SYNC_POINT("DBImpl::SyncWAL:BeforeMarkLogsSynced:2");
return status;
}
void DBImpl::MarkLogsSynced(
uint64_t up_to, bool synced_dir, const Status& status) {
mutex_.AssertHeld();
if (synced_dir &&
logfile_number_ == up_to &&
status.ok()) {
log_dir_synced_ = true;
}
for (auto it = logs_.begin(); it != logs_.end() && it->number <= up_to;) {
auto& log = *it;
assert(log.getting_synced);
if (status.ok() && logs_.size() > 1) {
logs_to_free_.push_back(log.ReleaseWriter());
it = logs_.erase(it);
} else {
log.getting_synced = false;
++it;
}
}
assert(!status.ok() || logs_.empty() || logs_[0].number > up_to ||
(logs_.size() == 1 && !logs_[0].getting_synced));
log_sync_cv_.SignalAll();
}
SequenceNumber DBImpl::GetLatestSequenceNumber() const {
return versions_->LastSequence();
}
InternalIterator* DBImpl::NewInternalIterator(
Arena* arena, RangeDelAggregator* range_del_agg,
ColumnFamilyHandle* column_family) {
ColumnFamilyData* cfd;
if (column_family == nullptr) {
cfd = default_cf_handle_->cfd();
} else {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
cfd = cfh->cfd();
}
mutex_.Lock();
SuperVersion* super_version = cfd->GetSuperVersion()->Ref();
mutex_.Unlock();
ReadOptions roptions;
return NewInternalIterator(roptions, cfd, super_version, arena,
range_del_agg);
}
void DBImpl::SchedulePurge() {
mutex_.AssertHeld();
assert(opened_successfully_);
// Purge operations are put into High priority queue
bg_purge_scheduled_++;
env_->Schedule(&DBImpl::BGWorkPurge, this, Env::Priority::HIGH, nullptr);
}
void DBImpl::BackgroundCallPurge() {
mutex_.Lock();
// We use one single loop to clear both queues so that after existing the loop
// both queues are empty. This is stricter than what is needed, but can make
// it easier for us to reason the correctness.
while (!purge_queue_.empty() || !logs_to_free_queue_.empty()) {
if (!purge_queue_.empty()) {
auto purge_file = purge_queue_.begin();
auto fname = purge_file->fname;
auto type = purge_file->type;
auto number = purge_file->number;
auto path_id = purge_file->path_id;
auto job_id = purge_file->job_id;
purge_queue_.pop_front();
mutex_.Unlock();
DeleteObsoleteFileImpl(job_id, fname, type, number, path_id);
mutex_.Lock();
} else {
assert(!logs_to_free_queue_.empty());
log::Writer* log_writer = *(logs_to_free_queue_.begin());
logs_to_free_queue_.pop_front();
mutex_.Unlock();
delete log_writer;
mutex_.Lock();
}
}
bg_purge_scheduled_--;
bg_cv_.SignalAll();
// IMPORTANT:there should be no code after calling SignalAll. This call may
// signal the DB destructor that it's OK to proceed with destruction. In
// that case, all DB variables will be dealloacated and referencing them
// will cause trouble.
mutex_.Unlock();
}
namespace {
struct IterState {
IterState(DBImpl* _db, InstrumentedMutex* _mu, SuperVersion* _super_version,
bool _background_purge)
: db(_db),
mu(_mu),
super_version(_super_version),
background_purge(_background_purge) {}
DBImpl* db;
InstrumentedMutex* mu;
SuperVersion* super_version;
bool background_purge;
};
static void CleanupIteratorState(void* arg1, void* arg2) {
IterState* state = reinterpret_cast<IterState*>(arg1);
if (state->super_version->Unref()) {
// Job id == 0 means that this is not our background process, but rather
// user thread
JobContext job_context(0);
state->mu->Lock();
state->super_version->Cleanup();
state->db->FindObsoleteFiles(&job_context, false, true);
if (state->background_purge) {
state->db->ScheduleBgLogWriterClose(&job_context);
}
state->mu->Unlock();
delete state->super_version;
if (job_context.HaveSomethingToDelete()) {
if (state->background_purge) {
// PurgeObsoleteFiles here does not delete files. Instead, it adds the
// files to be deleted to a job queue, and deletes it in a separate
// background thread.
state->db->PurgeObsoleteFiles(job_context, true /* schedule only */);
state->mu->Lock();
state->db->SchedulePurge();
state->mu->Unlock();
} else {
state->db->PurgeObsoleteFiles(job_context);
}
}
job_context.Clean();
}
delete state;
}
} // namespace
InternalIterator* DBImpl::NewInternalIterator(
const ReadOptions& read_options, ColumnFamilyData* cfd,
SuperVersion* super_version, Arena* arena,
RangeDelAggregator* range_del_agg) {
InternalIterator* internal_iter;
assert(arena != nullptr);
assert(range_del_agg != nullptr);
// Need to create internal iterator from the arena.
MergeIteratorBuilder merge_iter_builder(
&cfd->internal_comparator(), arena,
!read_options.total_order_seek &&
cfd->ioptions()->prefix_extractor != nullptr);
// Collect iterator for mutable mem
merge_iter_builder.AddIterator(
super_version->mem->NewIterator(read_options, arena));
std::unique_ptr<InternalIterator> range_del_iter;
Status s;
if (!read_options.ignore_range_deletions) {
range_del_iter.reset(
super_version->mem->NewRangeTombstoneIterator(read_options));
s = range_del_agg->AddTombstones(std::move(range_del_iter));
}
// Collect all needed child iterators for immutable memtables
if (s.ok()) {
super_version->imm->AddIterators(read_options, &merge_iter_builder);
if (!read_options.ignore_range_deletions) {
s = super_version->imm->AddRangeTombstoneIterators(read_options, arena,
range_del_agg);
}
}
if (s.ok()) {
// Collect iterators for files in L0 - Ln
if (read_options.read_tier != kMemtableTier) {
super_version->current->AddIterators(read_options, env_options_,
&merge_iter_builder, range_del_agg);
}
internal_iter = merge_iter_builder.Finish();
IterState* cleanup =
new IterState(this, &mutex_, super_version,
read_options.background_purge_on_iterator_cleanup);
internal_iter->RegisterCleanup(CleanupIteratorState, cleanup, nullptr);
return internal_iter;
}
return NewErrorInternalIterator(s);
}
ColumnFamilyHandle* DBImpl::DefaultColumnFamily() const {
return default_cf_handle_;
}
Status DBImpl::Get(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const Slice& key,
PinnableSlice* value) {
return GetImpl(read_options, column_family, key, value);
}
Status DBImpl::GetImpl(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const Slice& key,
PinnableSlice* pinnable_val, bool* value_found,
ReadCallback* callback) {
assert(pinnable_val != nullptr);
StopWatch sw(env_, stats_, DB_GET);
PERF_TIMER_GUARD(get_snapshot_time);
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
auto cfd = cfh->cfd();
// Acquire SuperVersion
SuperVersion* sv = GetAndRefSuperVersion(cfd);
TEST_SYNC_POINT("DBImpl::GetImpl:1");
TEST_SYNC_POINT("DBImpl::GetImpl:2");
SequenceNumber snapshot;
if (read_options.snapshot != nullptr) {
snapshot = reinterpret_cast<const SnapshotImpl*>(
read_options.snapshot)->number_;
} else {
// Since we get and reference the super version before getting
// the snapshot number, without a mutex protection, it is possible
// that a memtable switch happened in the middle and not all the
// data for this snapshot is available. But it will contain all
// the data available in the super version we have, which is also
// a valid snapshot to read from.
// We shouldn't get snapshot before finding and referencing the
// super versipon because a flush happening in between may compact
// away data for the snapshot, but the snapshot is earlier than the
// data overwriting it, so users may see wrong results.
snapshot = versions_->LastSequence();
}
TEST_SYNC_POINT("DBImpl::GetImpl:3");
TEST_SYNC_POINT("DBImpl::GetImpl:4");
// Prepare to store a list of merge operations if merge occurs.
MergeContext merge_context;
RangeDelAggregator range_del_agg(cfd->internal_comparator(), snapshot);
Status s;
// First look in the memtable, then in the immutable memtable (if any).
// s is both in/out. When in, s could either be OK or MergeInProgress.
// merge_operands will contain the sequence of merges in the latter case.
LookupKey lkey(key, snapshot);
PERF_TIMER_STOP(get_snapshot_time);
bool skip_memtable = (read_options.read_tier == kPersistedTier &&
has_unpersisted_data_.load(std::memory_order_relaxed));
bool done = false;
if (!skip_memtable) {
if (sv->mem->Get(lkey, pinnable_val->GetSelf(), &s, &merge_context,
&range_del_agg, read_options, callback)) {
done = true;
pinnable_val->PinSelf();
RecordTick(stats_, MEMTABLE_HIT);
} else if ((s.ok() || s.IsMergeInProgress()) &&
sv->imm->Get(lkey, pinnable_val->GetSelf(), &s, &merge_context,
&range_del_agg, read_options, callback)) {
done = true;
pinnable_val->PinSelf();
RecordTick(stats_, MEMTABLE_HIT);
}
if (!done && !s.ok() && !s.IsMergeInProgress()) {
return s;
}
}
if (!done) {
PERF_TIMER_GUARD(get_from_output_files_time);
sv->current->Get(read_options, lkey, pinnable_val, &s, &merge_context,
&range_del_agg, value_found, nullptr, nullptr, callback);
RecordTick(stats_, MEMTABLE_MISS);
}
{
PERF_TIMER_GUARD(get_post_process_time);
ReturnAndCleanupSuperVersion(cfd, sv);
RecordTick(stats_, NUMBER_KEYS_READ);
size_t size = pinnable_val->size();
RecordTick(stats_, BYTES_READ, size);
MeasureTime(stats_, BYTES_PER_READ, size);
PERF_COUNTER_ADD(get_read_bytes, size);
}
return s;
}
std::vector<Status> DBImpl::MultiGet(
const ReadOptions& read_options,
const std::vector<ColumnFamilyHandle*>& column_family,
const std::vector<Slice>& keys, std::vector<std::string>* values) {
StopWatch sw(env_, stats_, DB_MULTIGET);
PERF_TIMER_GUARD(get_snapshot_time);
SequenceNumber snapshot;
struct MultiGetColumnFamilyData {
ColumnFamilyData* cfd;
SuperVersion* super_version;
};
std::unordered_map<uint32_t, MultiGetColumnFamilyData*> multiget_cf_data;
// fill up and allocate outside of mutex
for (auto cf : column_family) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(cf);
auto cfd = cfh->cfd();
if (multiget_cf_data.find(cfd->GetID()) == multiget_cf_data.end()) {
auto mgcfd = new MultiGetColumnFamilyData();
mgcfd->cfd = cfd;
multiget_cf_data.insert({cfd->GetID(), mgcfd});
}
}
mutex_.Lock();
if (read_options.snapshot != nullptr) {
snapshot = reinterpret_cast<const SnapshotImpl*>(
read_options.snapshot)->number_;
} else {
snapshot = versions_->LastSequence();
}
for (auto mgd_iter : multiget_cf_data) {
mgd_iter.second->super_version =
mgd_iter.second->cfd->GetSuperVersion()->Ref();
}
mutex_.Unlock();
// Contain a list of merge operations if merge occurs.
MergeContext merge_context;
// Note: this always resizes the values array
size_t num_keys = keys.size();
std::vector<Status> stat_list(num_keys);
values->resize(num_keys);
// Keep track of bytes that we read for statistics-recording later
uint64_t bytes_read = 0;
PERF_TIMER_STOP(get_snapshot_time);
// For each of the given keys, apply the entire "get" process as follows:
// First look in the memtable, then in the immutable memtable (if any).
// s is both in/out. When in, s could either be OK or MergeInProgress.
// merge_operands will contain the sequence of merges in the latter case.
for (size_t i = 0; i < num_keys; ++i) {
merge_context.Clear();
Status& s = stat_list[i];
std::string* value = &(*values)[i];
LookupKey lkey(keys[i], snapshot);
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family[i]);
RangeDelAggregator range_del_agg(cfh->cfd()->internal_comparator(),
snapshot);
auto mgd_iter = multiget_cf_data.find(cfh->cfd()->GetID());
assert(mgd_iter != multiget_cf_data.end());
auto mgd = mgd_iter->second;
auto super_version = mgd->super_version;
bool skip_memtable =
(read_options.read_tier == kPersistedTier &&
has_unpersisted_data_.load(std::memory_order_relaxed));
bool done = false;
if (!skip_memtable) {
if (super_version->mem->Get(lkey, value, &s, &merge_context,
&range_del_agg, read_options)) {
done = true;
// TODO(?): RecordTick(stats_, MEMTABLE_HIT)?
} else if (super_version->imm->Get(lkey, value, &s, &merge_context,
&range_del_agg, read_options)) {
done = true;
// TODO(?): RecordTick(stats_, MEMTABLE_HIT)?
}
}
if (!done) {
PinnableSlice pinnable_val;
PERF_TIMER_GUARD(get_from_output_files_time);
super_version->current->Get(read_options, lkey, &pinnable_val, &s,
&merge_context, &range_del_agg);
value->assign(pinnable_val.data(), pinnable_val.size());
// TODO(?): RecordTick(stats_, MEMTABLE_MISS)?
}
if (s.ok()) {
bytes_read += value->size();
}
}
// Post processing (decrement reference counts and record statistics)
PERF_TIMER_GUARD(get_post_process_time);
autovector<SuperVersion*> superversions_to_delete;
// TODO(icanadi) do we need lock here or just around Cleanup()?
mutex_.Lock();
for (auto mgd_iter : multiget_cf_data) {
auto mgd = mgd_iter.second;
if (mgd->super_version->Unref()) {
mgd->super_version->Cleanup();
superversions_to_delete.push_back(mgd->super_version);
}
}
mutex_.Unlock();
for (auto td : superversions_to_delete) {
delete td;
}
for (auto mgd : multiget_cf_data) {
delete mgd.second;
}
RecordTick(stats_, NUMBER_MULTIGET_CALLS);
RecordTick(stats_, NUMBER_MULTIGET_KEYS_READ, num_keys);
RecordTick(stats_, NUMBER_MULTIGET_BYTES_READ, bytes_read);
MeasureTime(stats_, BYTES_PER_MULTIGET, bytes_read);
PERF_COUNTER_ADD(multiget_read_bytes, bytes_read);
PERF_TIMER_STOP(get_post_process_time);
return stat_list;
}
Status DBImpl::CreateColumnFamily(const ColumnFamilyOptions& cf_options,
const std::string& column_family,
ColumnFamilyHandle** handle) {
assert(handle != nullptr);
Status s = CreateColumnFamilyImpl(cf_options, column_family, handle);
if (s.ok()) {
s = WriteOptionsFile(true /*need_mutex_lock*/,
true /*need_enter_write_thread*/);
}
return s;
}
Status DBImpl::CreateColumnFamilies(
const ColumnFamilyOptions& cf_options,
const std::vector<std::string>& column_family_names,
std::vector<ColumnFamilyHandle*>* handles) {
assert(handles != nullptr);
handles->clear();
size_t num_cf = column_family_names.size();
Status s;
bool success_once = false;
for (size_t i = 0; i < num_cf; i++) {
ColumnFamilyHandle* handle;
s = CreateColumnFamilyImpl(cf_options, column_family_names[i], &handle);
if (!s.ok()) {
break;
}
handles->push_back(handle);
success_once = true;
}
if (success_once) {
Status persist_options_status = WriteOptionsFile(
true /*need_mutex_lock*/, true /*need_enter_write_thread*/);
if (s.ok() && !persist_options_status.ok()) {
s = persist_options_status;
}
}
return s;
}
Status DBImpl::CreateColumnFamilies(
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles) {
assert(handles != nullptr);
handles->clear();
size_t num_cf = column_families.size();
Status s;
bool success_once = false;
for (size_t i = 0; i < num_cf; i++) {
ColumnFamilyHandle* handle;
s = CreateColumnFamilyImpl(column_families[i].options,
column_families[i].name, &handle);
if (!s.ok()) {
break;
}
handles->push_back(handle);
success_once = true;
}
if (success_once) {
Status persist_options_status = WriteOptionsFile(
true /*need_mutex_lock*/, true /*need_enter_write_thread*/);
if (s.ok() && !persist_options_status.ok()) {
s = persist_options_status;
}
}
return s;
}
Status DBImpl::CreateColumnFamilyImpl(const ColumnFamilyOptions& cf_options,
const std::string& column_family_name,
ColumnFamilyHandle** handle) {
Status s;
Status persist_options_status;
*handle = nullptr;
s = CheckCompressionSupported(cf_options);
if (s.ok() && immutable_db_options_.allow_concurrent_memtable_write) {
s = CheckConcurrentWritesSupported(cf_options);
}
if (!s.ok()) {
return s;
}
{
InstrumentedMutexLock l(&mutex_);
if (versions_->GetColumnFamilySet()->GetColumnFamily(column_family_name) !=
nullptr) {
return Status::InvalidArgument("Column family already exists");
}
VersionEdit edit;
edit.AddColumnFamily(column_family_name);
uint32_t new_id = versions_->GetColumnFamilySet()->GetNextColumnFamilyID();
edit.SetColumnFamily(new_id);
edit.SetLogNumber(logfile_number_);
edit.SetComparatorName(cf_options.comparator->Name());
// LogAndApply will both write the creation in MANIFEST and create
// ColumnFamilyData object
{ // write thread
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
// LogAndApply will both write the creation in MANIFEST and create
// ColumnFamilyData object
s = versions_->LogAndApply(nullptr, MutableCFOptions(cf_options), &edit,
&mutex_, directories_.GetDbDir(), false,
&cf_options);
write_thread_.ExitUnbatched(&w);
}
if (s.ok()) {
single_column_family_mode_ = false;
auto* cfd =
versions_->GetColumnFamilySet()->GetColumnFamily(column_family_name);
assert(cfd != nullptr);
delete InstallSuperVersionAndScheduleWork(
cfd, nullptr, *cfd->GetLatestMutableCFOptions());
if (!cfd->mem()->IsSnapshotSupported()) {
is_snapshot_supported_ = false;
}
cfd->set_initialized();
*handle = new ColumnFamilyHandleImpl(cfd, this, &mutex_);
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Created column family [%s] (ID %u)",
column_family_name.c_str(), (unsigned)cfd->GetID());
} else {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Creating column family [%s] FAILED -- %s",
column_family_name.c_str(), s.ToString().c_str());
}
} // InstrumentedMutexLock l(&mutex_)
// this is outside the mutex
if (s.ok()) {
NewThreadStatusCfInfo(
reinterpret_cast<ColumnFamilyHandleImpl*>(*handle)->cfd());
}
return s;
}
Status DBImpl::DropColumnFamily(ColumnFamilyHandle* column_family) {
assert(column_family != nullptr);
Status s = DropColumnFamilyImpl(column_family);
if (s.ok()) {
s = WriteOptionsFile(true /*need_mutex_lock*/,
true /*need_enter_write_thread*/);
}
return s;
}
Status DBImpl::DropColumnFamilies(
const std::vector<ColumnFamilyHandle*>& column_families) {
Status s;
bool success_once = false;
for (auto* handle : column_families) {
s = DropColumnFamilyImpl(handle);
if (!s.ok()) {
break;
}
success_once = true;
}
if (success_once) {
Status persist_options_status = WriteOptionsFile(
true /*need_mutex_lock*/, true /*need_enter_write_thread*/);
if (s.ok() && !persist_options_status.ok()) {
s = persist_options_status;
}
}
return s;
}
Status DBImpl::DropColumnFamilyImpl(ColumnFamilyHandle* column_family) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
auto cfd = cfh->cfd();
if (cfd->GetID() == 0) {
return Status::InvalidArgument("Can't drop default column family");
}
bool cf_support_snapshot = cfd->mem()->IsSnapshotSupported();
VersionEdit edit;
edit.DropColumnFamily();
edit.SetColumnFamily(cfd->GetID());
Status s;
{
InstrumentedMutexLock l(&mutex_);
if (cfd->IsDropped()) {
s = Status::InvalidArgument("Column family already dropped!\n");
}
if (s.ok()) {
// we drop column family from a single write thread
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
s = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(),
&edit, &mutex_);
write_thread_.ExitUnbatched(&w);
}
if (s.ok()) {
auto* mutable_cf_options = cfd->GetLatestMutableCFOptions();
max_total_in_memory_state_ -= mutable_cf_options->write_buffer_size *
mutable_cf_options->max_write_buffer_number;
}
if (!cf_support_snapshot) {
// Dropped Column Family doesn't support snapshot. Need to recalculate
// is_snapshot_supported_.
bool new_is_snapshot_supported = true;
for (auto c : *versions_->GetColumnFamilySet()) {
if (!c->IsDropped() && !c->mem()->IsSnapshotSupported()) {
new_is_snapshot_supported = false;
break;
}
}
is_snapshot_supported_ = new_is_snapshot_supported;
}
}
if (s.ok()) {
// Note that here we erase the associated cf_info of the to-be-dropped
// cfd before its ref-count goes to zero to avoid having to erase cf_info
// later inside db_mutex.
EraseThreadStatusCfInfo(cfd);
assert(cfd->IsDropped());
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"Dropped column family with id %u\n", cfd->GetID());
} else {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Dropping column family with id %u FAILED -- %s\n",
cfd->GetID(), s.ToString().c_str());
}
return s;
}
bool DBImpl::KeyMayExist(const ReadOptions& read_options,
ColumnFamilyHandle* column_family, const Slice& key,
std::string* value, bool* value_found) {
assert(value != nullptr);
if (value_found != nullptr) {
// falsify later if key-may-exist but can't fetch value
*value_found = true;
}
ReadOptions roptions = read_options;
roptions.read_tier = kBlockCacheTier; // read from block cache only
PinnableSlice pinnable_val;
auto s = GetImpl(roptions, column_family, key, &pinnable_val, value_found);
value->assign(pinnable_val.data(), pinnable_val.size());
// If block_cache is enabled and the index block of the table didn't
// not present in block_cache, the return value will be Status::Incomplete.
// In this case, key may still exist in the table.
return s.ok() || s.IsIncomplete();
}
Iterator* DBImpl::NewIterator(const ReadOptions& read_options,
ColumnFamilyHandle* column_family) {
if (read_options.read_tier == kPersistedTier) {
return NewErrorIterator(Status::NotSupported(
"ReadTier::kPersistedData is not yet supported in iterators."));
}
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
auto cfd = cfh->cfd();
if (read_options.managed) {
#ifdef ROCKSDB_LITE
// not supported in lite version
return NewErrorIterator(Status::InvalidArgument(
"Managed Iterators not supported in RocksDBLite."));
#else
if ((read_options.tailing) || (read_options.snapshot != nullptr) ||
(is_snapshot_supported_)) {
return new ManagedIterator(this, read_options, cfd);
}
// Managed iter not supported
return NewErrorIterator(Status::InvalidArgument(
"Managed Iterators not supported without snapshots."));
#endif
} else if (read_options.tailing) {
#ifdef ROCKSDB_LITE
// not supported in lite version
return nullptr;
#else
SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_);
auto iter = new ForwardIterator(this, read_options, cfd, sv);
return NewDBIterator(
env_, read_options, *cfd->ioptions(), cfd->user_comparator(), iter,
kMaxSequenceNumber,
sv->mutable_cf_options.max_sequential_skip_in_iterations);
#endif
} else {
SequenceNumber latest_snapshot = versions_->LastSequence();
SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_);
auto snapshot =
read_options.snapshot != nullptr
? reinterpret_cast<const SnapshotImpl*>(
read_options.snapshot)->number_
: latest_snapshot;
// Try to generate a DB iterator tree in continuous memory area to be
// cache friendly. Here is an example of result:
// +-------------------------------+
// | |
// | ArenaWrappedDBIter |
// | + |
// | +---> Inner Iterator ------------+
// | | | |
// | | +-- -- -- -- -- -- -- --+ |
// | +--- | Arena | |
// | | | |
// | Allocated Memory: | |
// | | +-------------------+ |
// | | | DBIter | <---+
// | | + |
// | | | +-> iter_ ------------+
// | | | | |
// | | +-------------------+ |
// | | | MergingIterator | <---+
// | | + |
// | | | +->child iter1 ------------+
// | | | | | |
// | | +->child iter2 ----------+ |
// | | | | | | |
// | | | +->child iter3 --------+ | |
// | | | | | |
// | | +-------------------+ | | |
// | | | Iterator1 | <--------+
// | | +-------------------+ | |
// | | | Iterator2 | <------+
// | | +-------------------+ |
// | | | Iterator3 | <----+
// | | +-------------------+
// | | |
// +-------+-----------------------+
//
// ArenaWrappedDBIter inlines an arena area where all the iterators in
// the iterator tree are allocated in the order of being accessed when
// querying.
// Laying out the iterators in the order of being accessed makes it more
// likely that any iterator pointer is close to the iterator it points to so
// that they are likely to be in the same cache line and/or page.
ArenaWrappedDBIter* db_iter = NewArenaWrappedDbIterator(
env_, read_options, *cfd->ioptions(), snapshot,
sv->mutable_cf_options.max_sequential_skip_in_iterations,
sv->version_number,
((read_options.snapshot != nullptr) ? nullptr : this), cfd);
InternalIterator* internal_iter =
NewInternalIterator(read_options, cfd, sv, db_iter->GetArena(),
db_iter->GetRangeDelAggregator());
db_iter->SetIterUnderDBIter(internal_iter);
return db_iter;
}
// To stop compiler from complaining
return nullptr;
}
Status DBImpl::NewIterators(
const ReadOptions& read_options,
const std::vector<ColumnFamilyHandle*>& column_families,
std::vector<Iterator*>* iterators) {
if (read_options.read_tier == kPersistedTier) {
return Status::NotSupported(
"ReadTier::kPersistedData is not yet supported in iterators.");
}
iterators->clear();
iterators->reserve(column_families.size());
if (read_options.managed) {
#ifdef ROCKSDB_LITE
return Status::InvalidArgument(
"Managed interator not supported in RocksDB lite");
#else
if ((!read_options.tailing) && (read_options.snapshot == nullptr) &&
(!is_snapshot_supported_)) {
return Status::InvalidArgument(
"Managed interator not supported without snapshots");
}
for (auto cfh : column_families) {
auto cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(cfh)->cfd();
auto iter = new ManagedIterator(this, read_options, cfd);
iterators->push_back(iter);
}
#endif
} else if (read_options.tailing) {
#ifdef ROCKSDB_LITE
return Status::InvalidArgument(
"Tailing interator not supported in RocksDB lite");
#else
for (auto cfh : column_families) {
auto cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(cfh)->cfd();
SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_);
auto iter = new ForwardIterator(this, read_options, cfd, sv);
iterators->push_back(NewDBIterator(
env_, read_options, *cfd->ioptions(), cfd->user_comparator(), iter,
kMaxSequenceNumber,
sv->mutable_cf_options.max_sequential_skip_in_iterations));
}
#endif
} else {
SequenceNumber latest_snapshot = versions_->LastSequence();
for (size_t i = 0; i < column_families.size(); ++i) {
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(
column_families[i])->cfd();
SuperVersion* sv = cfd->GetReferencedSuperVersion(&mutex_);
auto snapshot =
read_options.snapshot != nullptr
? reinterpret_cast<const SnapshotImpl*>(
read_options.snapshot)->number_
: latest_snapshot;
ArenaWrappedDBIter* db_iter = NewArenaWrappedDbIterator(
env_, read_options, *cfd->ioptions(), snapshot,
sv->mutable_cf_options.max_sequential_skip_in_iterations,
sv->version_number,
((read_options.snapshot != nullptr) ? nullptr : this), cfd);
InternalIterator* internal_iter =
NewInternalIterator(read_options, cfd, sv, db_iter->GetArena(),
db_iter->GetRangeDelAggregator());
db_iter->SetIterUnderDBIter(internal_iter);
iterators->push_back(db_iter);
}
}
return Status::OK();
}
const Snapshot* DBImpl::GetSnapshot() { return GetSnapshotImpl(false); }
#ifndef ROCKSDB_LITE
const Snapshot* DBImpl::GetSnapshotForWriteConflictBoundary() {
return GetSnapshotImpl(true);
}
#endif // ROCKSDB_LITE
const Snapshot* DBImpl::GetSnapshotImpl(bool is_write_conflict_boundary) {
int64_t unix_time = 0;
env_->GetCurrentTime(&unix_time); // Ignore error
SnapshotImpl* s = new SnapshotImpl;
InstrumentedMutexLock l(&mutex_);
// returns null if the underlying memtable does not support snapshot.
if (!is_snapshot_supported_) {
delete s;
return nullptr;
}
return snapshots_.New(s, versions_->LastSequence(), unix_time,
is_write_conflict_boundary);
}
void DBImpl::ReleaseSnapshot(const Snapshot* s) {
const SnapshotImpl* casted_s = reinterpret_cast<const SnapshotImpl*>(s);
{
InstrumentedMutexLock l(&mutex_);
snapshots_.Delete(casted_s);
}
delete casted_s;
}
bool DBImpl::HasActiveSnapshotLaterThanSN(SequenceNumber sn) {
InstrumentedMutexLock l(&mutex_);
if (snapshots_.empty()) {
return false;
}
return (snapshots_.newest()->GetSequenceNumber() > sn);
}
#ifndef ROCKSDB_LITE
Status DBImpl::GetPropertiesOfAllTables(ColumnFamilyHandle* column_family,
TablePropertiesCollection* props) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
auto cfd = cfh->cfd();
// Increment the ref count
mutex_.Lock();
auto version = cfd->current();
version->Ref();
mutex_.Unlock();
auto s = version->GetPropertiesOfAllTables(props);
// Decrement the ref count
mutex_.Lock();
version->Unref();
mutex_.Unlock();
return s;
}
Status DBImpl::GetPropertiesOfTablesInRange(ColumnFamilyHandle* column_family,
const Range* range, std::size_t n,
TablePropertiesCollection* props) {
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
auto cfd = cfh->cfd();
// Increment the ref count
mutex_.Lock();
auto version = cfd->current();
version->Ref();
mutex_.Unlock();
auto s = version->GetPropertiesOfTablesInRange(range, n, props);
// Decrement the ref count
mutex_.Lock();
version->Unref();
mutex_.Unlock();
return s;
}
#endif // ROCKSDB_LITE
const std::string& DBImpl::GetName() const {
return dbname_;
}
Env* DBImpl::GetEnv() const {
return env_;
}
Options DBImpl::GetOptions(ColumnFamilyHandle* column_family) const {
InstrumentedMutexLock l(&mutex_);
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
return Options(BuildDBOptions(immutable_db_options_, mutable_db_options_),
cfh->cfd()->GetLatestCFOptions());
}
DBOptions DBImpl::GetDBOptions() const {
InstrumentedMutexLock l(&mutex_);
return BuildDBOptions(immutable_db_options_, mutable_db_options_);
}
bool DBImpl::GetProperty(ColumnFamilyHandle* column_family,
const Slice& property, std::string* value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
value->clear();
auto cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
if (property_info == nullptr) {
return false;
} else if (property_info->handle_int) {
uint64_t int_value;
bool ret_value =
GetIntPropertyInternal(cfd, *property_info, false, &int_value);
if (ret_value) {
*value = ToString(int_value);
}
return ret_value;
} else if (property_info->handle_string) {
InstrumentedMutexLock l(&mutex_);
return cfd->internal_stats()->GetStringProperty(*property_info, property,
value);
}
// Shouldn't reach here since exactly one of handle_string and handle_int
// should be non-nullptr.
assert(false);
return false;
}
bool DBImpl::GetMapProperty(ColumnFamilyHandle* column_family,
const Slice& property,
std::map<std::string, std::string>* value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
value->clear();
auto cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
if (property_info == nullptr) {
return false;
} else if (property_info->handle_map) {
InstrumentedMutexLock l(&mutex_);
return cfd->internal_stats()->GetMapProperty(*property_info, property,
value);
}
// If we reach this point it means that handle_map is not provided for the
// requested property
return false;
}
bool DBImpl::GetIntProperty(ColumnFamilyHandle* column_family,
const Slice& property, uint64_t* value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
if (property_info == nullptr || property_info->handle_int == nullptr) {
return false;
}
auto cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
return GetIntPropertyInternal(cfd, *property_info, false, value);
}
bool DBImpl::GetIntPropertyInternal(ColumnFamilyData* cfd,
const DBPropertyInfo& property_info,
bool is_locked, uint64_t* value) {
assert(property_info.handle_int != nullptr);
if (!property_info.need_out_of_mutex) {
if (is_locked) {
mutex_.AssertHeld();
return cfd->internal_stats()->GetIntProperty(property_info, value, this);
} else {
InstrumentedMutexLock l(&mutex_);
return cfd->internal_stats()->GetIntProperty(property_info, value, this);
}
} else {
SuperVersion* sv = nullptr;
if (!is_locked) {
sv = GetAndRefSuperVersion(cfd);
} else {
sv = cfd->GetSuperVersion();
}
bool ret = cfd->internal_stats()->GetIntPropertyOutOfMutex(
property_info, sv->current, value);
if (!is_locked) {
ReturnAndCleanupSuperVersion(cfd, sv);
}
return ret;
}
}
#ifndef ROCKSDB_LITE
Status DBImpl::ResetStats() {
InstrumentedMutexLock l(&mutex_);
for (auto* cfd : *versions_->GetColumnFamilySet()) {
if (cfd->initialized()) {
cfd->internal_stats()->Clear();
}
}
return Status::OK();
}
#endif // ROCKSDB_LITE
bool DBImpl::GetAggregatedIntProperty(const Slice& property,
uint64_t* aggregated_value) {
const DBPropertyInfo* property_info = GetPropertyInfo(property);
if (property_info == nullptr || property_info->handle_int == nullptr) {
return false;
}
uint64_t sum = 0;
{
// Needs mutex to protect the list of column families.
InstrumentedMutexLock l(&mutex_);
uint64_t value;
for (auto* cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->initialized()) {
continue;
}
if (GetIntPropertyInternal(cfd, *property_info, true, &value)) {
sum += value;
} else {
return false;
}
}
}
*aggregated_value = sum;
return true;
}
SuperVersion* DBImpl::GetAndRefSuperVersion(ColumnFamilyData* cfd) {
// TODO(ljin): consider using GetReferencedSuperVersion() directly
return cfd->GetThreadLocalSuperVersion(&mutex_);
}
// REQUIRED: this function should only be called on the write thread or if the
// mutex is held.
SuperVersion* DBImpl::GetAndRefSuperVersion(uint32_t column_family_id) {
auto column_family_set = versions_->GetColumnFamilySet();
auto cfd = column_family_set->GetColumnFamily(column_family_id);
if (!cfd) {
return nullptr;
}
return GetAndRefSuperVersion(cfd);
}
void DBImpl::ReturnAndCleanupSuperVersion(ColumnFamilyData* cfd,
SuperVersion* sv) {
bool unref_sv = !cfd->ReturnThreadLocalSuperVersion(sv);
if (unref_sv) {
// Release SuperVersion
if (sv->Unref()) {
{
InstrumentedMutexLock l(&mutex_);
sv->Cleanup();
}
delete sv;
RecordTick(stats_, NUMBER_SUPERVERSION_CLEANUPS);
}
RecordTick(stats_, NUMBER_SUPERVERSION_RELEASES);
}
}
// REQUIRED: this function should only be called on the write thread.
void DBImpl::ReturnAndCleanupSuperVersion(uint32_t column_family_id,
SuperVersion* sv) {
auto column_family_set = versions_->GetColumnFamilySet();
auto cfd = column_family_set->GetColumnFamily(column_family_id);
// If SuperVersion is held, and we successfully fetched a cfd using
// GetAndRefSuperVersion(), it must still exist.
assert(cfd != nullptr);
ReturnAndCleanupSuperVersion(cfd, sv);
}
// REQUIRED: this function should only be called on the write thread or if the
// mutex is held.
ColumnFamilyHandle* DBImpl::GetColumnFamilyHandle(uint32_t column_family_id) {
ColumnFamilyMemTables* cf_memtables = column_family_memtables_.get();
if (!cf_memtables->Seek(column_family_id)) {
return nullptr;
}
return cf_memtables->GetColumnFamilyHandle();
}
// REQUIRED: mutex is NOT held.
ColumnFamilyHandle* DBImpl::GetColumnFamilyHandleUnlocked(
uint32_t column_family_id) {
ColumnFamilyMemTables* cf_memtables = column_family_memtables_.get();
InstrumentedMutexLock l(&mutex_);
if (!cf_memtables->Seek(column_family_id)) {
return nullptr;
}
return cf_memtables->GetColumnFamilyHandle();
}
void DBImpl::GetApproximateMemTableStats(ColumnFamilyHandle* column_family,
const Range& range,
uint64_t* const count,
uint64_t* const size) {
ColumnFamilyHandleImpl* cfh =
reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
ColumnFamilyData* cfd = cfh->cfd();
SuperVersion* sv = GetAndRefSuperVersion(cfd);
// Convert user_key into a corresponding internal key.
InternalKey k1(range.start, kMaxSequenceNumber, kValueTypeForSeek);
InternalKey k2(range.limit, kMaxSequenceNumber, kValueTypeForSeek);
MemTable::MemTableStats memStats =
sv->mem->ApproximateStats(k1.Encode(), k2.Encode());
MemTable::MemTableStats immStats =
sv->imm->ApproximateStats(k1.Encode(), k2.Encode());
*count = memStats.count + immStats.count;
*size = memStats.size + immStats.size;
ReturnAndCleanupSuperVersion(cfd, sv);
}
void DBImpl::GetApproximateSizes(ColumnFamilyHandle* column_family,
const Range* range, int n, uint64_t* sizes,
uint8_t include_flags) {
assert(include_flags & DB::SizeApproximationFlags::INCLUDE_FILES ||
include_flags & DB::SizeApproximationFlags::INCLUDE_MEMTABLES);
Version* v;
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
auto cfd = cfh->cfd();
SuperVersion* sv = GetAndRefSuperVersion(cfd);
v = sv->current;
for (int i = 0; i < n; i++) {
// Convert user_key into a corresponding internal key.
InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek);
InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek);
sizes[i] = 0;
if (include_flags & DB::SizeApproximationFlags::INCLUDE_FILES) {
sizes[i] += versions_->ApproximateSize(v, k1.Encode(), k2.Encode());
}
if (include_flags & DB::SizeApproximationFlags::INCLUDE_MEMTABLES) {
sizes[i] += sv->mem->ApproximateStats(k1.Encode(), k2.Encode()).size;
sizes[i] += sv->imm->ApproximateStats(k1.Encode(), k2.Encode()).size;
}
}
ReturnAndCleanupSuperVersion(cfd, sv);
}
std::list<uint64_t>::iterator
DBImpl::CaptureCurrentFileNumberInPendingOutputs() {
// We need to remember the iterator of our insert, because after the
// background job is done, we need to remove that element from
// pending_outputs_.
pending_outputs_.push_back(versions_->current_next_file_number());
auto pending_outputs_inserted_elem = pending_outputs_.end();
--pending_outputs_inserted_elem;
return pending_outputs_inserted_elem;
}
void DBImpl::ReleaseFileNumberFromPendingOutputs(
std::list<uint64_t>::iterator v) {
pending_outputs_.erase(v);
}
#ifndef ROCKSDB_LITE
Status DBImpl::GetUpdatesSince(
SequenceNumber seq, unique_ptr<TransactionLogIterator>* iter,
const TransactionLogIterator::ReadOptions& read_options) {
RecordTick(stats_, GET_UPDATES_SINCE_CALLS);
if (seq > versions_->LastSequence()) {
return Status::NotFound("Requested sequence not yet written in the db");
}
return wal_manager_.GetUpdatesSince(seq, iter, read_options, versions_.get());
}
Status DBImpl::DeleteFile(std::string name) {
uint64_t number;
FileType type;
WalFileType log_type;
if (!ParseFileName(name, &number, &type, &log_type) ||
(type != kTableFile && type != kLogFile)) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log, "DeleteFile %s failed.\n",
name.c_str());
return Status::InvalidArgument("Invalid file name");
}
Status status;
if (type == kLogFile) {
// Only allow deleting archived log files
if (log_type != kArchivedLogFile) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"DeleteFile %s failed - not archived log.\n",
name.c_str());
return Status::NotSupported("Delete only supported for archived logs");
}
status =
env_->DeleteFile(immutable_db_options_.wal_dir + "/" + name.c_str());
if (!status.ok()) {
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"DeleteFile %s failed -- %s.\n", name.c_str(),
status.ToString().c_str());
}
return status;
}
int level;
FileMetaData* metadata;
ColumnFamilyData* cfd;
VersionEdit edit;
JobContext job_context(next_job_id_.fetch_add(1), true);
{
InstrumentedMutexLock l(&mutex_);
status = versions_->GetMetadataForFile(number, &level, &metadata, &cfd);
if (!status.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"DeleteFile %s failed. File not found\n", name.c_str());
job_context.Clean();
return Status::InvalidArgument("File not found");
}
assert(level < cfd->NumberLevels());
// If the file is being compacted no need to delete.
if (metadata->being_compacted) {
ROCKS_LOG_INFO(immutable_db_options_.info_log,
"DeleteFile %s Skipped. File about to be compacted\n",
name.c_str());
job_context.Clean();
return Status::OK();
}
// Only the files in the last level can be deleted externally.
// This is to make sure that any deletion tombstones are not
// lost. Check that the level passed is the last level.
auto* vstoreage = cfd->current()->storage_info();
for (int i = level + 1; i < cfd->NumberLevels(); i++) {
if (vstoreage->NumLevelFiles(i) != 0) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"DeleteFile %s FAILED. File not in last level\n",
name.c_str());
job_context.Clean();
return Status::InvalidArgument("File not in last level");
}
}
// if level == 0, it has to be the oldest file
if (level == 0 &&
vstoreage->LevelFiles(0).back()->fd.GetNumber() != number) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"DeleteFile %s failed ---"
" target file in level 0 must be the oldest.",
name.c_str());
job_context.Clean();
return Status::InvalidArgument("File in level 0, but not oldest");
}
edit.SetColumnFamily(cfd->GetID());
edit.DeleteFile(level, number);
status = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(),
&edit, &mutex_, directories_.GetDbDir());
if (status.ok()) {
InstallSuperVersionAndScheduleWorkWrapper(
cfd, &job_context, *cfd->GetLatestMutableCFOptions());
}
FindObsoleteFiles(&job_context, false);
} // lock released here
LogFlush(immutable_db_options_.info_log);
// remove files outside the db-lock
if (job_context.HaveSomethingToDelete()) {
// Call PurgeObsoleteFiles() without holding mutex.
PurgeObsoleteFiles(job_context);
}
job_context.Clean();
return status;
}
Status DBImpl::DeleteFilesInRange(ColumnFamilyHandle* column_family,
const Slice* begin, const Slice* end) {
Status status;
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
ColumnFamilyData* cfd = cfh->cfd();
VersionEdit edit;
std::vector<FileMetaData*> deleted_files;
JobContext job_context(next_job_id_.fetch_add(1), true);
{
InstrumentedMutexLock l(&mutex_);
Version* input_version = cfd->current();
auto* vstorage = input_version->storage_info();
for (int i = 1; i < cfd->NumberLevels(); i++) {
if (vstorage->LevelFiles(i).empty() ||
!vstorage->OverlapInLevel(i, begin, end)) {
continue;
}
std::vector<FileMetaData*> level_files;
InternalKey begin_storage, end_storage, *begin_key, *end_key;
if (begin == nullptr) {
begin_key = nullptr;
} else {
begin_storage.SetMaxPossibleForUserKey(*begin);
begin_key = &begin_storage;
}
if (end == nullptr) {
end_key = nullptr;
} else {
end_storage.SetMinPossibleForUserKey(*end);
end_key = &end_storage;
}
vstorage->GetOverlappingInputs(i, begin_key, end_key, &level_files, -1,
nullptr, false);
FileMetaData* level_file;
for (uint32_t j = 0; j < level_files.size(); j++) {
level_file = level_files[j];
if (((begin == nullptr) ||
(cfd->internal_comparator().user_comparator()->Compare(
level_file->smallest.user_key(), *begin) >= 0)) &&
((end == nullptr) ||
(cfd->internal_comparator().user_comparator()->Compare(
level_file->largest.user_key(), *end) <= 0))) {
if (level_file->being_compacted) {
continue;
}
edit.SetColumnFamily(cfd->GetID());
edit.DeleteFile(i, level_file->fd.GetNumber());
deleted_files.push_back(level_file);
level_file->being_compacted = true;
}
}
}
if (edit.GetDeletedFiles().empty()) {
job_context.Clean();
return Status::OK();
}
input_version->Ref();
status = versions_->LogAndApply(cfd, *cfd->GetLatestMutableCFOptions(),
&edit, &mutex_, directories_.GetDbDir());
if (status.ok()) {
InstallSuperVersionAndScheduleWorkWrapper(
cfd, &job_context, *cfd->GetLatestMutableCFOptions());
}
for (auto* deleted_file : deleted_files) {
deleted_file->being_compacted = false;
}
input_version->Unref();
FindObsoleteFiles(&job_context, false);
} // lock released here
LogFlush(immutable_db_options_.info_log);
// remove files outside the db-lock
if (job_context.HaveSomethingToDelete()) {
// Call PurgeObsoleteFiles() without holding mutex.
PurgeObsoleteFiles(job_context);
}
job_context.Clean();
return status;
}
void DBImpl::GetLiveFilesMetaData(std::vector<LiveFileMetaData>* metadata) {
InstrumentedMutexLock l(&mutex_);
versions_->GetLiveFilesMetaData(metadata);
}
void DBImpl::GetColumnFamilyMetaData(
ColumnFamilyHandle* column_family,
ColumnFamilyMetaData* cf_meta) {
assert(column_family);
auto* cfd = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family)->cfd();
auto* sv = GetAndRefSuperVersion(cfd);
sv->current->GetColumnFamilyMetaData(cf_meta);
ReturnAndCleanupSuperVersion(cfd, sv);
}
#endif // ROCKSDB_LITE
Status DBImpl::CheckConsistency() {
mutex_.AssertHeld();
std::vector<LiveFileMetaData> metadata;
versions_->GetLiveFilesMetaData(&metadata);
std::string corruption_messages;
for (const auto& md : metadata) {
// md.name has a leading "/".
std::string file_path = md.db_path + md.name;
uint64_t fsize = 0;
Status s = env_->GetFileSize(file_path, &fsize);
if (!s.ok() &&
env_->GetFileSize(Rocks2LevelTableFileName(file_path), &fsize).ok()) {
s = Status::OK();
}
if (!s.ok()) {
corruption_messages +=
"Can't access " + md.name + ": " + s.ToString() + "\n";
} else if (fsize != md.size) {
corruption_messages += "Sst file size mismatch: " + file_path +
". Size recorded in manifest " +
ToString(md.size) + ", actual size " +
ToString(fsize) + "\n";
}
}
if (corruption_messages.size() == 0) {
return Status::OK();
} else {
return Status::Corruption(corruption_messages);
}
}
Status DBImpl::GetDbIdentity(std::string& identity) const {
std::string idfilename = IdentityFileName(dbname_);
const EnvOptions soptions;
unique_ptr<SequentialFileReader> id_file_reader;
Status s;
{
unique_ptr<SequentialFile> idfile;
s = env_->NewSequentialFile(idfilename, &idfile, soptions);
if (!s.ok()) {
return s;
}
id_file_reader.reset(new SequentialFileReader(std::move(idfile)));
}
uint64_t file_size;
s = env_->GetFileSize(idfilename, &file_size);
if (!s.ok()) {
return s;
}
char* buffer = reinterpret_cast<char*>(alloca(file_size));
Slice id;
s = id_file_reader->Read(static_cast<size_t>(file_size), &id, buffer);
if (!s.ok()) {
return s;
}
identity.assign(id.ToString());
// If last character is '\n' remove it from identity
if (identity.size() > 0 && identity.back() == '\n') {
identity.pop_back();
}
return s;
}
// Default implementation -- returns not supported status
Status DB::CreateColumnFamily(const ColumnFamilyOptions& cf_options,
const std::string& column_family_name,
ColumnFamilyHandle** handle) {
return Status::NotSupported("");
}
Status DB::CreateColumnFamilies(
const ColumnFamilyOptions& cf_options,
const std::vector<std::string>& column_family_names,
std::vector<ColumnFamilyHandle*>* handles) {
return Status::NotSupported("");
}
Status DB::CreateColumnFamilies(
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles) {
return Status::NotSupported("");
}
Status DB::DropColumnFamily(ColumnFamilyHandle* column_family) {
return Status::NotSupported("");
}
Status DB::DropColumnFamilies(
const std::vector<ColumnFamilyHandle*>& column_families) {
return Status::NotSupported("");
}
Status DB::DestroyColumnFamilyHandle(ColumnFamilyHandle* column_family) {
delete column_family;
return Status::OK();
}
DB::~DB() { }
Status DB::ListColumnFamilies(const DBOptions& db_options,
const std::string& name,
std::vector<std::string>* column_families) {
return VersionSet::ListColumnFamilies(column_families, name, db_options.env);
}
Snapshot::~Snapshot() {
}
Status DestroyDB(const std::string& dbname, const Options& options) {
const ImmutableDBOptions soptions(SanitizeOptions(dbname, options));
Env* env = soptions.env;
std::vector<std::string> filenames;
// Ignore error in case directory does not exist
env->GetChildren(dbname, &filenames);
FileLock* lock;
const std::string lockname = LockFileName(dbname);
Status result = env->LockFile(lockname, &lock);
if (result.ok()) {
uint64_t number;
FileType type;
InfoLogPrefix info_log_prefix(!soptions.db_log_dir.empty(), dbname);
for (size_t i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, info_log_prefix.prefix, &type) &&
type != kDBLockFile) { // Lock file will be deleted at end
Status del;
std::string path_to_delete = dbname + "/" + filenames[i];
if (type == kMetaDatabase) {
del = DestroyDB(path_to_delete, options);
} else if (type == kTableFile) {
del = DeleteSSTFile(&soptions, path_to_delete, 0);
} else {
del = env->DeleteFile(path_to_delete);
}
if (result.ok() && !del.ok()) {
result = del;
}
}
}
for (size_t path_id = 0; path_id < options.db_paths.size(); path_id++) {
const auto& db_path = options.db_paths[path_id];
env->GetChildren(db_path.path, &filenames);
for (size_t i = 0; i < filenames.size(); i++) {
if (ParseFileName(filenames[i], &number, &type) &&
type == kTableFile) { // Lock file will be deleted at end
std::string table_path = db_path.path + "/" + filenames[i];
Status del = DeleteSSTFile(&soptions, table_path,
static_cast<uint32_t>(path_id));
if (result.ok() && !del.ok()) {
result = del;
}
}
}
}
std::vector<std::string> walDirFiles;
std::string archivedir = ArchivalDirectory(dbname);
if (dbname != soptions.wal_dir) {
env->GetChildren(soptions.wal_dir, &walDirFiles);
archivedir = ArchivalDirectory(soptions.wal_dir);
}
// Delete log files in the WAL dir
for (const auto& file : walDirFiles) {
if (ParseFileName(file, &number, &type) && type == kLogFile) {
Status del = env->DeleteFile(LogFileName(soptions.wal_dir, number));
if (result.ok() && !del.ok()) {
result = del;
}
}
}
std::vector<std::string> archiveFiles;
env->GetChildren(archivedir, &archiveFiles);
// Delete archival files.
for (size_t i = 0; i < archiveFiles.size(); ++i) {
if (ParseFileName(archiveFiles[i], &number, &type) &&
type == kLogFile) {
Status del = env->DeleteFile(archivedir + "/" + archiveFiles[i]);
if (result.ok() && !del.ok()) {
result = del;
}
}
}
// ignore case where no archival directory is present
env->DeleteDir(archivedir);
env->UnlockFile(lock); // Ignore error since state is already gone
env->DeleteFile(lockname);
env->DeleteDir(dbname); // Ignore error in case dir contains other files
env->DeleteDir(soptions.wal_dir);
}
return result;
}
Status DBImpl::WriteOptionsFile(bool need_mutex_lock,
bool need_enter_write_thread) {
#ifndef ROCKSDB_LITE
WriteThread::Writer w;
if (need_mutex_lock) {
mutex_.Lock();
} else {
mutex_.AssertHeld();
}
if (need_enter_write_thread) {
write_thread_.EnterUnbatched(&w, &mutex_);
}
std::vector<std::string> cf_names;
std::vector<ColumnFamilyOptions> cf_opts;
// This part requires mutex to protect the column family options
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (cfd->IsDropped()) {
continue;
}
cf_names.push_back(cfd->GetName());
cf_opts.push_back(cfd->GetLatestCFOptions());
}
// Unlock during expensive operations. New writes cannot get here
// because the single write thread ensures all new writes get queued.
DBOptions db_options =
BuildDBOptions(immutable_db_options_, mutable_db_options_);
mutex_.Unlock();
TEST_SYNC_POINT("DBImpl::WriteOptionsFile:1");
TEST_SYNC_POINT("DBImpl::WriteOptionsFile:2");
std::string file_name =
TempOptionsFileName(GetName(), versions_->NewFileNumber());
Status s =
PersistRocksDBOptions(db_options, cf_names, cf_opts, file_name, GetEnv());
if (s.ok()) {
s = RenameTempFileToOptionsFile(file_name);
}
// restore lock
if (!need_mutex_lock) {
mutex_.Lock();
}
if (need_enter_write_thread) {
write_thread_.ExitUnbatched(&w);
}
if (!s.ok()) {
ROCKS_LOG_WARN(immutable_db_options_.info_log,
"Unnable to persist options -- %s", s.ToString().c_str());
if (immutable_db_options_.fail_if_options_file_error) {
return Status::IOError("Unable to persist options.",
s.ToString().c_str());
}
}
#endif // !ROCKSDB_LITE
return Status::OK();
}
#ifndef ROCKSDB_LITE
namespace {
void DeleteOptionsFilesHelper(const std::map<uint64_t, std::string>& filenames,
const size_t num_files_to_keep,
const std::shared_ptr<Logger>& info_log,
Env* env) {
if (filenames.size() <= num_files_to_keep) {
return;
}
for (auto iter = std::next(filenames.begin(), num_files_to_keep);
iter != filenames.end(); ++iter) {
if (!env->DeleteFile(iter->second).ok()) {
ROCKS_LOG_WARN(info_log, "Unable to delete options file %s",
iter->second.c_str());
}
}
}
} // namespace
#endif // !ROCKSDB_LITE
Status DBImpl::DeleteObsoleteOptionsFiles() {
#ifndef ROCKSDB_LITE
std::vector<std::string> filenames;
// use ordered map to store keep the filenames sorted from the newest
// to the oldest.
std::map<uint64_t, std::string> options_filenames;
Status s;
s = GetEnv()->GetChildren(GetName(), &filenames);
if (!s.ok()) {
return s;
}
for (auto& filename : filenames) {
uint64_t file_number;
FileType type;
if (ParseFileName(filename, &file_number, &type) && type == kOptionsFile) {
options_filenames.insert(
{std::numeric_limits<uint64_t>::max() - file_number,
GetName() + "/" + filename});
}
}
// Keeps the latest 2 Options file
const size_t kNumOptionsFilesKept = 2;
DeleteOptionsFilesHelper(options_filenames, kNumOptionsFilesKept,
immutable_db_options_.info_log, GetEnv());
return Status::OK();
#else
return Status::OK();
#endif // !ROCKSDB_LITE
}
Status DBImpl::RenameTempFileToOptionsFile(const std::string& file_name) {
#ifndef ROCKSDB_LITE
Status s;
versions_->options_file_number_ = versions_->NewFileNumber();
std::string options_file_name =
OptionsFileName(GetName(), versions_->options_file_number_);
// Retry if the file name happen to conflict with an existing one.
s = GetEnv()->RenameFile(file_name, options_file_name);
DeleteObsoleteOptionsFiles();
return s;
#else
return Status::OK();
#endif // !ROCKSDB_LITE
}
#ifdef ROCKSDB_USING_THREAD_STATUS
void DBImpl::NewThreadStatusCfInfo(
ColumnFamilyData* cfd) const {
if (immutable_db_options_.enable_thread_tracking) {
ThreadStatusUtil::NewColumnFamilyInfo(this, cfd, cfd->GetName(),
cfd->ioptions()->env);
}
}
void DBImpl::EraseThreadStatusCfInfo(
ColumnFamilyData* cfd) const {
if (immutable_db_options_.enable_thread_tracking) {
ThreadStatusUtil::EraseColumnFamilyInfo(cfd);
}
}
void DBImpl::EraseThreadStatusDbInfo() const {
if (immutable_db_options_.enable_thread_tracking) {
ThreadStatusUtil::EraseDatabaseInfo(this);
}
}
#else
void DBImpl::NewThreadStatusCfInfo(
ColumnFamilyData* cfd) const {
}
void DBImpl::EraseThreadStatusCfInfo(
ColumnFamilyData* cfd) const {
}
void DBImpl::EraseThreadStatusDbInfo() const {
}
#endif // ROCKSDB_USING_THREAD_STATUS
//
// A global method that can dump out the build version
void DumpRocksDBBuildVersion(Logger * log) {
#if !defined(IOS_CROSS_COMPILE)
// if we compile with Xcode, we don't run build_detect_version, so we don't
// generate util/build_version.cc
ROCKS_LOG_HEADER(log, "RocksDB version: %d.%d.%d\n", ROCKSDB_MAJOR,
ROCKSDB_MINOR, ROCKSDB_PATCH);
ROCKS_LOG_HEADER(log, "Git sha %s", rocksdb_build_git_sha);
ROCKS_LOG_HEADER(log, "Compile date %s", rocksdb_build_compile_date);
#endif
}
#ifndef ROCKSDB_LITE
SequenceNumber DBImpl::GetEarliestMemTableSequenceNumber(SuperVersion* sv,
bool include_history) {
// Find the earliest sequence number that we know we can rely on reading
// from the memtable without needing to check sst files.
SequenceNumber earliest_seq =
sv->imm->GetEarliestSequenceNumber(include_history);
if (earliest_seq == kMaxSequenceNumber) {
earliest_seq = sv->mem->GetEarliestSequenceNumber();
}
assert(sv->mem->GetEarliestSequenceNumber() >= earliest_seq);
return earliest_seq;
}
#endif // ROCKSDB_LITE
#ifndef ROCKSDB_LITE
Status DBImpl::GetLatestSequenceForKey(SuperVersion* sv, const Slice& key,
bool cache_only, SequenceNumber* seq,
bool* found_record_for_key) {
Status s;
MergeContext merge_context;
RangeDelAggregator range_del_agg(sv->mem->GetInternalKeyComparator(),
kMaxSequenceNumber);
ReadOptions read_options;
SequenceNumber current_seq = versions_->LastSequence();
LookupKey lkey(key, current_seq);
*seq = kMaxSequenceNumber;
*found_record_for_key = false;
// Check if there is a record for this key in the latest memtable
sv->mem->Get(lkey, nullptr, &s, &merge_context, &range_del_agg, seq,
read_options);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading memtable.
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Unexpected status returned from MemTable::Get: %s\n",
s.ToString().c_str());
return s;
}
if (*seq != kMaxSequenceNumber) {
// Found a sequence number, no need to check immutable memtables
*found_record_for_key = true;
return Status::OK();
}
// Check if there is a record for this key in the immutable memtables
sv->imm->Get(lkey, nullptr, &s, &merge_context, &range_del_agg, seq,
read_options);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading memtable.
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Unexpected status returned from MemTableList::Get: %s\n",
s.ToString().c_str());
return s;
}
if (*seq != kMaxSequenceNumber) {
// Found a sequence number, no need to check memtable history
*found_record_for_key = true;
return Status::OK();
}
// Check if there is a record for this key in the immutable memtables
sv->imm->GetFromHistory(lkey, nullptr, &s, &merge_context, &range_del_agg,
seq, read_options);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading memtable.
ROCKS_LOG_ERROR(
immutable_db_options_.info_log,
"Unexpected status returned from MemTableList::GetFromHistory: %s\n",
s.ToString().c_str());
return s;
}
if (*seq != kMaxSequenceNumber) {
// Found a sequence number, no need to check SST files
*found_record_for_key = true;
return Status::OK();
}
// TODO(agiardullo): possible optimization: consider checking cached
// SST files if cache_only=true?
if (!cache_only) {
// Check tables
sv->current->Get(read_options, lkey, nullptr, &s, &merge_context,
&range_del_agg, nullptr /* value_found */,
found_record_for_key, seq);
if (!(s.ok() || s.IsNotFound() || s.IsMergeInProgress())) {
// unexpected error reading SST files
ROCKS_LOG_ERROR(immutable_db_options_.info_log,
"Unexpected status returned from Version::Get: %s\n",
s.ToString().c_str());
return s;
}
}
return Status::OK();
}
Status DBImpl::IngestExternalFile(
ColumnFamilyHandle* column_family,
const std::vector<std::string>& external_files,
const IngestExternalFileOptions& ingestion_options) {
Status status;
auto cfh = reinterpret_cast<ColumnFamilyHandleImpl*>(column_family);
auto cfd = cfh->cfd();
// Ingest should immediately fail if ingest_behind is requested,
// but the DB doesn't support it.
if (ingestion_options.ingest_behind) {
if (!immutable_db_options_.allow_ingest_behind) {
return Status::InvalidArgument(
"Can't ingest_behind file in DB with allow_ingest_behind=false");
}
}
ExternalSstFileIngestionJob ingestion_job(env_, versions_.get(), cfd,
immutable_db_options_, env_options_,
&snapshots_, ingestion_options);
std::list<uint64_t>::iterator pending_output_elem;
{
InstrumentedMutexLock l(&mutex_);
if (!bg_error_.ok()) {
// Don't ingest files when there is a bg_error
return bg_error_;
}
// Make sure that bg cleanup wont delete the files that we are ingesting
pending_output_elem = CaptureCurrentFileNumberInPendingOutputs();
}
status = ingestion_job.Prepare(external_files);
if (!status.ok()) {
return status;
}
TEST_SYNC_POINT("DBImpl::AddFile:Start");
{
// Lock db mutex
InstrumentedMutexLock l(&mutex_);
TEST_SYNC_POINT("DBImpl::AddFile:MutexLock");
// Stop writes to the DB by entering both write threads
WriteThread::Writer w;
write_thread_.EnterUnbatched(&w, &mutex_);
WriteThread::Writer nonmem_w;
if (concurrent_prepare_) {
nonmem_write_thread_.EnterUnbatched(&nonmem_w, &mutex_);
}
num_running_ingest_file_++;
// We cannot ingest a file into a dropped CF
if (cfd->IsDropped()) {
status = Status::InvalidArgument(
"Cannot ingest an external file into a dropped CF");
}
// Figure out if we need to flush the memtable first
if (status.ok()) {
bool need_flush = false;
status = ingestion_job.NeedsFlush(&need_flush);
TEST_SYNC_POINT_CALLBACK("DBImpl::IngestExternalFile:NeedFlush",
&need_flush);
if (status.ok() && need_flush) {
mutex_.Unlock();
status = FlushMemTable(cfd, FlushOptions(), true /* writes_stopped */);
mutex_.Lock();
}
}
// Run the ingestion job
if (status.ok()) {
status = ingestion_job.Run();
}
// Install job edit [Mutex will be unlocked here]
auto mutable_cf_options = cfd->GetLatestMutableCFOptions();
if (status.ok()) {
status =
versions_->LogAndApply(cfd, *mutable_cf_options, ingestion_job.edit(),
&mutex_, directories_.GetDbDir());
}
if (status.ok()) {
delete InstallSuperVersionAndScheduleWork(cfd, nullptr,
*mutable_cf_options);
}
// Resume writes to the DB
if (concurrent_prepare_) {
nonmem_write_thread_.ExitUnbatched(&nonmem_w);
}
write_thread_.ExitUnbatched(&w);
// Update stats
if (status.ok()) {
ingestion_job.UpdateStats();
}
ReleaseFileNumberFromPendingOutputs(pending_output_elem);
num_running_ingest_file_--;
if (num_running_ingest_file_ == 0) {
bg_cv_.SignalAll();
}
TEST_SYNC_POINT("DBImpl::AddFile:MutexUnlock");
}
// mutex_ is unlocked here
// Cleanup
ingestion_job.Cleanup(status);
if (status.ok()) {
NotifyOnExternalFileIngested(cfd, ingestion_job);
}
return status;
}
Status DBImpl::VerifyChecksum() {
Status s;
Options options;
EnvOptions env_options;
std::vector<ColumnFamilyData*> cfd_list;
{
InstrumentedMutexLock l(&mutex_);
for (auto cfd : *versions_->GetColumnFamilySet()) {
if (!cfd->IsDropped() && cfd->initialized()) {
cfd->Ref();
cfd_list.push_back(cfd);
}
}
}
std::vector<SuperVersion*> sv_list;
for (auto cfd : cfd_list) {
sv_list.push_back(cfd->GetReferencedSuperVersion(&mutex_));
}
for (auto& sv : sv_list) {
VersionStorageInfo* vstorage = sv->current->storage_info();
for (int i = 0; i < vstorage->num_non_empty_levels() && s.ok(); i++) {
for (size_t j = 0; j < vstorage->LevelFilesBrief(i).num_files && s.ok();
j++) {
const auto& fd = vstorage->LevelFilesBrief(i).files[j].fd;
std::string fname = TableFileName(immutable_db_options_.db_paths,
fd.GetNumber(), fd.GetPathId());
s = rocksdb::VerifySstFileChecksum(options, env_options, fname);
}
}
if (!s.ok()) {
break;
}
}
{
InstrumentedMutexLock l(&mutex_);
for (auto sv : sv_list) {
if (sv && sv->Unref()) {
sv->Cleanup();
delete sv;
}
}
for (auto cfd : cfd_list) {
cfd->Unref();
}
}
return s;
}
void DBImpl::NotifyOnExternalFileIngested(
ColumnFamilyData* cfd, const ExternalSstFileIngestionJob& ingestion_job) {
#ifndef ROCKSDB_LITE
if (immutable_db_options_.listeners.empty()) {
return;
}
for (const IngestedFileInfo& f : ingestion_job.files_to_ingest()) {
ExternalFileIngestionInfo info;
info.cf_name = cfd->GetName();
info.external_file_path = f.external_file_path;
info.internal_file_path = f.internal_file_path;
info.global_seqno = f.assigned_seqno;
info.table_properties = f.table_properties;
for (auto listener : immutable_db_options_.listeners) {
listener->OnExternalFileIngested(this, info);
}
}
#endif
}
void DBImpl::WaitForIngestFile() {
mutex_.AssertHeld();
while (num_running_ingest_file_ > 0) {
bg_cv_.Wait();
}
}
#endif // ROCKSDB_LITE
} // namespace rocksdb