rocksdb/include/rocksdb/options.h
Igor Canadi ccdb93e775 Merge branch 'master' into columnfamilies
Conflicts:
	db/db_impl.cc
	db/db_impl.h
	db/memtable_list.cc
	db/memtable_list.h
	db/version_set.cc
	db/version_set.h
2014-02-12 14:01:30 -08:00

870 lines
35 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef STORAGE_ROCKSDB_INCLUDE_OPTIONS_H_
#define STORAGE_ROCKSDB_INCLUDE_OPTIONS_H_
#include <stddef.h>
#include <string>
#include <memory>
#include <vector>
#include <stdint.h>
#include "rocksdb/universal_compaction.h"
namespace rocksdb {
class Cache;
class CompactionFilter;
class CompactionFilterFactory;
class Comparator;
class Env;
class FilterPolicy;
class Logger;
class MergeOperator;
class Snapshot;
class TableFactory;
class MemTableRepFactory;
class TablePropertiesCollector;
class Slice;
class SliceTransform;
class Statistics;
class InternalKeyComparator;
using std::shared_ptr;
// DB contents are stored in a set of blocks, each of which holds a
// sequence of key,value pairs. Each block may be compressed before
// being stored in a file. The following enum describes which
// compression method (if any) is used to compress a block.
enum CompressionType : char {
// NOTE: do not change the values of existing entries, as these are
// part of the persistent format on disk.
kNoCompression = 0x0, kSnappyCompression = 0x1, kZlibCompression = 0x2,
kBZip2Compression = 0x3, kLZ4Compression = 0x4, kLZ4HCCompression = 0x5
};
enum CompactionStyle : char {
kCompactionStyleLevel = 0x0, // level based compaction style
kCompactionStyleUniversal = 0x1 // Universal compaction style
};
// Compression options for different compression algorithms like Zlib
struct CompressionOptions {
int window_bits;
int level;
int strategy;
CompressionOptions() : window_bits(-14), level(-1), strategy(0) {}
CompressionOptions(int wbits, int lev, int strategy)
: window_bits(wbits), level(lev), strategy(strategy) {}
};
enum UpdateStatus { // Return status For inplace update callback
UPDATE_FAILED = 0, // Nothing to update
UPDATED_INPLACE = 1, // Value updated inplace
UPDATED = 2, // No inplace update. Merged value set
};
struct Options;
struct ColumnFamilyOptions {
// -------------------
// Parameters that affect behavior
// Comparator used to define the order of keys in the table.
// Default: a comparator that uses lexicographic byte-wise ordering
//
// REQUIRES: The client must ensure that the comparator supplied
// here has the same name and orders keys *exactly* the same as the
// comparator provided to previous open calls on the same DB.
const Comparator* comparator;
// REQUIRES: The client must provide a merge operator if Merge operation
// needs to be accessed. Calling Merge on a DB without a merge operator
// would result in Status::NotSupported. The client must ensure that the
// merge operator supplied here has the same name and *exactly* the same
// semantics as the merge operator provided to previous open calls on
// the same DB. The only exception is reserved for upgrade, where a DB
// previously without a merge operator is introduced to Merge operation
// for the first time. It's necessary to specify a merge operator when
// openning the DB in this case.
// Default: nullptr
shared_ptr<MergeOperator> merge_operator;
// A single CompactionFilter instance to call into during compaction.
// Allows an application to modify/delete a key-value during background
// compaction.
//
// If the client requires a new compaction filter to be used for different
// compaction runs, it can specify compaction_filter_factory instead of this
// option. The client should specify only one of the two.
// compaction_filter takes precedence over compaction_filter_factory if
// client specifies both.
//
// If multithreaded compaction is being used, the supplied CompactionFilter
// instance may be used from different threads concurrently and so should be
// thread-safe.
//
// Default: nullptr
const CompactionFilter* compaction_filter;
// This is a factory that provides compaction filter objects which allow
// an application to modify/delete a key-value during background compaction.
//
// A new filter will be created on each compaction run. If multithreaded
// compaction is being used, each created CompactionFilter will only be used
// from a single thread and so does not need to be thread-safe.
//
// Default: a factory that doesn't provide any object
std::shared_ptr<CompactionFilterFactory> compaction_filter_factory;
// -------------------
// Parameters that affect performance
// Amount of data to build up in memory (backed by an unsorted log
// on disk) before converting to a sorted on-disk file.
//
// Larger values increase performance, especially during bulk loads.
// Up to max_write_buffer_number write buffers may be held in memory
// at the same time,
// so you may wish to adjust this parameter to control memory usage.
// Also, a larger write buffer will result in a longer recovery time
// the next time the database is opened.
//
// Default: 4MB
size_t write_buffer_size;
// The maximum number of write buffers that are built up in memory.
// The default is 2, so that when 1 write buffer is being flushed to
// storage, new writes can continue to the other write buffer.
// Default: 2
int max_write_buffer_number;
// The minimum number of write buffers that will be merged together
// before writing to storage. If set to 1, then
// all write buffers are fushed to L0 as individual files and this increases
// read amplification because a get request has to check in all of these
// files. Also, an in-memory merge may result in writing lesser
// data to storage if there are duplicate records in each of these
// individual write buffers. Default: 1
int min_write_buffer_number_to_merge;
// Control over blocks (user data is stored in a set of blocks, and
// a block is the unit of reading from disk).
// If non-NULL use the specified cache for blocks.
// If NULL, rocksdb will automatically create and use an 8MB internal cache.
// Default: nullptr
shared_ptr<Cache> block_cache;
// If non-NULL use the specified cache for compressed blocks.
// If NULL, rocksdb will not use a compressed block cache.
// Default: nullptr
shared_ptr<Cache> block_cache_compressed;
// Approximate size of user data packed per block. Note that the
// block size specified here corresponds to uncompressed data. The
// actual size of the unit read from disk may be smaller if
// compression is enabled. This parameter can be changed dynamically.
//
// Default: 4K
size_t block_size;
// Number of keys between restart points for delta encoding of keys.
// This parameter can be changed dynamically. Most clients should
// leave this parameter alone.
//
// Default: 16
int block_restart_interval;
// Compress blocks using the specified compression algorithm. This
// parameter can be changed dynamically.
//
// Default: kSnappyCompression, which gives lightweight but fast
// compression.
//
// Typical speeds of kSnappyCompression on an Intel(R) Core(TM)2 2.4GHz:
// ~200-500MB/s compression
// ~400-800MB/s decompression
// Note that these speeds are significantly faster than most
// persistent storage speeds, and therefore it is typically never
// worth switching to kNoCompression. Even if the input data is
// incompressible, the kSnappyCompression implementation will
// efficiently detect that and will switch to uncompressed mode.
CompressionType compression;
// Different levels can have different compression policies. There
// are cases where most lower levels would like to quick compression
// algorithm while the higher levels (which have more data) use
// compression algorithms that have better compression but could
// be slower. This array, if non nullptr, should have an entry for
// each level of the database. This array, if non nullptr, overides the
// value specified in the previous field 'compression'. The caller is
// reponsible for allocating memory and initializing the values in it
// before invoking Open(). The caller is responsible for freeing this
// array and it could be freed anytime after the return from Open().
// This could have been a std::vector but that makes the equivalent
// java/C api hard to construct.
std::vector<CompressionType> compression_per_level;
// different options for compression algorithms
CompressionOptions compression_opts;
// If non-nullptr, use the specified filter policy to reduce disk reads.
// Many applications will benefit from passing the result of
// NewBloomFilterPolicy() here.
//
// Default: nullptr
const FilterPolicy* filter_policy;
// If non-nullptr, use the specified function to determine the
// prefixes for keys. These prefixes will be placed in the filter.
// Depending on the workload, this can reduce the number of read-IOP
// cost for scans when a prefix is passed via ReadOptions to
// db.NewIterator(). For prefix filtering to work properly,
// "prefix_extractor" and "comparator" must be such that the following
// properties hold:
//
// 1) key.starts_with(prefix(key))
// 2) Compare(prefix(key), key) <= 0.
// 3) If Compare(k1, k2) <= 0, then Compare(prefix(k1), prefix(k2)) <= 0
// 4) prefix(prefix(key)) == prefix(key)
//
// Default: nullptr
const SliceTransform* prefix_extractor;
// If true, place whole keys in the filter (not just prefixes).
// This must generally be true for gets to be efficient.
//
// Default: true
bool whole_key_filtering;
// Number of levels for this database
int num_levels;
// Number of files to trigger level-0 compaction. A value <0 means that
// level-0 compaction will not be triggered by number of files at all.
int level0_file_num_compaction_trigger;
// Soft limit on number of level-0 files. We start slowing down writes at this
// point. A value <0 means that no writing slow down will be triggered by
// number of files in level-0.
int level0_slowdown_writes_trigger;
// Maximum number of level-0 files. We stop writes at this point.
int level0_stop_writes_trigger;
// Maximum level to which a new compacted memtable is pushed if it
// does not create overlap. We try to push to level 2 to avoid the
// relatively expensive level 0=>1 compactions and to avoid some
// expensive manifest file operations. We do not push all the way to
// the largest level since that can generate a lot of wasted disk
// space if the same key space is being repeatedly overwritten.
int max_mem_compaction_level;
// Target file size for compaction.
// target_file_size_base is per-file size for level-1.
// Target file size for level L can be calculated by
// target_file_size_base * (target_file_size_multiplier ^ (L-1))
// For example, if target_file_size_base is 2MB and
// target_file_size_multiplier is 10, then each file on level-1 will
// be 2MB, and each file on level 2 will be 20MB,
// and each file on level-3 will be 200MB.
// by default target_file_size_base is 2MB.
int target_file_size_base;
// by default target_file_size_multiplier is 1, which means
// by default files in different levels will have similar size.
int target_file_size_multiplier;
// Control maximum total data size for a level.
// max_bytes_for_level_base is the max total for level-1.
// Maximum number of bytes for level L can be calculated as
// (max_bytes_for_level_base) * (max_bytes_for_level_multiplier ^ (L-1))
// For example, if max_bytes_for_level_base is 20MB, and if
// max_bytes_for_level_multiplier is 10, total data size for level-1
// will be 20MB, total file size for level-2 will be 200MB,
// and total file size for level-3 will be 2GB.
// by default 'max_bytes_for_level_base' is 10MB.
uint64_t max_bytes_for_level_base;
// by default 'max_bytes_for_level_base' is 10.
int max_bytes_for_level_multiplier;
// Different max-size multipliers for different levels.
// These are multiplied by max_bytes_for_level_multiplier to arrive
// at the max-size of each level.
// Default: 1
std::vector<int> max_bytes_for_level_multiplier_additional;
// Maximum number of bytes in all compacted files. We avoid expanding
// the lower level file set of a compaction if it would make the
// total compaction cover more than
// (expanded_compaction_factor * targetFileSizeLevel()) many bytes.
int expanded_compaction_factor;
// Maximum number of bytes in all source files to be compacted in a
// single compaction run. We avoid picking too many files in the
// source level so that we do not exceed the total source bytes
// for compaction to exceed
// (source_compaction_factor * targetFileSizeLevel()) many bytes.
// Default:1, i.e. pick maxfilesize amount of data as the source of
// a compaction.
int source_compaction_factor;
// Control maximum bytes of overlaps in grandparent (i.e., level+2) before we
// stop building a single file in a level->level+1 compaction.
int max_grandparent_overlap_factor;
// Disable compaction triggered by seek.
// With bloomfilter and fast storage, a miss on one level
// is very cheap if the file handle is cached in table cache
// (which is true if max_open_files is large).
bool disable_seek_compaction;
// Puts are delayed 0-1 ms when any level has a compaction score that exceeds
// soft_rate_limit. This is ignored when == 0.0.
// CONSTRAINT: soft_rate_limit <= hard_rate_limit. If this constraint does not
// hold, RocksDB will set soft_rate_limit = hard_rate_limit
// Default: 0 (disabled)
double soft_rate_limit;
// Puts are delayed 1ms at a time when any level has a compaction score that
// exceeds hard_rate_limit. This is ignored when <= 1.0.
// Default: 0 (disabled)
double hard_rate_limit;
// Max time a put will be stalled when hard_rate_limit is enforced. If 0, then
// there is no limit.
// Default: 1000
unsigned int rate_limit_delay_max_milliseconds;
// Disable block cache. If this is set to true,
// then no block cache should be used, and the block_cache should
// point to a nullptr object.
// Default: false
bool no_block_cache;
// size of one block in arena memory allocation.
// If <= 0, a proper value is automatically calculated (usually 1/10 of
// writer_buffer_size).
//
// There are two additonal restriction of the The specified size:
// (1) size should be in the range of [4096, 2 << 30] and
// (2) be the multiple of the CPU word (which helps with the memory
// alignment).
//
// We'll automatically check and adjust the size number to make sure it
// conforms to the restrictions.
//
// Default: 0
size_t arena_block_size;
// Disable automatic compactions. Manual compactions can still
// be issued on this column family
bool disable_auto_compactions;
// Purge duplicate/deleted keys when a memtable is flushed to storage.
// Default: true
bool purge_redundant_kvs_while_flush;
// This is used to close a block before it reaches the configured
// 'block_size'. If the percentage of free space in the current block is less
// than this specified number and adding a new record to the block will
// exceed the configured block size, then this block will be closed and the
// new record will be written to the next block.
// Default is 10.
int block_size_deviation;
// The compaction style. Default: kCompactionStyleLevel
CompactionStyle compaction_style;
// The options needed to support Universal Style compactions
CompactionOptionsUniversal compaction_options_universal;
// Use KeyMayExist API to filter deletes when this is true.
// If KeyMayExist returns false, i.e. the key definitely does not exist, then
// the delete is a noop. KeyMayExist only incurs in-memory look up.
// This optimization avoids writing the delete to storage when appropriate.
// Default: false
bool filter_deletes;
// An iteration->Next() sequentially skips over keys with the same
// user-key unless this option is set. This number specifies the number
// of keys (with the same userkey) that will be sequentially
// skipped before a reseek is issued.
// Default: 8
uint64_t max_sequential_skip_in_iterations;
// This is a factory that provides MemTableRep objects.
// Default: a factory that provides a skip-list-based implementation of
// MemTableRep.
std::shared_ptr<MemTableRepFactory> memtable_factory;
// This is a factory that provides TableFactory objects.
// Default: a factory that provides a default implementation of
// Table and TableBuilder.
std::shared_ptr<TableFactory> table_factory;
// This option allows user to to collect their own interested statistics of
// the tables.
// Default: emtpy vector -- no user-defined statistics collection will be
// performed.
typedef std::vector<std::shared_ptr<TablePropertiesCollector>>
TablePropertiesCollectors;
TablePropertiesCollectors table_properties_collectors;
// Allows thread-safe inplace updates.
// If inplace_callback function is not set,
// Put(key, new_value) will update inplace the existing_value iff
// * key exists in current memtable
// * new sizeof(new_value) <= sizeof(existing_value)
// * existing_value for that key is a put i.e. kTypeValue
// If inplace_callback function is set, check doc for inplace_callback.
// Default: false.
bool inplace_update_support;
// Number of locks used for inplace update
// Default: 10000, if inplace_update_support = true, else 0.
size_t inplace_update_num_locks;
// existing_value - pointer to previous value (from both memtable and sst).
// nullptr if key doesn't exist
// existing_value_size - pointer to size of existing_value).
// nullptr if key doesn't exist
// delta_value - Delta value to be merged with the existing_value.
// Stored in transaction logs.
// merged_value - Set when delta is applied on the previous value.
// Applicable only when inplace_update_support is true,
// this callback function is called at the time of updating the memtable
// as part of a Put operation, lets say Put(key, delta_value). It allows the
// 'delta_value' specified as part of the Put operation to be merged with
// an 'existing_value' of the key in the database.
// If the merged value is smaller in size that the 'existing_value',
// then this function can update the 'existing_value' buffer inplace and
// the corresponding 'existing_value'_size pointer, if it wishes to.
// The callback should return UpdateStatus::UPDATED_INPLACE.
// In this case. (In this case, the snapshot-semantics of the rocksdb
// Iterator is not atomic anymore).
// If the merged value is larger in size than the 'existing_value' or the
// application does not wish to modify the 'existing_value' buffer inplace,
// then the merged value should be returned via *merge_value. It is set by
// merging the 'existing_value' and the Put 'delta_value'. The callback should
// return UpdateStatus::UPDATED in this case. This merged value will be added
// to the memtable.
// If merging fails or the application does not wish to take any action,
// then the callback should return UpdateStatus::UPDATE_FAILED.
// Please remember that the original call from the application is Put(key,
// delta_value). So the transaction log (if enabled) will still contain (key,
// delta_value). The 'merged_value' is not stored in the transaction log.
// Hence the inplace_callback function should be consistent across db reopens.
// Default: nullptr
UpdateStatus (*inplace_callback)(char* existing_value,
uint32_t* existing_value_size,
Slice delta_value,
std::string* merged_value);
// if prefix_extractor is set and bloom_bits is not 0, create prefix bloom
// for memtable
uint32_t memtable_prefix_bloom_bits;
// number of hash probes per key
uint32_t memtable_prefix_bloom_probes;
// Maximum number of successive merge operations on a key in the memtable.
//
// When a merge operation is added to the memtable and the maximum number of
// successive merges is reached, the value of the key will be calculated and
// inserted into the memtable instead of the merge operation. This will
// ensure that there are never more than max_successive_merges merge
// operations in the memtable.
//
// Default: 0 (disabled)
size_t max_successive_merges;
// Create ColumnFamilyOptions with default values for all fields
ColumnFamilyOptions();
// Create ColumnFamilyOptions from Options
explicit ColumnFamilyOptions(const Options& options);
void Dump(Logger* log) const;
};
struct DBOptions {
// If true, the database will be created if it is missing.
// Default: false
bool create_if_missing;
// If true, an error is raised if the database already exists.
// Default: false
bool error_if_exists;
// If true, the implementation will do aggressive checking of the
// data it is processing and will stop early if it detects any
// errors. This may have unforeseen ramifications: for example, a
// corruption of one DB entry may cause a large number of entries to
// become unreadable or for the entire DB to become unopenable.
// If any of the writes to the database fails (Put, Delete, Merge, Write),
// the database will switch to read-only mode and fail all other
// Write operations.
// Default: false
bool paranoid_checks;
// Use the specified object to interact with the environment,
// e.g. to read/write files, schedule background work, etc.
// Default: Env::Default()
Env* env;
// Any internal progress/error information generated by the db will
// be written to info_log if it is non-nullptr, or to a file stored
// in the same directory as the DB contents if info_log is nullptr.
// Default: nullptr
shared_ptr<Logger> info_log;
// Number of open files that can be used by the DB. You may need to
// increase this if your database has a large working set. Value -1 means
// files opened are always kept open. You can estimate number of files based
// on target_file_size_base and target_file_size_multiplier for level-based
// compaction. For universal-style compaction, you can usually set it to -1.
// Default: 1000
int max_open_files;
// If non-null, then we should collect metrics about database operations
// Statistics objects should not be shared between DB instances as
// it does not use any locks to prevent concurrent updates.
shared_ptr<Statistics> statistics;
// If true, then the contents of data files are not synced
// to stable storage. Their contents remain in the OS buffers till the
// OS decides to flush them. This option is good for bulk-loading
// of data. Once the bulk-loading is complete, please issue a
// sync to the OS to flush all dirty buffesrs to stable storage.
// Default: false
bool disableDataSync;
// If true, then every store to stable storage will issue a fsync.
// If false, then every store to stable storage will issue a fdatasync.
// This parameter should be set to true while storing data to
// filesystem like ext3 that can lose files after a reboot.
// Default: false
bool use_fsync;
// This number controls how often a new scribe log about
// db deploy stats is written out.
// -1 indicates no logging at all.
// Default value is 1800 (half an hour).
int db_stats_log_interval;
// This specifies the info LOG dir.
// If it is empty, the log files will be in the same dir as data.
// If it is non empty, the log files will be in the specified dir,
// and the db data dir's absolute path will be used as the log file
// name's prefix.
std::string db_log_dir;
// This specifies the absolute dir path for write-ahead logs (WAL).
// If it is empty, the log files will be in the same dir as data,
// dbname is used as the data dir by default
// If it is non empty, the log files will be in kept the specified dir.
// When destroying the db,
// all log files in wal_dir and the dir itself is deleted
std::string wal_dir;
// The periodicity when obsolete files get deleted. The default
// value is 6 hours. The files that get out of scope by compaction
// process will still get automatically delete on every compaction,
// regardless of this setting
uint64_t delete_obsolete_files_period_micros;
// Maximum number of concurrent background compaction jobs, submitted to
// the default LOW priority thread pool.
// If you're increasing this, also consider increasing number of threads in
// LOW priority thread pool. For more information, see
// Env::SetBackgroundThreads
// Default: 1
int max_background_compactions;
// Maximum number of concurrent background memtable flush jobs, submitted to
// the HIGH priority thread pool.
//
// By default, all background jobs (major compaction and memtable flush) go
// to the LOW priority pool. If this option is set to a positive number,
// memtable flush jobs will be submitted to the HIGH priority pool.
// It is important when the same Env is shared by multiple db instances.
// Without a separate pool, long running major compaction jobs could
// potentially block memtable flush jobs of other db instances, leading to
// unnecessary Put stalls.
//
// If you're increasing this, also consider increasing number of threads in
// HIGH priority thread pool. For more information, see
// Env::SetBackgroundThreads
// Default: 1
int max_background_flushes;
// Specify the maximal size of the info log file. If the log file
// is larger than `max_log_file_size`, a new info log file will
// be created.
// If max_log_file_size == 0, all logs will be written to one
// log file.
size_t max_log_file_size;
// Time for the info log file to roll (in seconds).
// If specified with non-zero value, log file will be rolled
// if it has been active longer than `log_file_time_to_roll`.
// Default: 0 (disabled)
size_t log_file_time_to_roll;
// Maximal info log files to be kept.
// Default: 1000
size_t keep_log_file_num;
// manifest file is rolled over on reaching this limit.
// The older manifest file be deleted.
// The default value is MAX_INT so that roll-over does not take place.
uint64_t max_manifest_file_size;
// Number of shards used for table cache.
int table_cache_numshardbits;
// During data eviction of table's LRU cache, it would be inefficient
// to strictly follow LRU because this piece of memory will not really
// be released unless its refcount falls to zero. Instead, make two
// passes: the first pass will release items with refcount = 1,
// and if not enough space releases after scanning the number of
// elements specified by this parameter, we will remove items in LRU
// order.
int table_cache_remove_scan_count_limit;
// The following two fields affect how archived logs will be deleted.
// 1. If both set to 0, logs will be deleted asap and will not get into
// the archive.
// 2. If WAL_ttl_seconds is 0 and WAL_size_limit_MB is not 0,
// WAL files will be checked every 10 min and if total size is greater
// then WAL_size_limit_MB, they will be deleted starting with the
// earliest until size_limit is met. All empty files will be deleted.
// 3. If WAL_ttl_seconds is not 0 and WAL_size_limit_MB is 0, then
// WAL files will be checked every WAL_ttl_secondsi / 2 and those that
// are older than WAL_ttl_seconds will be deleted.
// 4. If both are not 0, WAL files will be checked every 10 min and both
// checks will be performed with ttl being first.
uint64_t WAL_ttl_seconds;
uint64_t WAL_size_limit_MB;
// Number of bytes to preallocate (via fallocate) the manifest
// files. Default is 4mb, which is reasonable to reduce random IO
// as well as prevent overallocation for mounts that preallocate
// large amounts of data (such as xfs's allocsize option).
size_t manifest_preallocation_size;
// Data being read from file storage may be buffered in the OS
// Default: true
bool allow_os_buffer;
// Allow the OS to mmap file for reading sst tables. Default: false
bool allow_mmap_reads;
// Allow the OS to mmap file for writing. Default: true
bool allow_mmap_writes;
// Disable child process inherit open files. Default: true
bool is_fd_close_on_exec;
// Skip log corruption error on recovery (If client is ok with
// losing most recent changes)
// Default: false
bool skip_log_error_on_recovery;
// if not zero, dump rocksdb.stats to LOG every stats_dump_period_sec
// Default: 3600 (1 hour)
unsigned int stats_dump_period_sec;
// If set true, will hint the underlying file system that the file
// access pattern is random, when a sst file is opened.
// Default: true
bool advise_random_on_open;
// Specify the file access pattern once a compaction is started.
// It will be applied to all input files of a compaction.
// Default: NORMAL
enum {
NONE,
NORMAL,
SEQUENTIAL,
WILLNEED
} access_hint_on_compaction_start;
// Use adaptive mutex, which spins in the user space before resorting
// to kernel. This could reduce context switch when the mutex is not
// heavily contended. However, if the mutex is hot, we could end up
// wasting spin time.
// Default: false
bool use_adaptive_mutex;
// Allows OS to incrementally sync files to disk while they are being
// written, asynchronously, in the background.
// Issue one request for every bytes_per_sync written. 0 turns it off.
// Default: 0
uint64_t bytes_per_sync;
// Create DBOptions with default values for all fields
DBOptions();
// Create DBOptions from Options
explicit DBOptions(const Options& options);
void Dump(Logger* log) const;
};
// Options to control the behavior of a database (passed to DB::Open)
struct Options : public DBOptions, public ColumnFamilyOptions {
// Create an Options object with default values for all fields.
Options() :
DBOptions(),
ColumnFamilyOptions() {}
Options(const DBOptions& db_options,
const ColumnFamilyOptions& column_family_options)
: DBOptions(db_options), ColumnFamilyOptions(column_family_options) {}
void Dump(Logger* log) const;
// Set appropriate parameters for bulk loading.
// The reason that this is a function that returns "this" instead of a
// constructor is to enable chaining of multiple similar calls in the future.
//
// All data will be in level 0 without any automatic compaction.
// It's recommended to manually call CompactRange(NULL, NULL) before reading
// from the database, because otherwise the read can be very slow.
Options* PrepareForBulkLoad();
};
//
// An application can issue a read request (via Get/Iterators) and specify
// if that read should process data that ALREADY resides on a specified cache
// level. For example, if an application specifies kBlockCacheTier then the
// Get call will process data that is already processed in the memtable or
// the block cache. It will not page in data from the OS cache or data that
// resides in storage.
enum ReadTier {
kReadAllTier = 0x0, // data in memtable, block cache, OS cache or storage
kBlockCacheTier = 0x1 // data in memtable or block cache
};
// Options that control read operations
struct ReadOptions {
// If true, all data read from underlying storage will be
// verified against corresponding checksums.
// Default: true
bool verify_checksums;
// Should the "data block"/"index block"/"filter block" read for this
// iteration be cached in memory?
// Callers may wish to set this field to false for bulk scans.
// Default: true
bool fill_cache;
// If this option is set and memtable implementation allows, Seek
// might only return keys with the same prefix as the seek-key
bool prefix_seek;
// If "snapshot" is non-nullptr, read as of the supplied snapshot
// (which must belong to the DB that is being read and which must
// not have been released). If "snapshot" is nullptr, use an impliicit
// snapshot of the state at the beginning of this read operation.
// Default: nullptr
const Snapshot* snapshot;
// If "prefix" is non-nullptr, and ReadOptions is being passed to
// db.NewIterator, only return results when the key begins with this
// prefix. This field is ignored by other calls (e.g., Get).
// Options.prefix_extractor must also be set, and
// prefix_extractor.InRange(prefix) must be true. The iterator
// returned by NewIterator when this option is set will behave just
// as if the underlying store did not contain any non-matching keys,
// with two exceptions. Seek() only accepts keys starting with the
// prefix, and SeekToLast() is not supported. prefix filter with this
// option will sometimes reduce the number of read IOPs.
// Default: nullptr
const Slice* prefix;
// Specify if this read request should process data that ALREADY
// resides on a particular cache. If the required data is not
// found at the specified cache, then Status::Incomplete is returned.
// Default: kReadAllTier
ReadTier read_tier;
// Specify to create a tailing iterator -- a special iterator that has a
// view of the complete database (i.e. it can also be used to read newly
// added data) and is optimized for sequential reads. It will return records
// that were inserted into the database after the creation of the iterator.
// Default: false
bool tailing;
ReadOptions()
: verify_checksums(true),
fill_cache(true),
prefix_seek(false),
snapshot(nullptr),
prefix(nullptr),
read_tier(kReadAllTier),
tailing(false) {}
ReadOptions(bool cksum, bool cache)
: verify_checksums(cksum),
fill_cache(cache),
prefix_seek(false),
snapshot(nullptr),
prefix(nullptr),
read_tier(kReadAllTier),
tailing(false) {}
};
// Options that control write operations
struct WriteOptions {
// If true, the write will be flushed from the operating system
// buffer cache (by calling WritableFile::Sync()) before the write
// is considered complete. If this flag is true, writes will be
// slower.
//
// If this flag is false, and the machine crashes, some recent
// writes may be lost. Note that if it is just the process that
// crashes (i.e., the machine does not reboot), no writes will be
// lost even if sync==false.
//
// In other words, a DB write with sync==false has similar
// crash semantics as the "write()" system call. A DB write
// with sync==true has similar crash semantics to a "write()"
// system call followed by "fdatasync()".
//
// Default: false
bool sync;
// If true, writes will not first go to the write ahead log,
// and the write may got lost after a crash.
bool disableWAL;
WriteOptions() : sync(false), disableWAL(false) {}
};
// Options that control flush operations
struct FlushOptions {
// If true, the flush will wait until the flush is done.
// Default: true
bool wait;
FlushOptions() : wait(true) {}
};
} // namespace rocksdb
#endif // STORAGE_ROCKSDB_INCLUDE_OPTIONS_H_