64b6452e0c
Summary: Merging iterator invokes InternalKeyComparator.Compare() frequently to heap merge. By making InternalKeyComparator final and merging iterator to directly use InternalKeyComparator rather than through Iterator interface, we can give compiler a choice to avoid one more virtual function call if possible. I ran readseq benchmark in memory-only use case to make sure the performance at least doesn't regress. I have to disable the final key word in debug build, as a hack test class depends on overriding the class. Closes https://github.com/facebook/rocksdb/pull/2860 Differential Revision: D5800461 Pulled By: siying fbshipit-source-id: ab876f22a09bb5c560740911412336e0e25ccb53
601 lines
19 KiB
C++
601 lines
19 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#pragma once
|
|
#include <stdio.h>
|
|
#include <string>
|
|
#include <utility>
|
|
#include "rocksdb/comparator.h"
|
|
#include "rocksdb/db.h"
|
|
#include "rocksdb/filter_policy.h"
|
|
#include "rocksdb/slice.h"
|
|
#include "rocksdb/slice_transform.h"
|
|
#include "rocksdb/table.h"
|
|
#include "rocksdb/types.h"
|
|
#include "util/coding.h"
|
|
#include "util/logging.h"
|
|
|
|
namespace rocksdb {
|
|
|
|
class InternalKey;
|
|
|
|
// Value types encoded as the last component of internal keys.
|
|
// DO NOT CHANGE THESE ENUM VALUES: they are embedded in the on-disk
|
|
// data structures.
|
|
// The highest bit of the value type needs to be reserved to SST tables
|
|
// for them to do more flexible encoding.
|
|
enum ValueType : unsigned char {
|
|
kTypeDeletion = 0x0,
|
|
kTypeValue = 0x1,
|
|
kTypeMerge = 0x2,
|
|
kTypeLogData = 0x3, // WAL only.
|
|
kTypeColumnFamilyDeletion = 0x4, // WAL only.
|
|
kTypeColumnFamilyValue = 0x5, // WAL only.
|
|
kTypeColumnFamilyMerge = 0x6, // WAL only.
|
|
kTypeSingleDeletion = 0x7,
|
|
kTypeColumnFamilySingleDeletion = 0x8, // WAL only.
|
|
kTypeBeginPrepareXID = 0x9, // WAL only.
|
|
kTypeEndPrepareXID = 0xA, // WAL only.
|
|
kTypeCommitXID = 0xB, // WAL only.
|
|
kTypeRollbackXID = 0xC, // WAL only.
|
|
kTypeNoop = 0xD, // WAL only.
|
|
kTypeColumnFamilyRangeDeletion = 0xE, // WAL only.
|
|
kTypeRangeDeletion = 0xF, // meta block
|
|
kMaxValue = 0x7F // Not used for storing records.
|
|
};
|
|
|
|
// Defined in dbformat.cc
|
|
extern const ValueType kValueTypeForSeek;
|
|
extern const ValueType kValueTypeForSeekForPrev;
|
|
|
|
// Checks whether a type is an inline value type
|
|
// (i.e. a type used in memtable skiplist and sst file datablock).
|
|
inline bool IsValueType(ValueType t) {
|
|
return t <= kTypeMerge || t == kTypeSingleDeletion;
|
|
}
|
|
|
|
// Checks whether a type is from user operation
|
|
// kTypeRangeDeletion is in meta block so this API is separated from above
|
|
inline bool IsExtendedValueType(ValueType t) {
|
|
return IsValueType(t) || t == kTypeRangeDeletion;
|
|
}
|
|
|
|
// We leave eight bits empty at the bottom so a type and sequence#
|
|
// can be packed together into 64-bits.
|
|
static const SequenceNumber kMaxSequenceNumber =
|
|
((0x1ull << 56) - 1);
|
|
|
|
static const SequenceNumber kDisableGlobalSequenceNumber = port::kMaxUint64;
|
|
|
|
struct ParsedInternalKey {
|
|
Slice user_key;
|
|
SequenceNumber sequence;
|
|
ValueType type;
|
|
|
|
ParsedInternalKey()
|
|
: sequence(kMaxSequenceNumber) // Make code analyzer happy
|
|
{} // Intentionally left uninitialized (for speed)
|
|
ParsedInternalKey(const Slice& u, const SequenceNumber& seq, ValueType t)
|
|
: user_key(u), sequence(seq), type(t) { }
|
|
std::string DebugString(bool hex = false) const;
|
|
|
|
void clear() {
|
|
user_key.clear();
|
|
sequence = 0;
|
|
type = kTypeDeletion;
|
|
}
|
|
};
|
|
|
|
// Return the length of the encoding of "key".
|
|
inline size_t InternalKeyEncodingLength(const ParsedInternalKey& key) {
|
|
return key.user_key.size() + 8;
|
|
}
|
|
|
|
// Pack a sequence number and a ValueType into a uint64_t
|
|
extern uint64_t PackSequenceAndType(uint64_t seq, ValueType t);
|
|
|
|
// Given the result of PackSequenceAndType, store the sequence number in *seq
|
|
// and the ValueType in *t.
|
|
extern void UnPackSequenceAndType(uint64_t packed, uint64_t* seq, ValueType* t);
|
|
|
|
// Append the serialization of "key" to *result.
|
|
extern void AppendInternalKey(std::string* result,
|
|
const ParsedInternalKey& key);
|
|
// Serialized internal key consists of user key followed by footer.
|
|
// This function appends the footer to *result, assuming that *result already
|
|
// contains the user key at the end.
|
|
extern void AppendInternalKeyFooter(std::string* result, SequenceNumber s,
|
|
ValueType t);
|
|
|
|
// Attempt to parse an internal key from "internal_key". On success,
|
|
// stores the parsed data in "*result", and returns true.
|
|
//
|
|
// On error, returns false, leaves "*result" in an undefined state.
|
|
extern bool ParseInternalKey(const Slice& internal_key,
|
|
ParsedInternalKey* result);
|
|
|
|
// Returns the user key portion of an internal key.
|
|
inline Slice ExtractUserKey(const Slice& internal_key) {
|
|
assert(internal_key.size() >= 8);
|
|
return Slice(internal_key.data(), internal_key.size() - 8);
|
|
}
|
|
|
|
inline ValueType ExtractValueType(const Slice& internal_key) {
|
|
assert(internal_key.size() >= 8);
|
|
const size_t n = internal_key.size();
|
|
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
|
|
unsigned char c = num & 0xff;
|
|
return static_cast<ValueType>(c);
|
|
}
|
|
|
|
// A comparator for internal keys that uses a specified comparator for
|
|
// the user key portion and breaks ties by decreasing sequence number.
|
|
class InternalKeyComparator
|
|
#ifdef NDEBUG
|
|
final
|
|
#endif
|
|
: public Comparator {
|
|
private:
|
|
const Comparator* user_comparator_;
|
|
std::string name_;
|
|
public:
|
|
explicit InternalKeyComparator(const Comparator* c) : user_comparator_(c),
|
|
name_("rocksdb.InternalKeyComparator:" +
|
|
std::string(user_comparator_->Name())) {
|
|
}
|
|
virtual ~InternalKeyComparator() {}
|
|
|
|
virtual const char* Name() const override;
|
|
virtual int Compare(const Slice& a, const Slice& b) const override;
|
|
virtual void FindShortestSeparator(std::string* start,
|
|
const Slice& limit) const override;
|
|
virtual void FindShortSuccessor(std::string* key) const override;
|
|
|
|
const Comparator* user_comparator() const { return user_comparator_; }
|
|
|
|
int Compare(const InternalKey& a, const InternalKey& b) const;
|
|
int Compare(const ParsedInternalKey& a, const ParsedInternalKey& b) const;
|
|
virtual const Comparator* GetRootComparator() const override {
|
|
return user_comparator_->GetRootComparator();
|
|
}
|
|
};
|
|
|
|
// Modules in this directory should keep internal keys wrapped inside
|
|
// the following class instead of plain strings so that we do not
|
|
// incorrectly use string comparisons instead of an InternalKeyComparator.
|
|
class InternalKey {
|
|
private:
|
|
std::string rep_;
|
|
public:
|
|
InternalKey() { } // Leave rep_ as empty to indicate it is invalid
|
|
InternalKey(const Slice& _user_key, SequenceNumber s, ValueType t) {
|
|
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, s, t));
|
|
}
|
|
|
|
// sets the internal key to be bigger or equal to all internal keys with this
|
|
// user key
|
|
void SetMaxPossibleForUserKey(const Slice& _user_key) {
|
|
AppendInternalKey(&rep_, ParsedInternalKey(_user_key, kMaxSequenceNumber,
|
|
kValueTypeForSeek));
|
|
}
|
|
|
|
// sets the internal key to be smaller or equal to all internal keys with this
|
|
// user key
|
|
void SetMinPossibleForUserKey(const Slice& _user_key) {
|
|
AppendInternalKey(
|
|
&rep_, ParsedInternalKey(_user_key, 0, static_cast<ValueType>(0)));
|
|
}
|
|
|
|
bool Valid() const {
|
|
ParsedInternalKey parsed;
|
|
return ParseInternalKey(Slice(rep_), &parsed);
|
|
}
|
|
|
|
void DecodeFrom(const Slice& s) { rep_.assign(s.data(), s.size()); }
|
|
Slice Encode() const {
|
|
assert(!rep_.empty());
|
|
return rep_;
|
|
}
|
|
|
|
Slice user_key() const { return ExtractUserKey(rep_); }
|
|
size_t size() { return rep_.size(); }
|
|
|
|
void Set(const Slice& _user_key, SequenceNumber s, ValueType t) {
|
|
SetFrom(ParsedInternalKey(_user_key, s, t));
|
|
}
|
|
|
|
void SetFrom(const ParsedInternalKey& p) {
|
|
rep_.clear();
|
|
AppendInternalKey(&rep_, p);
|
|
}
|
|
|
|
void Clear() { rep_.clear(); }
|
|
|
|
// The underlying representation.
|
|
// Intended only to be used together with ConvertFromUserKey().
|
|
std::string* rep() { return &rep_; }
|
|
|
|
// Assuming that *rep() contains a user key, this method makes internal key
|
|
// out of it in-place. This saves a memcpy compared to Set()/SetFrom().
|
|
void ConvertFromUserKey(SequenceNumber s, ValueType t) {
|
|
AppendInternalKeyFooter(&rep_, s, t);
|
|
}
|
|
|
|
std::string DebugString(bool hex = false) const;
|
|
};
|
|
|
|
inline int InternalKeyComparator::Compare(
|
|
const InternalKey& a, const InternalKey& b) const {
|
|
return Compare(a.Encode(), b.Encode());
|
|
}
|
|
|
|
inline bool ParseInternalKey(const Slice& internal_key,
|
|
ParsedInternalKey* result) {
|
|
const size_t n = internal_key.size();
|
|
if (n < 8) return false;
|
|
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
|
|
unsigned char c = num & 0xff;
|
|
result->sequence = num >> 8;
|
|
result->type = static_cast<ValueType>(c);
|
|
assert(result->type <= ValueType::kMaxValue);
|
|
result->user_key = Slice(internal_key.data(), n - 8);
|
|
return IsExtendedValueType(result->type);
|
|
}
|
|
|
|
// Update the sequence number in the internal key.
|
|
// Guarantees not to invalidate ikey.data().
|
|
inline void UpdateInternalKey(std::string* ikey, uint64_t seq, ValueType t) {
|
|
size_t ikey_sz = ikey->size();
|
|
assert(ikey_sz >= 8);
|
|
uint64_t newval = (seq << 8) | t;
|
|
|
|
// Note: Since C++11, strings are guaranteed to be stored contiguously and
|
|
// string::operator[]() is guaranteed not to change ikey.data().
|
|
EncodeFixed64(&(*ikey)[ikey_sz - 8], newval);
|
|
}
|
|
|
|
// Get the sequence number from the internal key
|
|
inline uint64_t GetInternalKeySeqno(const Slice& internal_key) {
|
|
const size_t n = internal_key.size();
|
|
assert(n >= 8);
|
|
uint64_t num = DecodeFixed64(internal_key.data() + n - 8);
|
|
return num >> 8;
|
|
}
|
|
|
|
|
|
// A helper class useful for DBImpl::Get()
|
|
class LookupKey {
|
|
public:
|
|
// Initialize *this for looking up user_key at a snapshot with
|
|
// the specified sequence number.
|
|
LookupKey(const Slice& _user_key, SequenceNumber sequence);
|
|
|
|
~LookupKey();
|
|
|
|
// Return a key suitable for lookup in a MemTable.
|
|
Slice memtable_key() const {
|
|
return Slice(start_, static_cast<size_t>(end_ - start_));
|
|
}
|
|
|
|
// Return an internal key (suitable for passing to an internal iterator)
|
|
Slice internal_key() const {
|
|
return Slice(kstart_, static_cast<size_t>(end_ - kstart_));
|
|
}
|
|
|
|
// Return the user key
|
|
Slice user_key() const {
|
|
return Slice(kstart_, static_cast<size_t>(end_ - kstart_ - 8));
|
|
}
|
|
|
|
private:
|
|
// We construct a char array of the form:
|
|
// klength varint32 <-- start_
|
|
// userkey char[klength] <-- kstart_
|
|
// tag uint64
|
|
// <-- end_
|
|
// The array is a suitable MemTable key.
|
|
// The suffix starting with "userkey" can be used as an InternalKey.
|
|
const char* start_;
|
|
const char* kstart_;
|
|
const char* end_;
|
|
char space_[200]; // Avoid allocation for short keys
|
|
|
|
// No copying allowed
|
|
LookupKey(const LookupKey&);
|
|
void operator=(const LookupKey&);
|
|
};
|
|
|
|
inline LookupKey::~LookupKey() {
|
|
if (start_ != space_) delete[] start_;
|
|
}
|
|
|
|
class IterKey {
|
|
public:
|
|
IterKey()
|
|
: buf_(space_),
|
|
buf_size_(sizeof(space_)),
|
|
key_(buf_),
|
|
key_size_(0),
|
|
is_user_key_(true) {}
|
|
|
|
~IterKey() { ResetBuffer(); }
|
|
|
|
Slice GetInternalKey() const {
|
|
assert(!IsUserKey());
|
|
return Slice(key_, key_size_);
|
|
}
|
|
|
|
Slice GetUserKey() const {
|
|
if (IsUserKey()) {
|
|
return Slice(key_, key_size_);
|
|
} else {
|
|
assert(key_size_ >= 8);
|
|
return Slice(key_, key_size_ - 8);
|
|
}
|
|
}
|
|
|
|
size_t Size() const { return key_size_; }
|
|
|
|
void Clear() { key_size_ = 0; }
|
|
|
|
// Append "non_shared_data" to its back, from "shared_len"
|
|
// This function is used in Block::Iter::ParseNextKey
|
|
// shared_len: bytes in [0, shard_len-1] would be remained
|
|
// non_shared_data: data to be append, its length must be >= non_shared_len
|
|
void TrimAppend(const size_t shared_len, const char* non_shared_data,
|
|
const size_t non_shared_len) {
|
|
assert(shared_len <= key_size_);
|
|
size_t total_size = shared_len + non_shared_len;
|
|
|
|
if (IsKeyPinned() /* key is not in buf_ */) {
|
|
// Copy the key from external memory to buf_ (copy shared_len bytes)
|
|
EnlargeBufferIfNeeded(total_size);
|
|
memcpy(buf_, key_, shared_len);
|
|
} else if (total_size > buf_size_) {
|
|
// Need to allocate space, delete previous space
|
|
char* p = new char[total_size];
|
|
memcpy(p, key_, shared_len);
|
|
|
|
if (buf_ != space_) {
|
|
delete[] buf_;
|
|
}
|
|
|
|
buf_ = p;
|
|
buf_size_ = total_size;
|
|
}
|
|
|
|
memcpy(buf_ + shared_len, non_shared_data, non_shared_len);
|
|
key_ = buf_;
|
|
key_size_ = total_size;
|
|
}
|
|
|
|
Slice SetUserKey(const Slice& key, bool copy = true) {
|
|
is_user_key_ = true;
|
|
return SetKeyImpl(key, copy);
|
|
}
|
|
|
|
Slice SetInternalKey(const Slice& key, bool copy = true) {
|
|
is_user_key_ = false;
|
|
return SetKeyImpl(key, copy);
|
|
}
|
|
|
|
// Copies the content of key, updates the reference to the user key in ikey
|
|
// and returns a Slice referencing the new copy.
|
|
Slice SetInternalKey(const Slice& key, ParsedInternalKey* ikey) {
|
|
size_t key_n = key.size();
|
|
assert(key_n >= 8);
|
|
SetInternalKey(key);
|
|
ikey->user_key = Slice(key_, key_n - 8);
|
|
return Slice(key_, key_n);
|
|
}
|
|
|
|
// Copy the key into IterKey own buf_
|
|
void OwnKey() {
|
|
assert(IsKeyPinned() == true);
|
|
|
|
Reserve(key_size_);
|
|
memcpy(buf_, key_, key_size_);
|
|
key_ = buf_;
|
|
}
|
|
|
|
// Update the sequence number in the internal key. Guarantees not to
|
|
// invalidate slices to the key (and the user key).
|
|
void UpdateInternalKey(uint64_t seq, ValueType t) {
|
|
assert(!IsKeyPinned());
|
|
assert(key_size_ >= 8);
|
|
uint64_t newval = (seq << 8) | t;
|
|
EncodeFixed64(&buf_[key_size_ - 8], newval);
|
|
}
|
|
|
|
bool IsKeyPinned() const { return (key_ != buf_); }
|
|
|
|
void SetInternalKey(const Slice& key_prefix, const Slice& user_key,
|
|
SequenceNumber s,
|
|
ValueType value_type = kValueTypeForSeek) {
|
|
size_t psize = key_prefix.size();
|
|
size_t usize = user_key.size();
|
|
EnlargeBufferIfNeeded(psize + usize + sizeof(uint64_t));
|
|
if (psize > 0) {
|
|
memcpy(buf_, key_prefix.data(), psize);
|
|
}
|
|
memcpy(buf_ + psize, user_key.data(), usize);
|
|
EncodeFixed64(buf_ + usize + psize, PackSequenceAndType(s, value_type));
|
|
|
|
key_ = buf_;
|
|
key_size_ = psize + usize + sizeof(uint64_t);
|
|
is_user_key_ = false;
|
|
}
|
|
|
|
void SetInternalKey(const Slice& user_key, SequenceNumber s,
|
|
ValueType value_type = kValueTypeForSeek) {
|
|
SetInternalKey(Slice(), user_key, s, value_type);
|
|
}
|
|
|
|
void Reserve(size_t size) {
|
|
EnlargeBufferIfNeeded(size);
|
|
key_size_ = size;
|
|
}
|
|
|
|
void SetInternalKey(const ParsedInternalKey& parsed_key) {
|
|
SetInternalKey(Slice(), parsed_key);
|
|
}
|
|
|
|
void SetInternalKey(const Slice& key_prefix,
|
|
const ParsedInternalKey& parsed_key_suffix) {
|
|
SetInternalKey(key_prefix, parsed_key_suffix.user_key,
|
|
parsed_key_suffix.sequence, parsed_key_suffix.type);
|
|
}
|
|
|
|
void EncodeLengthPrefixedKey(const Slice& key) {
|
|
auto size = key.size();
|
|
EnlargeBufferIfNeeded(size + static_cast<size_t>(VarintLength(size)));
|
|
char* ptr = EncodeVarint32(buf_, static_cast<uint32_t>(size));
|
|
memcpy(ptr, key.data(), size);
|
|
key_ = buf_;
|
|
is_user_key_ = true;
|
|
}
|
|
|
|
bool IsUserKey() const { return is_user_key_; }
|
|
|
|
private:
|
|
char* buf_;
|
|
size_t buf_size_;
|
|
const char* key_;
|
|
size_t key_size_;
|
|
char space_[32]; // Avoid allocation for short keys
|
|
bool is_user_key_;
|
|
|
|
Slice SetKeyImpl(const Slice& key, bool copy) {
|
|
size_t size = key.size();
|
|
if (copy) {
|
|
// Copy key to buf_
|
|
EnlargeBufferIfNeeded(size);
|
|
memcpy(buf_, key.data(), size);
|
|
key_ = buf_;
|
|
} else {
|
|
// Update key_ to point to external memory
|
|
key_ = key.data();
|
|
}
|
|
key_size_ = size;
|
|
return Slice(key_, key_size_);
|
|
}
|
|
|
|
void ResetBuffer() {
|
|
if (buf_ != space_) {
|
|
delete[] buf_;
|
|
buf_ = space_;
|
|
}
|
|
buf_size_ = sizeof(space_);
|
|
key_size_ = 0;
|
|
}
|
|
|
|
// Enlarge the buffer size if needed based on key_size.
|
|
// By default, static allocated buffer is used. Once there is a key
|
|
// larger than the static allocated buffer, another buffer is dynamically
|
|
// allocated, until a larger key buffer is requested. In that case, we
|
|
// reallocate buffer and delete the old one.
|
|
void EnlargeBufferIfNeeded(size_t key_size) {
|
|
// If size is smaller than buffer size, continue using current buffer,
|
|
// or the static allocated one, as default
|
|
if (key_size > buf_size_) {
|
|
// Need to enlarge the buffer.
|
|
ResetBuffer();
|
|
buf_ = new char[key_size];
|
|
buf_size_ = key_size;
|
|
}
|
|
}
|
|
|
|
// No copying allowed
|
|
IterKey(const IterKey&) = delete;
|
|
void operator=(const IterKey&) = delete;
|
|
};
|
|
|
|
class InternalKeySliceTransform : public SliceTransform {
|
|
public:
|
|
explicit InternalKeySliceTransform(const SliceTransform* transform)
|
|
: transform_(transform) {}
|
|
|
|
virtual const char* Name() const override { return transform_->Name(); }
|
|
|
|
virtual Slice Transform(const Slice& src) const override {
|
|
auto user_key = ExtractUserKey(src);
|
|
return transform_->Transform(user_key);
|
|
}
|
|
|
|
virtual bool InDomain(const Slice& src) const override {
|
|
auto user_key = ExtractUserKey(src);
|
|
return transform_->InDomain(user_key);
|
|
}
|
|
|
|
virtual bool InRange(const Slice& dst) const override {
|
|
auto user_key = ExtractUserKey(dst);
|
|
return transform_->InRange(user_key);
|
|
}
|
|
|
|
const SliceTransform* user_prefix_extractor() const { return transform_; }
|
|
|
|
private:
|
|
// Like comparator, InternalKeySliceTransform will not take care of the
|
|
// deletion of transform_
|
|
const SliceTransform* const transform_;
|
|
};
|
|
|
|
// Read the key of a record from a write batch.
|
|
// if this record represent the default column family then cf_record
|
|
// must be passed as false, otherwise it must be passed as true.
|
|
extern bool ReadKeyFromWriteBatchEntry(Slice* input, Slice* key,
|
|
bool cf_record);
|
|
|
|
// Read record from a write batch piece from input.
|
|
// tag, column_family, key, value and blob are return values. Callers own the
|
|
// Slice they point to.
|
|
// Tag is defined as ValueType.
|
|
// input will be advanced to after the record.
|
|
extern Status ReadRecordFromWriteBatch(Slice* input, char* tag,
|
|
uint32_t* column_family, Slice* key,
|
|
Slice* value, Slice* blob, Slice* xid);
|
|
|
|
// When user call DeleteRange() to delete a range of keys,
|
|
// we will store a serialized RangeTombstone in MemTable and SST.
|
|
// the struct here is a easy-understood form
|
|
// start/end_key_ is the start/end user key of the range to be deleted
|
|
struct RangeTombstone {
|
|
Slice start_key_;
|
|
Slice end_key_;
|
|
SequenceNumber seq_;
|
|
RangeTombstone() = default;
|
|
RangeTombstone(Slice sk, Slice ek, SequenceNumber sn)
|
|
: start_key_(sk), end_key_(ek), seq_(sn) {}
|
|
|
|
RangeTombstone(ParsedInternalKey parsed_key, Slice value) {
|
|
start_key_ = parsed_key.user_key;
|
|
seq_ = parsed_key.sequence;
|
|
end_key_ = value;
|
|
}
|
|
|
|
// be careful to use Serialize(), allocates new memory
|
|
std::pair<InternalKey, Slice> Serialize() const {
|
|
auto key = InternalKey(start_key_, seq_, kTypeRangeDeletion);
|
|
Slice value = end_key_;
|
|
return std::make_pair(std::move(key), std::move(value));
|
|
}
|
|
|
|
// be careful to use SerializeKey(), allocates new memory
|
|
InternalKey SerializeKey() const {
|
|
return InternalKey(start_key_, seq_, kTypeRangeDeletion);
|
|
}
|
|
|
|
// be careful to use SerializeEndKey(), allocates new memory
|
|
InternalKey SerializeEndKey() const {
|
|
return InternalKey(end_key_, seq_, kTypeRangeDeletion);
|
|
}
|
|
};
|
|
|
|
} // namespace rocksdb
|