rocksdb/table/block_based_table_reader.cc
Fosco Marotto d518fe1da6 uint64_t and size_t changes to compile for iOS
Summary:
In attempting to build a static lib for use in iOS, I ran in to lots of type errors between uint64_t and size_t.  This PR contains the changes I made to get `TARGET_OS=IOS make static_lib` to succeed while also getting Xcode to build successfully with the resulting `librocksdb.a` library imported.

This also compiles for me on macOS and tests fine, but I'm really not sure if I made the correct decisions about where to `static_cast` and where to change types.

Also up for discussion: is iOS worth supporting?  Getting the static lib is just part one, we aren't providing any bridging headers or wrappers like the ObjectiveRocks project, it won't be a great experience.
Closes https://github.com/facebook/rocksdb/pull/3503

Differential Revision: D7106457

Pulled By: gfosco

fbshipit-source-id: 82ac2073de7e1f09b91f6b4faea91d18bd311f8e
2018-03-06 12:43:51 -08:00

2800 lines
101 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/block_based_table_reader.h"
#include <algorithm>
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include "db/dbformat.h"
#include "db/pinned_iterators_manager.h"
#include "rocksdb/cache.h"
#include "rocksdb/comparator.h"
#include "rocksdb/env.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/iterator.h"
#include "rocksdb/options.h"
#include "rocksdb/statistics.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "table/block.h"
#include "table/block_based_filter_block.h"
#include "table/block_based_table_factory.h"
#include "table/block_fetcher.h"
#include "table/block_prefix_index.h"
#include "table/filter_block.h"
#include "table/format.h"
#include "table/full_filter_block.h"
#include "table/get_context.h"
#include "table/internal_iterator.h"
#include "table/meta_blocks.h"
#include "table/partitioned_filter_block.h"
#include "table/persistent_cache_helper.h"
#include "table/sst_file_writer_collectors.h"
#include "table/two_level_iterator.h"
#include "monitoring/perf_context_imp.h"
#include "util/coding.h"
#include "util/file_reader_writer.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
#include "util/sync_point.h"
namespace rocksdb {
extern const uint64_t kBlockBasedTableMagicNumber;
extern const std::string kHashIndexPrefixesBlock;
extern const std::string kHashIndexPrefixesMetadataBlock;
using std::unique_ptr;
typedef BlockBasedTable::IndexReader IndexReader;
BlockBasedTable::~BlockBasedTable() {
Close();
delete rep_;
}
std::atomic<uint64_t> BlockBasedTable::next_cache_key_id_(0);
namespace {
// Read the block identified by "handle" from "file".
// The only relevant option is options.verify_checksums for now.
// On failure return non-OK.
// On success fill *result and return OK - caller owns *result
// @param compression_dict Data for presetting the compression library's
// dictionary.
Status ReadBlockFromFile(
RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer,
const Footer& footer, const ReadOptions& options, const BlockHandle& handle,
std::unique_ptr<Block>* result, const ImmutableCFOptions& ioptions,
bool do_uncompress, const Slice& compression_dict,
const PersistentCacheOptions& cache_options, SequenceNumber global_seqno,
size_t read_amp_bytes_per_bit) {
BlockContents contents;
BlockFetcher block_fetcher(file, prefetch_buffer, footer, options, handle,
&contents, ioptions, do_uncompress,
compression_dict, cache_options);
Status s = block_fetcher.ReadBlockContents();
if (s.ok()) {
result->reset(new Block(std::move(contents), global_seqno,
read_amp_bytes_per_bit, ioptions.statistics));
}
return s;
}
// Delete the resource that is held by the iterator.
template <class ResourceType>
void DeleteHeldResource(void* arg, void* /*ignored*/) {
delete reinterpret_cast<ResourceType*>(arg);
}
// Delete the entry resided in the cache.
template <class Entry>
void DeleteCachedEntry(const Slice& /*key*/, void* value) {
auto entry = reinterpret_cast<Entry*>(value);
delete entry;
}
void DeleteCachedFilterEntry(const Slice& key, void* value);
void DeleteCachedIndexEntry(const Slice& key, void* value);
// Release the cached entry and decrement its ref count.
void ReleaseCachedEntry(void* arg, void* h) {
Cache* cache = reinterpret_cast<Cache*>(arg);
Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(h);
cache->Release(handle);
}
// Release the cached entry and decrement its ref count.
void ForceReleaseCachedEntry(void* arg, void* h) {
Cache* cache = reinterpret_cast<Cache*>(arg);
Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(h);
cache->Release(handle, true);
}
Slice GetCacheKeyFromOffset(const char* cache_key_prefix,
size_t cache_key_prefix_size, uint64_t offset,
char* cache_key) {
assert(cache_key != nullptr);
assert(cache_key_prefix_size != 0);
assert(cache_key_prefix_size <= BlockBasedTable::kMaxCacheKeyPrefixSize);
memcpy(cache_key, cache_key_prefix, cache_key_prefix_size);
char* end = EncodeVarint64(cache_key + cache_key_prefix_size, offset);
return Slice(cache_key, static_cast<size_t>(end - cache_key));
}
Cache::Handle* GetEntryFromCache(Cache* block_cache, const Slice& key,
Tickers block_cache_miss_ticker,
Tickers block_cache_hit_ticker,
Statistics* statistics,
GetContext* get_context) {
auto cache_handle = block_cache->Lookup(key, statistics);
if (cache_handle != nullptr) {
PERF_COUNTER_ADD(block_cache_hit_count, 1);
if (get_context != nullptr) {
// overall cache hit
get_context->RecordCounters(BLOCK_CACHE_HIT, 1);
// total bytes read from cache
get_context->RecordCounters(BLOCK_CACHE_BYTES_READ,
block_cache->GetUsage(cache_handle));
// block-type specific cache hit
get_context->RecordCounters(block_cache_hit_ticker, 1);
} else {
// overall cache hit
RecordTick(statistics, BLOCK_CACHE_HIT);
// total bytes read from cache
RecordTick(statistics, BLOCK_CACHE_BYTES_READ,
block_cache->GetUsage(cache_handle));
RecordTick(statistics, block_cache_hit_ticker);
}
} else {
if (get_context != nullptr) {
// overall cache miss
get_context->RecordCounters(BLOCK_CACHE_MISS, 1);
// block-type specific cache miss
get_context->RecordCounters(block_cache_miss_ticker, 1);
} else {
RecordTick(statistics, BLOCK_CACHE_MISS);
RecordTick(statistics, block_cache_miss_ticker);
}
}
return cache_handle;
}
} // namespace
// Index that allows binary search lookup in a two-level index structure.
class PartitionIndexReader : public IndexReader, public Cleanable {
public:
// Read the partition index from the file and create an instance for
// `PartitionIndexReader`.
// On success, index_reader will be populated; otherwise it will remain
// unmodified.
static Status Create(BlockBasedTable* table, RandomAccessFileReader* file,
FilePrefetchBuffer* prefetch_buffer,
const Footer& footer, const BlockHandle& index_handle,
const ImmutableCFOptions& ioptions,
const InternalKeyComparator* icomparator,
IndexReader** index_reader,
const PersistentCacheOptions& cache_options,
const int level) {
std::unique_ptr<Block> index_block;
auto s = ReadBlockFromFile(
file, prefetch_buffer, footer, ReadOptions(), index_handle,
&index_block, ioptions, true /* decompress */,
Slice() /*compression dict*/, cache_options,
kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */);
if (s.ok()) {
*index_reader =
new PartitionIndexReader(table, icomparator, std::move(index_block),
ioptions.statistics, level);
}
return s;
}
// return a two-level iterator: first level is on the partition index
virtual InternalIterator* NewIterator(BlockIter* /*iter*/ = nullptr,
bool /*dont_care*/ = true) override {
// Filters are already checked before seeking the index
if (!partition_map_.empty()) {
return NewTwoLevelIterator(
new BlockBasedTable::PartitionedIndexIteratorState(
table_, partition_map_.size() ? &partition_map_ : nullptr),
index_block_->NewIterator(icomparator_, nullptr, true));
} else {
return new BlockBasedTableIterator(
table_, ReadOptions(), *icomparator_,
index_block_->NewIterator(icomparator_, nullptr, true), false);
}
// TODO(myabandeh): Update TwoLevelIterator to be able to make use of
// on-stack BlockIter while the state is on heap. Currentlly it assumes
// the first level iter is always on heap and will attempt to delete it
// in its destructor.
}
virtual void CacheDependencies(bool pin) override {
// Before read partitions, prefetch them to avoid lots of IOs
auto rep = table_->rep_;
BlockIter biter;
BlockHandle handle;
index_block_->NewIterator(icomparator_, &biter, true);
// Index partitions are assumed to be consecuitive. Prefetch them all.
// Read the first block offset
biter.SeekToFirst();
Slice input = biter.value();
Status s = handle.DecodeFrom(&input);
assert(s.ok());
if (!s.ok()) {
ROCKS_LOG_WARN(rep->ioptions.info_log,
"Could not read first index partition");
return;
}
uint64_t prefetch_off = handle.offset();
// Read the last block's offset
biter.SeekToLast();
input = biter.value();
s = handle.DecodeFrom(&input);
assert(s.ok());
if (!s.ok()) {
ROCKS_LOG_WARN(rep->ioptions.info_log,
"Could not read last index partition");
return;
}
uint64_t last_off = handle.offset() + handle.size() + kBlockTrailerSize;
uint64_t prefetch_len = last_off - prefetch_off;
std::unique_ptr<FilePrefetchBuffer> prefetch_buffer;
auto& file = table_->rep_->file;
prefetch_buffer.reset(new FilePrefetchBuffer());
s = prefetch_buffer->Prefetch(file.get(), prefetch_off,
static_cast<size_t>(prefetch_len));
// After prefetch, read the partitions one by one
biter.SeekToFirst();
auto ro = ReadOptions();
Cache* block_cache = rep->table_options.block_cache.get();
for (; biter.Valid(); biter.Next()) {
input = biter.value();
s = handle.DecodeFrom(&input);
assert(s.ok());
if (!s.ok()) {
ROCKS_LOG_WARN(rep->ioptions.info_log,
"Could not read index partition");
continue;
}
BlockBasedTable::CachableEntry<Block> block;
Slice compression_dict;
if (rep->compression_dict_block) {
compression_dict = rep->compression_dict_block->data;
}
const bool is_index = true;
// TODO: Support counter batch update for partitioned index and
// filter blocks
s = table_->MaybeLoadDataBlockToCache(
prefetch_buffer.get(), rep, ro, handle, compression_dict, &block,
is_index, nullptr /* get_context */);
assert(s.ok() || block.value == nullptr);
if (s.ok() && block.value != nullptr) {
if (block.cache_handle != nullptr) {
if (pin) {
partition_map_[handle.offset()] = block;
RegisterCleanup(&ReleaseCachedEntry, block_cache,
block.cache_handle);
} else {
block_cache->Release(block.cache_handle);
}
} else {
delete block.value;
}
}
}
}
virtual size_t size() const override { return index_block_->size(); }
virtual size_t usable_size() const override {
return index_block_->usable_size();
}
virtual size_t ApproximateMemoryUsage() const override {
assert(index_block_);
return index_block_->ApproximateMemoryUsage();
}
private:
PartitionIndexReader(BlockBasedTable* table,
const InternalKeyComparator* icomparator,
std::unique_ptr<Block>&& index_block, Statistics* stats,
const int /*level*/)
: IndexReader(icomparator, stats),
table_(table),
index_block_(std::move(index_block)) {
assert(index_block_ != nullptr);
}
BlockBasedTable* table_;
std::unique_ptr<Block> index_block_;
std::unordered_map<uint64_t, BlockBasedTable::CachableEntry<Block>>
partition_map_;
};
// Index that allows binary search lookup for the first key of each block.
// This class can be viewed as a thin wrapper for `Block` class which already
// supports binary search.
class BinarySearchIndexReader : public IndexReader {
public:
// Read index from the file and create an intance for
// `BinarySearchIndexReader`.
// On success, index_reader will be populated; otherwise it will remain
// unmodified.
static Status Create(RandomAccessFileReader* file,
FilePrefetchBuffer* prefetch_buffer,
const Footer& footer, const BlockHandle& index_handle,
const ImmutableCFOptions& ioptions,
const InternalKeyComparator* icomparator,
IndexReader** index_reader,
const PersistentCacheOptions& cache_options) {
std::unique_ptr<Block> index_block;
auto s = ReadBlockFromFile(
file, prefetch_buffer, footer, ReadOptions(), index_handle,
&index_block, ioptions, true /* decompress */,
Slice() /*compression dict*/, cache_options,
kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */);
if (s.ok()) {
*index_reader = new BinarySearchIndexReader(
icomparator, std::move(index_block), ioptions.statistics);
}
return s;
}
virtual InternalIterator* NewIterator(BlockIter* iter = nullptr,
bool /*dont_care*/ = true) override {
return index_block_->NewIterator(icomparator_, iter, true);
}
virtual size_t size() const override { return index_block_->size(); }
virtual size_t usable_size() const override {
return index_block_->usable_size();
}
virtual size_t ApproximateMemoryUsage() const override {
assert(index_block_);
return index_block_->ApproximateMemoryUsage();
}
private:
BinarySearchIndexReader(const InternalKeyComparator* icomparator,
std::unique_ptr<Block>&& index_block,
Statistics* stats)
: IndexReader(icomparator, stats), index_block_(std::move(index_block)) {
assert(index_block_ != nullptr);
}
std::unique_ptr<Block> index_block_;
};
// Index that leverages an internal hash table to quicken the lookup for a given
// key.
class HashIndexReader : public IndexReader {
public:
static Status Create(const SliceTransform* hash_key_extractor,
const Footer& footer, RandomAccessFileReader* file,
FilePrefetchBuffer* prefetch_buffer,
const ImmutableCFOptions& ioptions,
const InternalKeyComparator* icomparator,
const BlockHandle& index_handle,
InternalIterator* meta_index_iter,
IndexReader** index_reader,
bool /*hash_index_allow_collision*/,
const PersistentCacheOptions& cache_options) {
std::unique_ptr<Block> index_block;
auto s = ReadBlockFromFile(
file, prefetch_buffer, footer, ReadOptions(), index_handle,
&index_block, ioptions, true /* decompress */,
Slice() /*compression dict*/, cache_options,
kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */);
if (!s.ok()) {
return s;
}
// Note, failure to create prefix hash index does not need to be a
// hard error. We can still fall back to the original binary search index.
// So, Create will succeed regardless, from this point on.
auto new_index_reader =
new HashIndexReader(icomparator, std::move(index_block),
ioptions.statistics);
*index_reader = new_index_reader;
// Get prefixes block
BlockHandle prefixes_handle;
s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesBlock,
&prefixes_handle);
if (!s.ok()) {
// TODO: log error
return Status::OK();
}
// Get index metadata block
BlockHandle prefixes_meta_handle;
s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesMetadataBlock,
&prefixes_meta_handle);
if (!s.ok()) {
// TODO: log error
return Status::OK();
}
Slice dummy_comp_dict;
// Read contents for the blocks
BlockContents prefixes_contents;
BlockFetcher prefixes_block_fetcher(
file, prefetch_buffer, footer, ReadOptions(), prefixes_handle,
&prefixes_contents, ioptions, true /* decompress */,
dummy_comp_dict /*compression dict*/, cache_options);
s = prefixes_block_fetcher.ReadBlockContents();
if (!s.ok()) {
return s;
}
BlockContents prefixes_meta_contents;
BlockFetcher prefixes_meta_block_fetcher(
file, prefetch_buffer, footer, ReadOptions(), prefixes_meta_handle,
&prefixes_meta_contents, ioptions, true /* decompress */,
dummy_comp_dict /*compression dict*/, cache_options);
prefixes_meta_block_fetcher.ReadBlockContents();
if (!s.ok()) {
// TODO: log error
return Status::OK();
}
BlockPrefixIndex* prefix_index = nullptr;
s = BlockPrefixIndex::Create(hash_key_extractor, prefixes_contents.data,
prefixes_meta_contents.data, &prefix_index);
// TODO: log error
if (s.ok()) {
new_index_reader->index_block_->SetBlockPrefixIndex(prefix_index);
}
return Status::OK();
}
virtual InternalIterator* NewIterator(BlockIter* iter = nullptr,
bool total_order_seek = true) override {
return index_block_->NewIterator(icomparator_, iter, total_order_seek);
}
virtual size_t size() const override { return index_block_->size(); }
virtual size_t usable_size() const override {
return index_block_->usable_size();
}
virtual size_t ApproximateMemoryUsage() const override {
assert(index_block_);
return index_block_->ApproximateMemoryUsage() +
prefixes_contents_.data.size();
}
private:
HashIndexReader(const InternalKeyComparator* icomparator,
std::unique_ptr<Block>&& index_block, Statistics* stats)
: IndexReader(icomparator, stats), index_block_(std::move(index_block)) {
assert(index_block_ != nullptr);
}
~HashIndexReader() {
}
std::unique_ptr<Block> index_block_;
BlockContents prefixes_contents_;
};
// Helper function to setup the cache key's prefix for the Table.
void BlockBasedTable::SetupCacheKeyPrefix(Rep* rep, uint64_t file_size) {
assert(kMaxCacheKeyPrefixSize >= 10);
rep->cache_key_prefix_size = 0;
rep->compressed_cache_key_prefix_size = 0;
if (rep->table_options.block_cache != nullptr) {
GenerateCachePrefix(rep->table_options.block_cache.get(), rep->file->file(),
&rep->cache_key_prefix[0], &rep->cache_key_prefix_size);
// Create dummy offset of index reader which is beyond the file size.
rep->dummy_index_reader_offset =
file_size + rep->table_options.block_cache->NewId();
}
if (rep->table_options.persistent_cache != nullptr) {
GenerateCachePrefix(/*cache=*/nullptr, rep->file->file(),
&rep->persistent_cache_key_prefix[0],
&rep->persistent_cache_key_prefix_size);
}
if (rep->table_options.block_cache_compressed != nullptr) {
GenerateCachePrefix(rep->table_options.block_cache_compressed.get(),
rep->file->file(), &rep->compressed_cache_key_prefix[0],
&rep->compressed_cache_key_prefix_size);
}
}
void BlockBasedTable::GenerateCachePrefix(Cache* cc,
RandomAccessFile* file, char* buffer, size_t* size) {
// generate an id from the file
*size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize);
// If the prefix wasn't generated or was too long,
// create one from the cache.
if (cc && *size == 0) {
char* end = EncodeVarint64(buffer, cc->NewId());
*size = static_cast<size_t>(end - buffer);
}
}
void BlockBasedTable::GenerateCachePrefix(Cache* cc,
WritableFile* file, char* buffer, size_t* size) {
// generate an id from the file
*size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize);
// If the prefix wasn't generated or was too long,
// create one from the cache.
if (*size == 0) {
char* end = EncodeVarint64(buffer, cc->NewId());
*size = static_cast<size_t>(end - buffer);
}
}
namespace {
// Return True if table_properties has `user_prop_name` has a `true` value
// or it doesn't contain this property (for backward compatible).
bool IsFeatureSupported(const TableProperties& table_properties,
const std::string& user_prop_name, Logger* info_log) {
auto& props = table_properties.user_collected_properties;
auto pos = props.find(user_prop_name);
// Older version doesn't have this value set. Skip this check.
if (pos != props.end()) {
if (pos->second == kPropFalse) {
return false;
} else if (pos->second != kPropTrue) {
ROCKS_LOG_WARN(info_log, "Property %s has invalidate value %s",
user_prop_name.c_str(), pos->second.c_str());
}
}
return true;
}
SequenceNumber GetGlobalSequenceNumber(const TableProperties& table_properties,
Logger* info_log) {
auto& props = table_properties.user_collected_properties;
auto version_pos = props.find(ExternalSstFilePropertyNames::kVersion);
auto seqno_pos = props.find(ExternalSstFilePropertyNames::kGlobalSeqno);
if (version_pos == props.end()) {
if (seqno_pos != props.end()) {
// This is not an external sst file, global_seqno is not supported.
assert(false);
ROCKS_LOG_ERROR(
info_log,
"A non-external sst file have global seqno property with value %s",
seqno_pos->second.c_str());
}
return kDisableGlobalSequenceNumber;
}
uint32_t version = DecodeFixed32(version_pos->second.c_str());
if (version < 2) {
if (seqno_pos != props.end() || version != 1) {
// This is a v1 external sst file, global_seqno is not supported.
assert(false);
ROCKS_LOG_ERROR(
info_log,
"An external sst file with version %u have global seqno property "
"with value %s",
version, seqno_pos->second.c_str());
}
return kDisableGlobalSequenceNumber;
}
SequenceNumber global_seqno = DecodeFixed64(seqno_pos->second.c_str());
if (global_seqno > kMaxSequenceNumber) {
assert(false);
ROCKS_LOG_ERROR(
info_log,
"An external sst file with version %u have global seqno property "
"with value %llu, which is greater than kMaxSequenceNumber",
version, global_seqno);
}
return global_seqno;
}
} // namespace
Slice BlockBasedTable::GetCacheKey(const char* cache_key_prefix,
size_t cache_key_prefix_size,
const BlockHandle& handle, char* cache_key) {
assert(cache_key != nullptr);
assert(cache_key_prefix_size != 0);
assert(cache_key_prefix_size <= kMaxCacheKeyPrefixSize);
memcpy(cache_key, cache_key_prefix, cache_key_prefix_size);
char* end =
EncodeVarint64(cache_key + cache_key_prefix_size, handle.offset());
return Slice(cache_key, static_cast<size_t>(end - cache_key));
}
Status BlockBasedTable::Open(const ImmutableCFOptions& ioptions,
const EnvOptions& env_options,
const BlockBasedTableOptions& table_options,
const InternalKeyComparator& internal_comparator,
unique_ptr<RandomAccessFileReader>&& file,
uint64_t file_size,
unique_ptr<TableReader>* table_reader,
const bool prefetch_index_and_filter_in_cache,
const bool skip_filters, const int level) {
table_reader->reset();
Footer footer;
std::unique_ptr<FilePrefetchBuffer> prefetch_buffer;
// Before read footer, readahead backwards to prefetch data
const size_t kTailPrefetchSize = 512 * 1024;
size_t prefetch_off;
size_t prefetch_len;
if (file_size < kTailPrefetchSize) {
prefetch_off = 0;
prefetch_len = static_cast<size_t>(file_size);
} else {
prefetch_off = static_cast<size_t>(file_size - kTailPrefetchSize);
prefetch_len = kTailPrefetchSize;
}
Status s;
// TODO should not have this special logic in the future.
if (!file->use_direct_io()) {
s = file->Prefetch(prefetch_off, prefetch_len);
} else {
prefetch_buffer.reset(new FilePrefetchBuffer());
s = prefetch_buffer->Prefetch(file.get(), prefetch_off, prefetch_len);
}
s = ReadFooterFromFile(file.get(), prefetch_buffer.get(), file_size, &footer,
kBlockBasedTableMagicNumber);
if (!s.ok()) {
return s;
}
if (!BlockBasedTableSupportedVersion(footer.version())) {
return Status::Corruption(
"Unknown Footer version. Maybe this file was created with newer "
"version of RocksDB?");
}
// We've successfully read the footer. We are ready to serve requests.
// Better not mutate rep_ after the creation. eg. internal_prefix_transform
// raw pointer will be used to create HashIndexReader, whose reset may
// access a dangling pointer.
Rep* rep = new BlockBasedTable::Rep(ioptions, env_options, table_options,
internal_comparator, skip_filters);
rep->file = std::move(file);
rep->footer = footer;
rep->index_type = table_options.index_type;
rep->hash_index_allow_collision = table_options.hash_index_allow_collision;
// We need to wrap data with internal_prefix_transform to make sure it can
// handle prefix correctly.
rep->internal_prefix_transform.reset(
new InternalKeySliceTransform(rep->ioptions.prefix_extractor));
SetupCacheKeyPrefix(rep, file_size);
unique_ptr<BlockBasedTable> new_table(new BlockBasedTable(rep));
// page cache options
rep->persistent_cache_options =
PersistentCacheOptions(rep->table_options.persistent_cache,
std::string(rep->persistent_cache_key_prefix,
rep->persistent_cache_key_prefix_size),
rep->ioptions.statistics);
// Read meta index
std::unique_ptr<Block> meta;
std::unique_ptr<InternalIterator> meta_iter;
s = ReadMetaBlock(rep, prefetch_buffer.get(), &meta, &meta_iter);
if (!s.ok()) {
return s;
}
// Find filter handle and filter type
if (rep->filter_policy) {
for (auto filter_type :
{Rep::FilterType::kFullFilter, Rep::FilterType::kPartitionedFilter,
Rep::FilterType::kBlockFilter}) {
std::string prefix;
switch (filter_type) {
case Rep::FilterType::kFullFilter:
prefix = kFullFilterBlockPrefix;
break;
case Rep::FilterType::kPartitionedFilter:
prefix = kPartitionedFilterBlockPrefix;
break;
case Rep::FilterType::kBlockFilter:
prefix = kFilterBlockPrefix;
break;
default:
assert(0);
}
std::string filter_block_key = prefix;
filter_block_key.append(rep->filter_policy->Name());
if (FindMetaBlock(meta_iter.get(), filter_block_key, &rep->filter_handle)
.ok()) {
rep->filter_type = filter_type;
break;
}
}
}
// Read the properties
bool found_properties_block = true;
s = SeekToPropertiesBlock(meta_iter.get(), &found_properties_block);
if (!s.ok()) {
ROCKS_LOG_WARN(rep->ioptions.info_log,
"Error when seeking to properties block from file: %s",
s.ToString().c_str());
} else if (found_properties_block) {
s = meta_iter->status();
TableProperties* table_properties = nullptr;
if (s.ok()) {
s = ReadProperties(meta_iter->value(), rep->file.get(),
prefetch_buffer.get(), rep->footer, rep->ioptions,
&table_properties);
}
if (!s.ok()) {
ROCKS_LOG_WARN(rep->ioptions.info_log,
"Encountered error while reading data from properties "
"block %s",
s.ToString().c_str());
} else {
assert(table_properties != nullptr);
rep->table_properties.reset(table_properties);
rep->blocks_maybe_compressed = rep->table_properties->compression_name !=
CompressionTypeToString(kNoCompression);
}
} else {
ROCKS_LOG_ERROR(rep->ioptions.info_log,
"Cannot find Properties block from file.");
}
// Read the compression dictionary meta block
bool found_compression_dict;
BlockHandle compression_dict_handle;
s = SeekToCompressionDictBlock(meta_iter.get(), &found_compression_dict,
&compression_dict_handle);
if (!s.ok()) {
ROCKS_LOG_WARN(
rep->ioptions.info_log,
"Error when seeking to compression dictionary block from file: %s",
s.ToString().c_str());
} else if (found_compression_dict && !compression_dict_handle.IsNull()) {
// TODO(andrewkr): Add to block cache if cache_index_and_filter_blocks is
// true.
std::unique_ptr<BlockContents> compression_dict_cont{new BlockContents()};
PersistentCacheOptions cache_options;
ReadOptions read_options;
read_options.verify_checksums = false;
BlockFetcher compression_block_fetcher(
rep->file.get(), prefetch_buffer.get(), rep->footer, read_options,
compression_dict_handle, compression_dict_cont.get(), rep->ioptions, false /* decompress */,
Slice() /*compression dict*/, cache_options);
s = compression_block_fetcher.ReadBlockContents();
if (!s.ok()) {
ROCKS_LOG_WARN(
rep->ioptions.info_log,
"Encountered error while reading data from compression dictionary "
"block %s",
s.ToString().c_str());
} else {
rep->compression_dict_block = std::move(compression_dict_cont);
}
}
// Read the range del meta block
bool found_range_del_block;
s = SeekToRangeDelBlock(meta_iter.get(), &found_range_del_block,
&rep->range_del_handle);
if (!s.ok()) {
ROCKS_LOG_WARN(
rep->ioptions.info_log,
"Error when seeking to range delete tombstones block from file: %s",
s.ToString().c_str());
} else {
if (found_range_del_block && !rep->range_del_handle.IsNull()) {
ReadOptions read_options;
s = MaybeLoadDataBlockToCache(
prefetch_buffer.get(), rep, read_options, rep->range_del_handle,
Slice() /* compression_dict */, &rep->range_del_entry,
false /* is_index */, nullptr /* get_context */);
if (!s.ok()) {
ROCKS_LOG_WARN(
rep->ioptions.info_log,
"Encountered error while reading data from range del block %s",
s.ToString().c_str());
}
}
}
// Determine whether whole key filtering is supported.
if (rep->table_properties) {
rep->whole_key_filtering &=
IsFeatureSupported(*(rep->table_properties),
BlockBasedTablePropertyNames::kWholeKeyFiltering,
rep->ioptions.info_log);
rep->prefix_filtering &= IsFeatureSupported(
*(rep->table_properties),
BlockBasedTablePropertyNames::kPrefixFiltering, rep->ioptions.info_log);
rep->global_seqno = GetGlobalSequenceNumber(*(rep->table_properties),
rep->ioptions.info_log);
}
const bool pin =
rep->table_options.pin_l0_filter_and_index_blocks_in_cache && level == 0;
// pre-fetching of blocks is turned on
// Will use block cache for index/filter blocks access
// Always prefetch index and filter for level 0
if (table_options.cache_index_and_filter_blocks) {
if (prefetch_index_and_filter_in_cache || level == 0) {
assert(table_options.block_cache != nullptr);
// Hack: Call NewIndexIterator() to implicitly add index to the
// block_cache
CachableEntry<IndexReader> index_entry;
unique_ptr<InternalIterator> iter(
new_table->NewIndexIterator(ReadOptions(), nullptr, &index_entry));
s = iter->status();
if (s.ok()) {
// This is the first call to NewIndexIterator() since we're in Open().
// On success it should give us ownership of the `CachableEntry` by
// populating `index_entry`.
assert(index_entry.value != nullptr);
index_entry.value->CacheDependencies(pin);
if (pin) {
rep->index_entry = std::move(index_entry);
} else {
index_entry.Release(table_options.block_cache.get());
}
// Hack: Call GetFilter() to implicitly add filter to the block_cache
auto filter_entry = new_table->GetFilter();
if (filter_entry.value != nullptr) {
filter_entry.value->CacheDependencies(pin);
}
// if pin_l0_filter_and_index_blocks_in_cache is true, and this is
// a level0 file, then save it in rep_->filter_entry; it will be
// released in the destructor only, hence it will be pinned in the
// cache while this reader is alive
if (pin) {
rep->filter_entry = filter_entry;
} else {
filter_entry.Release(table_options.block_cache.get());
}
}
}
} else {
// If we don't use block cache for index/filter blocks access, we'll
// pre-load these blocks, which will kept in member variables in Rep
// and with a same life-time as this table object.
IndexReader* index_reader = nullptr;
s = new_table->CreateIndexReader(prefetch_buffer.get(), &index_reader,
meta_iter.get(), level);
if (s.ok()) {
rep->index_reader.reset(index_reader);
// The partitions of partitioned index are always stored in cache. They
// are hence follow the configuration for pin and prefetch regardless of
// the value of cache_index_and_filter_blocks
if (prefetch_index_and_filter_in_cache || level == 0) {
rep->index_reader->CacheDependencies(pin);
}
// Set filter block
if (rep->filter_policy) {
const bool is_a_filter_partition = true;
auto filter = new_table->ReadFilter(
prefetch_buffer.get(), rep->filter_handle, !is_a_filter_partition);
rep->filter.reset(filter);
// Refer to the comment above about paritioned indexes always being
// cached
if (filter && (prefetch_index_and_filter_in_cache || level == 0)) {
filter->CacheDependencies(pin);
}
}
} else {
delete index_reader;
}
}
if (s.ok()) {
*table_reader = std::move(new_table);
}
return s;
}
void BlockBasedTable::SetupForCompaction() {
switch (rep_->ioptions.access_hint_on_compaction_start) {
case Options::NONE:
break;
case Options::NORMAL:
rep_->file->file()->Hint(RandomAccessFile::NORMAL);
break;
case Options::SEQUENTIAL:
rep_->file->file()->Hint(RandomAccessFile::SEQUENTIAL);
break;
case Options::WILLNEED:
rep_->file->file()->Hint(RandomAccessFile::WILLNEED);
break;
default:
assert(false);
}
}
std::shared_ptr<const TableProperties> BlockBasedTable::GetTableProperties()
const {
return rep_->table_properties;
}
size_t BlockBasedTable::ApproximateMemoryUsage() const {
size_t usage = 0;
if (rep_->filter) {
usage += rep_->filter->ApproximateMemoryUsage();
}
if (rep_->index_reader) {
usage += rep_->index_reader->ApproximateMemoryUsage();
}
return usage;
}
// Load the meta-block from the file. On success, return the loaded meta block
// and its iterator.
Status BlockBasedTable::ReadMetaBlock(Rep* rep,
FilePrefetchBuffer* prefetch_buffer,
std::unique_ptr<Block>* meta_block,
std::unique_ptr<InternalIterator>* iter) {
// TODO(sanjay): Skip this if footer.metaindex_handle() size indicates
// it is an empty block.
std::unique_ptr<Block> meta;
Status s = ReadBlockFromFile(
rep->file.get(), prefetch_buffer, rep->footer, ReadOptions(),
rep->footer.metaindex_handle(), &meta, rep->ioptions,
true /* decompress */, Slice() /*compression dict*/,
rep->persistent_cache_options, kDisableGlobalSequenceNumber,
0 /* read_amp_bytes_per_bit */);
if (!s.ok()) {
ROCKS_LOG_ERROR(rep->ioptions.info_log,
"Encountered error while reading data from properties"
" block %s",
s.ToString().c_str());
return s;
}
*meta_block = std::move(meta);
// meta block uses bytewise comparator.
iter->reset(meta_block->get()->NewIterator(BytewiseComparator()));
return Status::OK();
}
Status BlockBasedTable::GetDataBlockFromCache(
const Slice& block_cache_key, const Slice& compressed_block_cache_key,
Cache* block_cache, Cache* block_cache_compressed,
const ImmutableCFOptions& ioptions, const ReadOptions& read_options,
BlockBasedTable::CachableEntry<Block>* block, uint32_t format_version,
const Slice& compression_dict, size_t read_amp_bytes_per_bit, bool is_index,
GetContext* get_context) {
Status s;
Block* compressed_block = nullptr;
Cache::Handle* block_cache_compressed_handle = nullptr;
Statistics* statistics = ioptions.statistics;
// Lookup uncompressed cache first
if (block_cache != nullptr) {
block->cache_handle = GetEntryFromCache(
block_cache, block_cache_key,
is_index ? BLOCK_CACHE_INDEX_MISS : BLOCK_CACHE_DATA_MISS,
is_index ? BLOCK_CACHE_INDEX_HIT : BLOCK_CACHE_DATA_HIT, statistics,
get_context);
if (block->cache_handle != nullptr) {
block->value =
reinterpret_cast<Block*>(block_cache->Value(block->cache_handle));
return s;
}
}
// If not found, search from the compressed block cache.
assert(block->cache_handle == nullptr && block->value == nullptr);
if (block_cache_compressed == nullptr) {
return s;
}
assert(!compressed_block_cache_key.empty());
block_cache_compressed_handle =
block_cache_compressed->Lookup(compressed_block_cache_key);
// if we found in the compressed cache, then uncompress and insert into
// uncompressed cache
if (block_cache_compressed_handle == nullptr) {
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_MISS);
return s;
}
// found compressed block
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_HIT);
compressed_block = reinterpret_cast<Block*>(
block_cache_compressed->Value(block_cache_compressed_handle));
assert(compressed_block->compression_type() != kNoCompression);
// Retrieve the uncompressed contents into a new buffer
BlockContents contents;
s = UncompressBlockContents(compressed_block->data(),
compressed_block->size(), &contents,
format_version, compression_dict,
ioptions);
// Insert uncompressed block into block cache
if (s.ok()) {
block->value =
new Block(std::move(contents), compressed_block->global_seqno(),
read_amp_bytes_per_bit,
statistics); // uncompressed block
assert(block->value->compression_type() == kNoCompression);
if (block_cache != nullptr && block->value->cachable() &&
read_options.fill_cache) {
s = block_cache->Insert(
block_cache_key, block->value, block->value->usable_size(),
&DeleteCachedEntry<Block>, &(block->cache_handle));
block_cache->TEST_mark_as_data_block(block_cache_key,
block->value->usable_size());
if (s.ok()) {
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_BYTES_WRITE,
block->value->usable_size());
} else {
RecordTick(statistics, BLOCK_CACHE_ADD);
RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE,
block->value->usable_size());
}
if (is_index) {
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_INDEX_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_INDEX_BYTES_INSERT,
block->value->usable_size());
} else {
RecordTick(statistics, BLOCK_CACHE_INDEX_ADD);
RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT,
block->value->usable_size());
}
} else {
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_DATA_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_DATA_BYTES_INSERT,
block->value->usable_size());
} else {
RecordTick(statistics, BLOCK_CACHE_DATA_ADD);
RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT,
block->value->usable_size());
}
}
} else {
RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES);
delete block->value;
block->value = nullptr;
}
}
}
// Release hold on compressed cache entry
block_cache_compressed->Release(block_cache_compressed_handle);
return s;
}
Status BlockBasedTable::PutDataBlockToCache(
const Slice& block_cache_key, const Slice& compressed_block_cache_key,
Cache* block_cache, Cache* block_cache_compressed,
const ReadOptions& /*read_options*/, const ImmutableCFOptions& ioptions,
CachableEntry<Block>* block, Block* raw_block, uint32_t format_version,
const Slice& compression_dict, size_t read_amp_bytes_per_bit, bool is_index,
Cache::Priority priority, GetContext* get_context) {
assert(raw_block->compression_type() == kNoCompression ||
block_cache_compressed != nullptr);
Status s;
// Retrieve the uncompressed contents into a new buffer
BlockContents contents;
Statistics* statistics = ioptions.statistics;
if (raw_block->compression_type() != kNoCompression) {
s = UncompressBlockContents(raw_block->data(), raw_block->size(), &contents,
format_version, compression_dict, ioptions);
}
if (!s.ok()) {
delete raw_block;
return s;
}
if (raw_block->compression_type() != kNoCompression) {
block->value = new Block(std::move(contents), raw_block->global_seqno(),
read_amp_bytes_per_bit,
statistics); // uncompressed block
} else {
block->value = raw_block;
raw_block = nullptr;
}
// Insert compressed block into compressed block cache.
// Release the hold on the compressed cache entry immediately.
if (block_cache_compressed != nullptr && raw_block != nullptr &&
raw_block->cachable()) {
s = block_cache_compressed->Insert(compressed_block_cache_key, raw_block,
raw_block->usable_size(),
&DeleteCachedEntry<Block>);
if (s.ok()) {
// Avoid the following code to delete this cached block.
raw_block = nullptr;
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD);
} else {
RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD_FAILURES);
}
}
delete raw_block;
// insert into uncompressed block cache
assert((block->value->compression_type() == kNoCompression));
if (block_cache != nullptr && block->value->cachable()) {
s = block_cache->Insert(
block_cache_key, block->value, block->value->usable_size(),
&DeleteCachedEntry<Block>, &(block->cache_handle), priority);
block_cache->TEST_mark_as_data_block(block_cache_key,
block->value->usable_size());
if (s.ok()) {
assert(block->cache_handle != nullptr);
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_BYTES_WRITE,
block->value->usable_size());
} else {
RecordTick(statistics, BLOCK_CACHE_ADD);
RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE,
block->value->usable_size());
}
if (is_index) {
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_INDEX_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_INDEX_BYTES_INSERT,
block->value->usable_size());
} else {
RecordTick(statistics, BLOCK_CACHE_INDEX_ADD);
RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT,
block->value->usable_size());
}
} else {
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_DATA_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_DATA_BYTES_INSERT,
block->value->usable_size());
} else {
RecordTick(statistics, BLOCK_CACHE_DATA_ADD);
RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT,
block->value->usable_size());
}
}
assert(reinterpret_cast<Block*>(
block_cache->Value(block->cache_handle)) == block->value);
} else {
RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES);
delete block->value;
block->value = nullptr;
}
}
return s;
}
FilterBlockReader* BlockBasedTable::ReadFilter(
FilePrefetchBuffer* prefetch_buffer, const BlockHandle& filter_handle,
const bool is_a_filter_partition) const {
auto& rep = rep_;
// TODO: We might want to unify with ReadBlockFromFile() if we start
// requiring checksum verification in Table::Open.
if (rep->filter_type == Rep::FilterType::kNoFilter) {
return nullptr;
}
BlockContents block;
Slice dummy_comp_dict;
BlockFetcher block_fetcher(rep->file.get(), prefetch_buffer, rep->footer,
ReadOptions(), filter_handle, &block,
rep->ioptions, false /* decompress */,
dummy_comp_dict, rep->persistent_cache_options);
Status s = block_fetcher.ReadBlockContents();
if (!s.ok()) {
// Error reading the block
return nullptr;
}
assert(rep->filter_policy);
auto filter_type = rep->filter_type;
if (rep->filter_type == Rep::FilterType::kPartitionedFilter &&
is_a_filter_partition) {
filter_type = Rep::FilterType::kFullFilter;
}
switch (filter_type) {
case Rep::FilterType::kPartitionedFilter: {
return new PartitionedFilterBlockReader(
rep->prefix_filtering ? rep->ioptions.prefix_extractor : nullptr,
rep->whole_key_filtering, std::move(block), nullptr,
rep->ioptions.statistics, rep->internal_comparator, this);
}
case Rep::FilterType::kBlockFilter:
return new BlockBasedFilterBlockReader(
rep->prefix_filtering ? rep->ioptions.prefix_extractor : nullptr,
rep->table_options, rep->whole_key_filtering, std::move(block),
rep->ioptions.statistics);
case Rep::FilterType::kFullFilter: {
auto filter_bits_reader =
rep->filter_policy->GetFilterBitsReader(block.data);
assert(filter_bits_reader != nullptr);
return new FullFilterBlockReader(
rep->prefix_filtering ? rep->ioptions.prefix_extractor : nullptr,
rep->whole_key_filtering, std::move(block), filter_bits_reader,
rep->ioptions.statistics);
}
default:
// filter_type is either kNoFilter (exited the function at the first if),
// or it must be covered in this switch block
assert(false);
return nullptr;
}
}
BlockBasedTable::CachableEntry<FilterBlockReader> BlockBasedTable::GetFilter(
FilePrefetchBuffer* prefetch_buffer, bool no_io,
GetContext* get_context) const {
const BlockHandle& filter_blk_handle = rep_->filter_handle;
const bool is_a_filter_partition = true;
return GetFilter(prefetch_buffer, filter_blk_handle, !is_a_filter_partition,
no_io, get_context);
}
BlockBasedTable::CachableEntry<FilterBlockReader> BlockBasedTable::GetFilter(
FilePrefetchBuffer* prefetch_buffer, const BlockHandle& filter_blk_handle,
const bool is_a_filter_partition, bool no_io,
GetContext* get_context) const {
// If cache_index_and_filter_blocks is false, filter should be pre-populated.
// We will return rep_->filter anyway. rep_->filter can be nullptr if filter
// read fails at Open() time. We don't want to reload again since it will
// most probably fail again.
if (!is_a_filter_partition &&
!rep_->table_options.cache_index_and_filter_blocks) {
return {rep_->filter.get(), nullptr /* cache handle */};
}
Cache* block_cache = rep_->table_options.block_cache.get();
if (rep_->filter_policy == nullptr /* do not use filter */ ||
block_cache == nullptr /* no block cache at all */) {
return {nullptr /* filter */, nullptr /* cache handle */};
}
if (!is_a_filter_partition && rep_->filter_entry.IsSet()) {
return rep_->filter_entry;
}
PERF_TIMER_GUARD(read_filter_block_nanos);
// Fetching from the cache
char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length];
auto key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size,
filter_blk_handle, cache_key);
Statistics* statistics = rep_->ioptions.statistics;
auto cache_handle =
GetEntryFromCache(block_cache, key, BLOCK_CACHE_FILTER_MISS,
BLOCK_CACHE_FILTER_HIT, statistics, get_context);
FilterBlockReader* filter = nullptr;
if (cache_handle != nullptr) {
filter = reinterpret_cast<FilterBlockReader*>(
block_cache->Value(cache_handle));
} else if (no_io) {
// Do not invoke any io.
return CachableEntry<FilterBlockReader>();
} else {
filter =
ReadFilter(prefetch_buffer, filter_blk_handle, is_a_filter_partition);
if (filter != nullptr) {
assert(filter->size() > 0);
Status s = block_cache->Insert(
key, filter, filter->size(), &DeleteCachedFilterEntry, &cache_handle,
rep_->table_options.cache_index_and_filter_blocks_with_high_priority
? Cache::Priority::HIGH
: Cache::Priority::LOW);
if (s.ok()) {
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_BYTES_WRITE, filter->size());
get_context->RecordCounters(BLOCK_CACHE_FILTER_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_FILTER_BYTES_INSERT,
filter->size());
} else {
RecordTick(statistics, BLOCK_CACHE_ADD);
RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, filter->size());
RecordTick(statistics, BLOCK_CACHE_FILTER_ADD);
RecordTick(statistics, BLOCK_CACHE_FILTER_BYTES_INSERT,
filter->size());
}
} else {
RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES);
delete filter;
return CachableEntry<FilterBlockReader>();
}
}
}
return { filter, cache_handle };
}
InternalIterator* BlockBasedTable::NewIndexIterator(
const ReadOptions& read_options, BlockIter* input_iter,
CachableEntry<IndexReader>* index_entry, GetContext* get_context) {
// index reader has already been pre-populated.
if (rep_->index_reader) {
return rep_->index_reader->NewIterator(
input_iter, read_options.total_order_seek);
}
// we have a pinned index block
if (rep_->index_entry.IsSet()) {
return rep_->index_entry.value->NewIterator(input_iter,
read_options.total_order_seek);
}
PERF_TIMER_GUARD(read_index_block_nanos);
const bool no_io = read_options.read_tier == kBlockCacheTier;
Cache* block_cache = rep_->table_options.block_cache.get();
char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length];
auto key =
GetCacheKeyFromOffset(rep_->cache_key_prefix, rep_->cache_key_prefix_size,
rep_->dummy_index_reader_offset, cache_key);
Statistics* statistics = rep_->ioptions.statistics;
auto cache_handle =
GetEntryFromCache(block_cache, key, BLOCK_CACHE_INDEX_MISS,
BLOCK_CACHE_INDEX_HIT, statistics, get_context);
if (cache_handle == nullptr && no_io) {
if (input_iter != nullptr) {
input_iter->SetStatus(Status::Incomplete("no blocking io"));
return input_iter;
} else {
return NewErrorInternalIterator(Status::Incomplete("no blocking io"));
}
}
IndexReader* index_reader = nullptr;
if (cache_handle != nullptr) {
index_reader =
reinterpret_cast<IndexReader*>(block_cache->Value(cache_handle));
} else {
// Create index reader and put it in the cache.
Status s;
TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread2:2");
s = CreateIndexReader(nullptr /* prefetch_buffer */, &index_reader);
TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread1:1");
TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread2:3");
TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread1:4");
if (s.ok()) {
assert(index_reader != nullptr);
s = block_cache->Insert(
key, index_reader, index_reader->usable_size(),
&DeleteCachedIndexEntry, &cache_handle,
rep_->table_options.cache_index_and_filter_blocks_with_high_priority
? Cache::Priority::HIGH
: Cache::Priority::LOW);
}
if (s.ok()) {
size_t usable_size = index_reader->usable_size();
if (get_context != nullptr) {
get_context->RecordCounters(BLOCK_CACHE_ADD, 1);
get_context->RecordCounters(BLOCK_CACHE_BYTES_WRITE, usable_size);
} else {
RecordTick(statistics, BLOCK_CACHE_ADD);
RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, usable_size);
}
RecordTick(statistics, BLOCK_CACHE_INDEX_ADD);
RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, usable_size);
} else {
if (index_reader != nullptr) {
delete index_reader;
}
RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES);
// make sure if something goes wrong, index_reader shall remain intact.
if (input_iter != nullptr) {
input_iter->SetStatus(s);
return input_iter;
} else {
return NewErrorInternalIterator(s);
}
}
}
assert(cache_handle);
auto* iter = index_reader->NewIterator(
input_iter, read_options.total_order_seek);
// the caller would like to take ownership of the index block
// don't call RegisterCleanup() in this case, the caller will take care of it
if (index_entry != nullptr) {
*index_entry = {index_reader, cache_handle};
} else {
iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, cache_handle);
}
return iter;
}
BlockIter* BlockBasedTable::NewDataBlockIterator(
Rep* rep, const ReadOptions& ro, const Slice& index_value,
BlockIter* input_iter, bool is_index, GetContext* get_context) {
BlockHandle handle;
Slice input = index_value;
// We intentionally allow extra stuff in index_value so that we
// can add more features in the future.
Status s = handle.DecodeFrom(&input);
return NewDataBlockIterator(rep, ro, handle, input_iter, is_index,
get_context, s);
}
// Convert an index iterator value (i.e., an encoded BlockHandle)
// into an iterator over the contents of the corresponding block.
// If input_iter is null, new a iterator
// If input_iter is not null, update this iter and return it
BlockIter* BlockBasedTable::NewDataBlockIterator(
Rep* rep, const ReadOptions& ro, const BlockHandle& handle,
BlockIter* input_iter, bool is_index, GetContext* get_context, Status s) {
PERF_TIMER_GUARD(new_table_block_iter_nanos);
const bool no_io = (ro.read_tier == kBlockCacheTier);
Cache* block_cache = rep->table_options.block_cache.get();
CachableEntry<Block> block;
Slice compression_dict;
if (s.ok()) {
if (rep->compression_dict_block) {
compression_dict = rep->compression_dict_block->data;
}
s = MaybeLoadDataBlockToCache(nullptr /*prefetch_buffer*/, rep, ro, handle,
compression_dict, &block, is_index,
get_context);
}
BlockIter* iter;
if (input_iter != nullptr) {
iter = input_iter;
} else {
iter = new BlockIter;
}
// Didn't get any data from block caches.
if (s.ok() && block.value == nullptr) {
if (no_io) {
// Could not read from block_cache and can't do IO
iter->SetStatus(Status::Incomplete("no blocking io"));
return iter;
}
std::unique_ptr<Block> block_value;
{
StopWatch sw(rep->ioptions.env, rep->ioptions.statistics,
READ_BLOCK_GET_MICROS);
s = ReadBlockFromFile(rep->file.get(), nullptr /* prefetch_buffer */,
rep->footer, ro, handle, &block_value, rep->ioptions,
rep->blocks_maybe_compressed, compression_dict,
rep->persistent_cache_options, rep->global_seqno,
rep->table_options.read_amp_bytes_per_bit);
}
if (s.ok()) {
block.value = block_value.release();
}
}
if (s.ok()) {
assert(block.value != nullptr);
iter = block.value->NewIterator(&rep->internal_comparator, iter, true,
rep->ioptions.statistics);
if (block.cache_handle != nullptr) {
iter->RegisterCleanup(&ReleaseCachedEntry, block_cache,
block.cache_handle);
} else {
if (!ro.fill_cache && rep->cache_key_prefix_size != 0) {
// insert a dummy record to block cache to track the memory usage
Cache::Handle* cache_handle;
// There are two other types of cache keys: 1) SST cache key added in
// `MaybeLoadDataBlockToCache` 2) dummy cache key added in
// `write_buffer_manager`. Use longer prefix (41 bytes) to differentiate
// from SST cache key(31 bytes), and use non-zero prefix to
// differentiate from `write_buffer_manager`
const size_t kExtraCacheKeyPrefix = kMaxVarint64Length * 4 + 1;
char cache_key[kExtraCacheKeyPrefix + kMaxVarint64Length];
// Prefix: use rep->cache_key_prefix padded by 0s
memset(cache_key, 0, kExtraCacheKeyPrefix + kMaxVarint64Length);
assert(rep->cache_key_prefix_size != 0);
assert(rep->cache_key_prefix_size <= kExtraCacheKeyPrefix);
memcpy(cache_key, rep->cache_key_prefix, rep->cache_key_prefix_size);
char* end = EncodeVarint64(cache_key + kExtraCacheKeyPrefix,
next_cache_key_id_++);
assert(end - cache_key <=
static_cast<int>(kExtraCacheKeyPrefix + kMaxVarint64Length));
Slice unique_key =
Slice(cache_key, static_cast<size_t>(end - cache_key));
s = block_cache->Insert(unique_key, nullptr, block.value->usable_size(),
nullptr, &cache_handle);
if (s.ok()) {
if (cache_handle != nullptr) {
iter->RegisterCleanup(&ForceReleaseCachedEntry, block_cache,
cache_handle);
}
} else {
delete block.value;
block.value = nullptr;
}
}
iter->RegisterCleanup(&DeleteHeldResource<Block>, block.value, nullptr);
}
} else {
assert(block.value == nullptr);
iter->SetStatus(s);
}
return iter;
}
Status BlockBasedTable::MaybeLoadDataBlockToCache(
FilePrefetchBuffer* prefetch_buffer, Rep* rep, const ReadOptions& ro,
const BlockHandle& handle, Slice compression_dict,
CachableEntry<Block>* block_entry, bool is_index, GetContext* get_context) {
assert(block_entry != nullptr);
const bool no_io = (ro.read_tier == kBlockCacheTier);
Cache* block_cache = rep->table_options.block_cache.get();
Cache* block_cache_compressed =
rep->table_options.block_cache_compressed.get();
// If either block cache is enabled, we'll try to read from it.
Status s;
if (block_cache != nullptr || block_cache_compressed != nullptr) {
Statistics* statistics = rep->ioptions.statistics;
char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length];
char compressed_cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length];
Slice key, /* key to the block cache */
ckey /* key to the compressed block cache */;
// create key for block cache
if (block_cache != nullptr) {
key = GetCacheKey(rep->cache_key_prefix, rep->cache_key_prefix_size,
handle, cache_key);
}
if (block_cache_compressed != nullptr) {
ckey = GetCacheKey(rep->compressed_cache_key_prefix,
rep->compressed_cache_key_prefix_size, handle,
compressed_cache_key);
}
s = GetDataBlockFromCache(
key, ckey, block_cache, block_cache_compressed, rep->ioptions, ro,
block_entry, rep->table_options.format_version, compression_dict,
rep->table_options.read_amp_bytes_per_bit, is_index, get_context);
if (block_entry->value == nullptr && !no_io && ro.fill_cache) {
std::unique_ptr<Block> raw_block;
{
StopWatch sw(rep->ioptions.env, statistics, READ_BLOCK_GET_MICROS);
s = ReadBlockFromFile(
rep->file.get(), prefetch_buffer, rep->footer, ro, handle,
&raw_block, rep->ioptions,
block_cache_compressed == nullptr && rep->blocks_maybe_compressed,
compression_dict, rep->persistent_cache_options, rep->global_seqno,
rep->table_options.read_amp_bytes_per_bit);
}
if (s.ok()) {
s = PutDataBlockToCache(
key, ckey, block_cache, block_cache_compressed, ro, rep->ioptions,
block_entry, raw_block.release(), rep->table_options.format_version,
compression_dict, rep->table_options.read_amp_bytes_per_bit,
is_index,
is_index && rep->table_options
.cache_index_and_filter_blocks_with_high_priority
? Cache::Priority::HIGH
: Cache::Priority::LOW,
get_context);
}
}
}
assert(s.ok() || block_entry->value == nullptr);
return s;
}
BlockBasedTable::PartitionedIndexIteratorState::PartitionedIndexIteratorState(
BlockBasedTable* table,
std::unordered_map<uint64_t, CachableEntry<Block>>* block_map)
: table_(table), block_map_(block_map) {}
const size_t BlockBasedTableIterator::kMaxReadaheadSize = 256 * 1024;
InternalIterator*
BlockBasedTable::PartitionedIndexIteratorState::NewSecondaryIterator(
const Slice& index_value) {
// Return a block iterator on the index partition
BlockHandle handle;
Slice input = index_value;
Status s = handle.DecodeFrom(&input);
auto rep = table_->get_rep();
auto block = block_map_->find(handle.offset());
// This is a possible scenario since block cache might not have had space
// for the partition
if (block != block_map_->end()) {
PERF_COUNTER_ADD(block_cache_hit_count, 1);
RecordTick(rep->ioptions.statistics, BLOCK_CACHE_INDEX_HIT);
RecordTick(rep->ioptions.statistics, BLOCK_CACHE_HIT);
Cache* block_cache = rep->table_options.block_cache.get();
assert(block_cache);
RecordTick(rep->ioptions.statistics, BLOCK_CACHE_BYTES_READ,
block_cache->GetUsage(block->second.cache_handle));
return block->second.value->NewIterator(&rep->internal_comparator, nullptr,
true, rep->ioptions.statistics);
}
// Create an empty iterator
return new BlockIter();
}
// This will be broken if the user specifies an unusual implementation
// of Options.comparator, or if the user specifies an unusual
// definition of prefixes in BlockBasedTableOptions.filter_policy.
// In particular, we require the following three properties:
//
// 1) key.starts_with(prefix(key))
// 2) Compare(prefix(key), key) <= 0.
// 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0
//
// Otherwise, this method guarantees no I/O will be incurred.
//
// REQUIRES: this method shouldn't be called while the DB lock is held.
bool BlockBasedTable::PrefixMayMatch(const Slice& internal_key) {
if (!rep_->filter_policy) {
return true;
}
assert(rep_->ioptions.prefix_extractor != nullptr);
auto user_key = ExtractUserKey(internal_key);
if (!rep_->ioptions.prefix_extractor->InDomain(user_key) ||
rep_->table_properties->prefix_extractor_name.compare(
rep_->ioptions.prefix_extractor->Name()) != 0) {
return true;
}
auto prefix = rep_->ioptions.prefix_extractor->Transform(user_key);
bool may_match = true;
Status s;
// First, try check with full filter
auto filter_entry = GetFilter();
FilterBlockReader* filter = filter_entry.value;
if (filter != nullptr) {
if (!filter->IsBlockBased()) {
const Slice* const const_ikey_ptr = &internal_key;
may_match =
filter->PrefixMayMatch(prefix, kNotValid, false, const_ikey_ptr);
} else {
InternalKey internal_key_prefix(prefix, kMaxSequenceNumber, kTypeValue);
auto internal_prefix = internal_key_prefix.Encode();
// To prevent any io operation in this method, we set `read_tier` to make
// sure we always read index or filter only when they have already been
// loaded to memory.
ReadOptions no_io_read_options;
no_io_read_options.read_tier = kBlockCacheTier;
// Then, try find it within each block
unique_ptr<InternalIterator> iiter(NewIndexIterator(no_io_read_options));
iiter->Seek(internal_prefix);
if (!iiter->Valid()) {
// we're past end of file
// if it's incomplete, it means that we avoided I/O
// and we're not really sure that we're past the end
// of the file
may_match = iiter->status().IsIncomplete();
} else if (ExtractUserKey(iiter->key())
.starts_with(ExtractUserKey(internal_prefix))) {
// we need to check for this subtle case because our only
// guarantee is that "the key is a string >= last key in that data
// block" according to the doc/table_format.txt spec.
//
// Suppose iiter->key() starts with the desired prefix; it is not
// necessarily the case that the corresponding data block will
// contain the prefix, since iiter->key() need not be in the
// block. However, the next data block may contain the prefix, so
// we return true to play it safe.
may_match = true;
} else if (filter->IsBlockBased()) {
// iiter->key() does NOT start with the desired prefix. Because
// Seek() finds the first key that is >= the seek target, this
// means that iiter->key() > prefix. Thus, any data blocks coming
// after the data block corresponding to iiter->key() cannot
// possibly contain the key. Thus, the corresponding data block
// is the only on could potentially contain the prefix.
Slice handle_value = iiter->value();
BlockHandle handle;
s = handle.DecodeFrom(&handle_value);
assert(s.ok());
may_match = filter->PrefixMayMatch(prefix, handle.offset());
}
}
}
Statistics* statistics = rep_->ioptions.statistics;
RecordTick(statistics, BLOOM_FILTER_PREFIX_CHECKED);
if (!may_match) {
RecordTick(statistics, BLOOM_FILTER_PREFIX_USEFUL);
}
// if rep_->filter_entry is not set, we should call Release(); otherwise
// don't call, in this case we have a local copy in rep_->filter_entry,
// it's pinned to the cache and will be released in the destructor
if (!rep_->filter_entry.IsSet()) {
filter_entry.Release(rep_->table_options.block_cache.get());
}
return may_match;
}
void BlockBasedTableIterator::Seek(const Slice& target) {
if (!CheckPrefixMayMatch(target)) {
ResetDataIter();
return;
}
SavePrevIndexValue();
index_iter_->Seek(target);
if (!index_iter_->Valid()) {
ResetDataIter();
return;
}
InitDataBlock();
data_block_iter_.Seek(target);
FindKeyForward();
assert(!data_block_iter_.Valid() ||
icomp_.Compare(target, data_block_iter_.key()) <= 0);
}
void BlockBasedTableIterator::SeekForPrev(const Slice& target) {
if (!CheckPrefixMayMatch(target)) {
ResetDataIter();
return;
}
SavePrevIndexValue();
// Call Seek() rather than SeekForPrev() in the index block, because the
// target data block will likely to contain the position for `target`, the
// same as Seek(), rather than than before.
// For example, if we have three data blocks, each containing two keys:
// [2, 4] [6, 8] [10, 12]
// (the keys in the index block would be [4, 8, 12])
// and the user calls SeekForPrev(7), we need to go to the second block,
// just like if they call Seek(7).
// The only case where the block is difference is when they seek to a position
// in the boundary. For example, if they SeekForPrev(5), we should go to the
// first block, rather than the second. However, we don't have the information
// to distinguish the two unless we read the second block. In this case, we'll
// end up with reading two blocks.
index_iter_->Seek(target);
if (!index_iter_->Valid()) {
index_iter_->SeekToLast();
if (!index_iter_->Valid()) {
ResetDataIter();
block_iter_points_to_real_block_ = false;
return;
}
}
InitDataBlock();
data_block_iter_.SeekForPrev(target);
FindKeyBackward();
assert(!data_block_iter_.Valid() ||
icomp_.Compare(target, data_block_iter_.key()) >= 0);
}
void BlockBasedTableIterator::SeekToFirst() {
SavePrevIndexValue();
index_iter_->SeekToFirst();
if (!index_iter_->Valid()) {
ResetDataIter();
return;
}
InitDataBlock();
data_block_iter_.SeekToFirst();
FindKeyForward();
}
void BlockBasedTableIterator::SeekToLast() {
SavePrevIndexValue();
index_iter_->SeekToLast();
if (!index_iter_->Valid()) {
ResetDataIter();
return;
}
InitDataBlock();
data_block_iter_.SeekToLast();
FindKeyBackward();
}
void BlockBasedTableIterator::Next() {
assert(block_iter_points_to_real_block_);
data_block_iter_.Next();
FindKeyForward();
}
void BlockBasedTableIterator::Prev() {
assert(block_iter_points_to_real_block_);
data_block_iter_.Prev();
FindKeyBackward();
}
void BlockBasedTableIterator::InitDataBlock() {
BlockHandle data_block_handle;
Slice handle_slice = index_iter_->value();
if (!block_iter_points_to_real_block_ ||
handle_slice.compare(prev_index_value_) != 0) {
if (block_iter_points_to_real_block_) {
ResetDataIter();
}
Status s = data_block_handle.DecodeFrom(&handle_slice);
auto* rep = table_->get_rep();
// Automatically prefetch additional data when a range scan (iterator) does
// more than 2 sequential IOs. This is enabled only when
// ReadOptions.readahead_size is 0.
if (read_options_.readahead_size == 0) {
if (num_file_reads_ < 2) {
num_file_reads_++;
} else if (data_block_handle.offset() +
static_cast<size_t>(data_block_handle.size()) +
kBlockTrailerSize >
readahead_limit_) {
num_file_reads_++;
// Do not readahead more than kMaxReadaheadSize.
readahead_size_ = std::min(kMaxReadaheadSize, readahead_size_);
table_->get_rep()->file->Prefetch(data_block_handle.offset(),
readahead_size_);
readahead_limit_ = static_cast<size_t>(data_block_handle.offset()
+ readahead_size_);
// Keep exponentially increasing readahead size until kMaxReadaheadSize.
readahead_size_ *= 2;
}
}
BlockBasedTable::NewDataBlockIterator(rep, read_options_, data_block_handle,
&data_block_iter_, false,
/* get_context */ nullptr, s);
block_iter_points_to_real_block_ = true;
}
}
void BlockBasedTableIterator::FindKeyForward() {
is_out_of_bound_ = false;
// TODO the while loop inherits from two-level-iterator. We don't know
// whether a block can be empty so it can be replaced by an "if".
while (!data_block_iter_.Valid()) {
if (!data_block_iter_.status().ok()) {
return;
}
ResetDataIter();
// We used to check the current index key for upperbound.
// It will only save a data reading for a small percentage of use cases,
// so for code simplicity, we removed it. We can add it back if there is a
// significnat performance regression.
index_iter_->Next();
if (index_iter_->Valid()) {
InitDataBlock();
data_block_iter_.SeekToFirst();
} else {
return;
}
}
// Check upper bound on the current key
bool reached_upper_bound =
(read_options_.iterate_upper_bound != nullptr &&
block_iter_points_to_real_block_ && data_block_iter_.Valid() &&
icomp_.user_comparator()->Compare(ExtractUserKey(data_block_iter_.key()),
*read_options_.iterate_upper_bound) >=
0);
TEST_SYNC_POINT_CALLBACK(
"BlockBasedTable::BlockEntryIteratorState::KeyReachedUpperBound",
&reached_upper_bound);
if (reached_upper_bound) {
is_out_of_bound_ = true;
ResetDataIter();
return;
}
}
void BlockBasedTableIterator::FindKeyBackward() {
while (!data_block_iter_.Valid()) {
if (!data_block_iter_.status().ok()) {
return;
}
ResetDataIter();
index_iter_->Prev();
if (index_iter_->Valid()) {
InitDataBlock();
data_block_iter_.SeekToLast();
} else {
return;
}
}
// We could have check lower bound here too, but we opt not to do it for
// code simplicity.
}
InternalIterator* BlockBasedTable::NewIterator(const ReadOptions& read_options,
Arena* arena,
bool skip_filters) {
if (arena == nullptr) {
return new BlockBasedTableIterator(
this, read_options, rep_->internal_comparator,
NewIndexIterator(read_options),
!skip_filters && !read_options.total_order_seek &&
rep_->ioptions.prefix_extractor != nullptr);
} else {
auto* mem = arena->AllocateAligned(sizeof(BlockBasedTableIterator));
return new (mem) BlockBasedTableIterator(
this, read_options, rep_->internal_comparator,
NewIndexIterator(read_options),
!skip_filters && !read_options.total_order_seek &&
rep_->ioptions.prefix_extractor != nullptr);
}
}
InternalIterator* BlockBasedTable::NewRangeTombstoneIterator(
const ReadOptions& read_options) {
if (rep_->range_del_handle.IsNull()) {
// The block didn't exist, nullptr indicates no range tombstones.
return nullptr;
}
if (rep_->range_del_entry.cache_handle != nullptr) {
// We have a handle to an uncompressed block cache entry that's held for
// this table's lifetime. Increment its refcount before returning an
// iterator based on it since the returned iterator may outlive this table
// reader.
assert(rep_->range_del_entry.value != nullptr);
Cache* block_cache = rep_->table_options.block_cache.get();
assert(block_cache != nullptr);
if (block_cache->Ref(rep_->range_del_entry.cache_handle)) {
auto iter = rep_->range_del_entry.value->NewIterator(
&rep_->internal_comparator, nullptr /* iter */,
true /* total_order_seek */, rep_->ioptions.statistics);
iter->RegisterCleanup(&ReleaseCachedEntry, block_cache,
rep_->range_del_entry.cache_handle);
return iter;
}
}
std::string str;
rep_->range_del_handle.EncodeTo(&str);
// The meta-block exists but isn't in uncompressed block cache (maybe
// because it is disabled), so go through the full lookup process.
return NewDataBlockIterator(rep_, read_options, Slice(str));
}
bool BlockBasedTable::FullFilterKeyMayMatch(const ReadOptions& read_options,
FilterBlockReader* filter,
const Slice& internal_key,
const bool no_io) const {
if (filter == nullptr || filter->IsBlockBased()) {
return true;
}
Slice user_key = ExtractUserKey(internal_key);
const Slice* const const_ikey_ptr = &internal_key;
if (filter->whole_key_filtering()) {
return filter->KeyMayMatch(user_key, kNotValid, no_io, const_ikey_ptr);
}
if (!read_options.total_order_seek && rep_->ioptions.prefix_extractor &&
rep_->table_properties->prefix_extractor_name.compare(
rep_->ioptions.prefix_extractor->Name()) == 0 &&
rep_->ioptions.prefix_extractor->InDomain(user_key) &&
!filter->PrefixMayMatch(
rep_->ioptions.prefix_extractor->Transform(user_key), kNotValid,
false, const_ikey_ptr)) {
return false;
}
return true;
}
Status BlockBasedTable::Get(const ReadOptions& read_options, const Slice& key,
GetContext* get_context, bool skip_filters) {
Status s;
const bool no_io = read_options.read_tier == kBlockCacheTier;
CachableEntry<FilterBlockReader> filter_entry;
if (!skip_filters) {
filter_entry =
GetFilter(/*prefetch_buffer*/ nullptr,
read_options.read_tier == kBlockCacheTier, get_context);
}
FilterBlockReader* filter = filter_entry.value;
// First check the full filter
// If full filter not useful, Then go into each block
if (!FullFilterKeyMayMatch(read_options, filter, key, no_io)) {
RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL);
} else {
BlockIter iiter_on_stack;
auto iiter = NewIndexIterator(read_options, &iiter_on_stack,
/* index_entry */ nullptr, get_context);
std::unique_ptr<InternalIterator> iiter_unique_ptr;
if (iiter != &iiter_on_stack) {
iiter_unique_ptr.reset(iiter);
}
bool done = false;
for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) {
Slice handle_value = iiter->value();
BlockHandle handle;
bool not_exist_in_filter =
filter != nullptr && filter->IsBlockBased() == true &&
handle.DecodeFrom(&handle_value).ok() &&
!filter->KeyMayMatch(ExtractUserKey(key), handle.offset(), no_io);
if (not_exist_in_filter) {
// Not found
// TODO: think about interaction with Merge. If a user key cannot
// cross one data block, we should be fine.
RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL);
break;
} else {
BlockIter biter;
NewDataBlockIterator(rep_, read_options, iiter->value(), &biter, false,
get_context);
if (read_options.read_tier == kBlockCacheTier &&
biter.status().IsIncomplete()) {
// couldn't get block from block_cache
// Update Saver.state to Found because we are only looking for
// whether we can guarantee the key is not there when "no_io" is set
get_context->MarkKeyMayExist();
break;
}
if (!biter.status().ok()) {
s = biter.status();
break;
}
// Call the *saver function on each entry/block until it returns false
for (biter.Seek(key); biter.Valid(); biter.Next()) {
ParsedInternalKey parsed_key;
if (!ParseInternalKey(biter.key(), &parsed_key)) {
s = Status::Corruption(Slice());
}
if (!get_context->SaveValue(parsed_key, biter.value(), &biter)) {
done = true;
break;
}
}
s = biter.status();
}
if (done) {
// Avoid the extra Next which is expensive in two-level indexes
break;
}
}
if (s.ok()) {
s = iiter->status();
}
}
// if rep_->filter_entry is not set, we should call Release(); otherwise
// don't call, in this case we have a local copy in rep_->filter_entry,
// it's pinned to the cache and will be released in the destructor
if (!rep_->filter_entry.IsSet()) {
filter_entry.Release(rep_->table_options.block_cache.get());
}
return s;
}
Status BlockBasedTable::Prefetch(const Slice* const begin,
const Slice* const end) {
auto& comparator = rep_->internal_comparator;
// pre-condition
if (begin && end && comparator.Compare(*begin, *end) > 0) {
return Status::InvalidArgument(*begin, *end);
}
BlockIter iiter_on_stack;
auto iiter = NewIndexIterator(ReadOptions(), &iiter_on_stack);
std::unique_ptr<InternalIterator> iiter_unique_ptr;
if (iiter != &iiter_on_stack) {
iiter_unique_ptr = std::unique_ptr<InternalIterator>(iiter);
}
if (!iiter->status().ok()) {
// error opening index iterator
return iiter->status();
}
// indicates if we are on the last page that need to be pre-fetched
bool prefetching_boundary_page = false;
for (begin ? iiter->Seek(*begin) : iiter->SeekToFirst(); iiter->Valid();
iiter->Next()) {
Slice block_handle = iiter->value();
if (end && comparator.Compare(iiter->key(), *end) >= 0) {
if (prefetching_boundary_page) {
break;
}
// The index entry represents the last key in the data block.
// We should load this page into memory as well, but no more
prefetching_boundary_page = true;
}
// Load the block specified by the block_handle into the block cache
BlockIter biter;
NewDataBlockIterator(rep_, ReadOptions(), block_handle, &biter);
if (!biter.status().ok()) {
// there was an unexpected error while pre-fetching
return biter.status();
}
}
return Status::OK();
}
Status BlockBasedTable::VerifyChecksum() {
Status s;
// Check Meta blocks
std::unique_ptr<Block> meta;
std::unique_ptr<InternalIterator> meta_iter;
s = ReadMetaBlock(rep_, nullptr /* prefetch buffer */, &meta, &meta_iter);
if (s.ok()) {
s = VerifyChecksumInBlocks(meta_iter.get());
if (!s.ok()) {
return s;
}
} else {
return s;
}
// Check Data blocks
BlockIter iiter_on_stack;
InternalIterator* iiter = NewIndexIterator(ReadOptions(), &iiter_on_stack);
std::unique_ptr<InternalIterator> iiter_unique_ptr;
if (iiter != &iiter_on_stack) {
iiter_unique_ptr = std::unique_ptr<InternalIterator>(iiter);
}
if (!iiter->status().ok()) {
// error opening index iterator
return iiter->status();
}
s = VerifyChecksumInBlocks(iiter);
return s;
}
Status BlockBasedTable::VerifyChecksumInBlocks(InternalIterator* index_iter) {
Status s;
for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) {
s = index_iter->status();
if (!s.ok()) {
break;
}
BlockHandle handle;
Slice input = index_iter->value();
s = handle.DecodeFrom(&input);
if (!s.ok()) {
break;
}
BlockContents contents;
Slice dummy_comp_dict;
BlockFetcher block_fetcher(rep_->file.get(), nullptr /* prefetch buffer */,
rep_->footer, ReadOptions(), handle, &contents,
rep_->ioptions, false /* decompress */,
dummy_comp_dict /*compression dict*/,
rep_->persistent_cache_options);
s = block_fetcher.ReadBlockContents();
if (!s.ok()) {
break;
}
}
return s;
}
bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options,
const Slice& key) {
std::unique_ptr<InternalIterator> iiter(NewIndexIterator(options));
iiter->Seek(key);
assert(iiter->Valid());
CachableEntry<Block> block;
BlockHandle handle;
Slice input = iiter->value();
Status s = handle.DecodeFrom(&input);
assert(s.ok());
Cache* block_cache = rep_->table_options.block_cache.get();
assert(block_cache != nullptr);
char cache_key_storage[kMaxCacheKeyPrefixSize + kMaxVarint64Length];
Slice cache_key =
GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, handle,
cache_key_storage);
Slice ckey;
s = GetDataBlockFromCache(
cache_key, ckey, block_cache, nullptr, rep_->ioptions, options, &block,
rep_->table_options.format_version,
rep_->compression_dict_block ? rep_->compression_dict_block->data
: Slice(),
0 /* read_amp_bytes_per_bit */);
assert(s.ok());
bool in_cache = block.value != nullptr;
if (in_cache) {
ReleaseCachedEntry(block_cache, block.cache_handle);
}
return in_cache;
}
// REQUIRES: The following fields of rep_ should have already been populated:
// 1. file
// 2. index_handle,
// 3. options
// 4. internal_comparator
// 5. index_type
Status BlockBasedTable::CreateIndexReader(
FilePrefetchBuffer* prefetch_buffer, IndexReader** index_reader,
InternalIterator* preloaded_meta_index_iter, int level) {
// Some old version of block-based tables don't have index type present in
// table properties. If that's the case we can safely use the kBinarySearch.
auto index_type_on_file = BlockBasedTableOptions::kBinarySearch;
if (rep_->table_properties) {
auto& props = rep_->table_properties->user_collected_properties;
auto pos = props.find(BlockBasedTablePropertyNames::kIndexType);
if (pos != props.end()) {
index_type_on_file = static_cast<BlockBasedTableOptions::IndexType>(
DecodeFixed32(pos->second.c_str()));
}
}
auto file = rep_->file.get();
const InternalKeyComparator* icomparator = &rep_->internal_comparator;
const Footer& footer = rep_->footer;
if (index_type_on_file == BlockBasedTableOptions::kHashSearch &&
rep_->ioptions.prefix_extractor == nullptr) {
ROCKS_LOG_WARN(rep_->ioptions.info_log,
"BlockBasedTableOptions::kHashSearch requires "
"options.prefix_extractor to be set."
" Fall back to binary search index.");
index_type_on_file = BlockBasedTableOptions::kBinarySearch;
}
switch (index_type_on_file) {
case BlockBasedTableOptions::kTwoLevelIndexSearch: {
return PartitionIndexReader::Create(
this, file, prefetch_buffer, footer, footer.index_handle(),
rep_->ioptions, icomparator, index_reader,
rep_->persistent_cache_options, level);
}
case BlockBasedTableOptions::kBinarySearch: {
return BinarySearchIndexReader::Create(
file, prefetch_buffer, footer, footer.index_handle(), rep_->ioptions,
icomparator, index_reader, rep_->persistent_cache_options);
}
case BlockBasedTableOptions::kHashSearch: {
std::unique_ptr<Block> meta_guard;
std::unique_ptr<InternalIterator> meta_iter_guard;
auto meta_index_iter = preloaded_meta_index_iter;
if (meta_index_iter == nullptr) {
auto s =
ReadMetaBlock(rep_, prefetch_buffer, &meta_guard, &meta_iter_guard);
if (!s.ok()) {
// we simply fall back to binary search in case there is any
// problem with prefix hash index loading.
ROCKS_LOG_WARN(rep_->ioptions.info_log,
"Unable to read the metaindex block."
" Fall back to binary search index.");
return BinarySearchIndexReader::Create(
file, prefetch_buffer, footer, footer.index_handle(),
rep_->ioptions, icomparator, index_reader,
rep_->persistent_cache_options);
}
meta_index_iter = meta_iter_guard.get();
}
return HashIndexReader::Create(
rep_->internal_prefix_transform.get(), footer, file, prefetch_buffer,
rep_->ioptions, icomparator, footer.index_handle(), meta_index_iter,
index_reader, rep_->hash_index_allow_collision,
rep_->persistent_cache_options);
}
default: {
std::string error_message =
"Unrecognized index type: " + ToString(index_type_on_file);
return Status::InvalidArgument(error_message.c_str());
}
}
}
uint64_t BlockBasedTable::ApproximateOffsetOf(const Slice& key) {
unique_ptr<InternalIterator> index_iter(NewIndexIterator(ReadOptions()));
index_iter->Seek(key);
uint64_t result;
if (index_iter->Valid()) {
BlockHandle handle;
Slice input = index_iter->value();
Status s = handle.DecodeFrom(&input);
if (s.ok()) {
result = handle.offset();
} else {
// Strange: we can't decode the block handle in the index block.
// We'll just return the offset of the metaindex block, which is
// close to the whole file size for this case.
result = rep_->footer.metaindex_handle().offset();
}
} else {
// key is past the last key in the file. If table_properties is not
// available, approximate the offset by returning the offset of the
// metaindex block (which is right near the end of the file).
result = 0;
if (rep_->table_properties) {
result = rep_->table_properties->data_size;
}
// table_properties is not present in the table.
if (result == 0) {
result = rep_->footer.metaindex_handle().offset();
}
}
return result;
}
bool BlockBasedTable::TEST_filter_block_preloaded() const {
return rep_->filter != nullptr;
}
bool BlockBasedTable::TEST_index_reader_preloaded() const {
return rep_->index_reader != nullptr;
}
Status BlockBasedTable::GetKVPairsFromDataBlocks(
std::vector<KVPairBlock>* kv_pair_blocks) {
std::unique_ptr<InternalIterator> blockhandles_iter(
NewIndexIterator(ReadOptions()));
Status s = blockhandles_iter->status();
if (!s.ok()) {
// Cannot read Index Block
return s;
}
for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid();
blockhandles_iter->Next()) {
s = blockhandles_iter->status();
if (!s.ok()) {
break;
}
std::unique_ptr<InternalIterator> datablock_iter;
datablock_iter.reset(
NewDataBlockIterator(rep_, ReadOptions(), blockhandles_iter->value()));
s = datablock_iter->status();
if (!s.ok()) {
// Error reading the block - Skipped
continue;
}
KVPairBlock kv_pair_block;
for (datablock_iter->SeekToFirst(); datablock_iter->Valid();
datablock_iter->Next()) {
s = datablock_iter->status();
if (!s.ok()) {
// Error reading the block - Skipped
break;
}
const Slice& key = datablock_iter->key();
const Slice& value = datablock_iter->value();
std::string key_copy = std::string(key.data(), key.size());
std::string value_copy = std::string(value.data(), value.size());
kv_pair_block.push_back(
std::make_pair(std::move(key_copy), std::move(value_copy)));
}
kv_pair_blocks->push_back(std::move(kv_pair_block));
}
return Status::OK();
}
Status BlockBasedTable::DumpTable(WritableFile* out_file) {
// Output Footer
out_file->Append(
"Footer Details:\n"
"--------------------------------------\n"
" ");
out_file->Append(rep_->footer.ToString().c_str());
out_file->Append("\n");
// Output MetaIndex
out_file->Append(
"Metaindex Details:\n"
"--------------------------------------\n");
std::unique_ptr<Block> meta;
std::unique_ptr<InternalIterator> meta_iter;
Status s =
ReadMetaBlock(rep_, nullptr /* prefetch_buffer */, &meta, &meta_iter);
if (s.ok()) {
for (meta_iter->SeekToFirst(); meta_iter->Valid(); meta_iter->Next()) {
s = meta_iter->status();
if (!s.ok()) {
return s;
}
if (meta_iter->key() == rocksdb::kPropertiesBlock) {
out_file->Append(" Properties block handle: ");
out_file->Append(meta_iter->value().ToString(true).c_str());
out_file->Append("\n");
} else if (meta_iter->key() == rocksdb::kCompressionDictBlock) {
out_file->Append(" Compression dictionary block handle: ");
out_file->Append(meta_iter->value().ToString(true).c_str());
out_file->Append("\n");
} else if (strstr(meta_iter->key().ToString().c_str(),
"filter.rocksdb.") != nullptr) {
out_file->Append(" Filter block handle: ");
out_file->Append(meta_iter->value().ToString(true).c_str());
out_file->Append("\n");
} else if (meta_iter->key() == rocksdb::kRangeDelBlock) {
out_file->Append(" Range deletion block handle: ");
out_file->Append(meta_iter->value().ToString(true).c_str());
out_file->Append("\n");
}
}
out_file->Append("\n");
} else {
return s;
}
// Output TableProperties
const rocksdb::TableProperties* table_properties;
table_properties = rep_->table_properties.get();
if (table_properties != nullptr) {
out_file->Append(
"Table Properties:\n"
"--------------------------------------\n"
" ");
out_file->Append(table_properties->ToString("\n ", ": ").c_str());
out_file->Append("\n");
}
// Output Filter blocks
if (!rep_->filter && !table_properties->filter_policy_name.empty()) {
// Support only BloomFilter as off now
rocksdb::BlockBasedTableOptions table_options;
table_options.filter_policy.reset(rocksdb::NewBloomFilterPolicy(1));
if (table_properties->filter_policy_name.compare(
table_options.filter_policy->Name()) == 0) {
std::string filter_block_key = kFilterBlockPrefix;
filter_block_key.append(table_properties->filter_policy_name);
BlockHandle handle;
if (FindMetaBlock(meta_iter.get(), filter_block_key, &handle).ok()) {
BlockContents block;
Slice dummy_comp_dict;
BlockFetcher block_fetcher(
rep_->file.get(), nullptr /* prefetch_buffer */, rep_->footer,
ReadOptions(), handle, &block, rep_->ioptions, false /*decompress*/,
dummy_comp_dict /*compression dict*/,
rep_->persistent_cache_options);
s = block_fetcher.ReadBlockContents();
if (!s.ok()) {
rep_->filter.reset(new BlockBasedFilterBlockReader(
rep_->ioptions.prefix_extractor, table_options,
table_options.whole_key_filtering, std::move(block),
rep_->ioptions.statistics));
}
}
}
}
if (rep_->filter) {
out_file->Append(
"Filter Details:\n"
"--------------------------------------\n"
" ");
out_file->Append(rep_->filter->ToString().c_str());
out_file->Append("\n");
}
// Output Index block
s = DumpIndexBlock(out_file);
if (!s.ok()) {
return s;
}
// Output compression dictionary
if (rep_->compression_dict_block != nullptr) {
auto compression_dict = rep_->compression_dict_block->data;
out_file->Append(
"Compression Dictionary:\n"
"--------------------------------------\n");
out_file->Append(" size (bytes): ");
out_file->Append(rocksdb::ToString(compression_dict.size()));
out_file->Append("\n\n");
out_file->Append(" HEX ");
out_file->Append(compression_dict.ToString(true).c_str());
out_file->Append("\n\n");
}
// Output range deletions block
auto* range_del_iter = NewRangeTombstoneIterator(ReadOptions());
if (range_del_iter != nullptr) {
range_del_iter->SeekToFirst();
if (range_del_iter->Valid()) {
out_file->Append(
"Range deletions:\n"
"--------------------------------------\n"
" ");
for (; range_del_iter->Valid(); range_del_iter->Next()) {
DumpKeyValue(range_del_iter->key(), range_del_iter->value(), out_file);
}
out_file->Append("\n");
}
delete range_del_iter;
}
// Output Data blocks
s = DumpDataBlocks(out_file);
return s;
}
void BlockBasedTable::Close() {
if (rep_->closed) {
return;
}
rep_->filter_entry.Release(rep_->table_options.block_cache.get());
rep_->index_entry.Release(rep_->table_options.block_cache.get());
rep_->range_del_entry.Release(rep_->table_options.block_cache.get());
// cleanup index and filter blocks to avoid accessing dangling pointer
if (!rep_->table_options.no_block_cache) {
char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length];
// Get the filter block key
auto key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size,
rep_->filter_handle, cache_key);
rep_->table_options.block_cache.get()->Erase(key);
// Get the index block key
key = GetCacheKeyFromOffset(rep_->cache_key_prefix,
rep_->cache_key_prefix_size,
rep_->dummy_index_reader_offset, cache_key);
rep_->table_options.block_cache.get()->Erase(key);
}
rep_->closed = true;
}
Status BlockBasedTable::DumpIndexBlock(WritableFile* out_file) {
out_file->Append(
"Index Details:\n"
"--------------------------------------\n");
std::unique_ptr<InternalIterator> blockhandles_iter(
NewIndexIterator(ReadOptions()));
Status s = blockhandles_iter->status();
if (!s.ok()) {
out_file->Append("Can not read Index Block \n\n");
return s;
}
out_file->Append(" Block key hex dump: Data block handle\n");
out_file->Append(" Block key ascii\n\n");
for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid();
blockhandles_iter->Next()) {
s = blockhandles_iter->status();
if (!s.ok()) {
break;
}
Slice key = blockhandles_iter->key();
InternalKey ikey;
ikey.DecodeFrom(key);
out_file->Append(" HEX ");
out_file->Append(ikey.user_key().ToString(true).c_str());
out_file->Append(": ");
out_file->Append(blockhandles_iter->value().ToString(true).c_str());
out_file->Append("\n");
std::string str_key = ikey.user_key().ToString();
std::string res_key("");
char cspace = ' ';
for (size_t i = 0; i < str_key.size(); i++) {
res_key.append(&str_key[i], 1);
res_key.append(1, cspace);
}
out_file->Append(" ASCII ");
out_file->Append(res_key.c_str());
out_file->Append("\n ------\n");
}
out_file->Append("\n");
return Status::OK();
}
Status BlockBasedTable::DumpDataBlocks(WritableFile* out_file) {
std::unique_ptr<InternalIterator> blockhandles_iter(
NewIndexIterator(ReadOptions()));
Status s = blockhandles_iter->status();
if (!s.ok()) {
out_file->Append("Can not read Index Block \n\n");
return s;
}
uint64_t datablock_size_min = std::numeric_limits<uint64_t>::max();
uint64_t datablock_size_max = 0;
uint64_t datablock_size_sum = 0;
size_t block_id = 1;
for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid();
block_id++, blockhandles_iter->Next()) {
s = blockhandles_iter->status();
if (!s.ok()) {
break;
}
Slice bh_val = blockhandles_iter->value();
BlockHandle bh;
bh.DecodeFrom(&bh_val);
uint64_t datablock_size = bh.size();
datablock_size_min = std::min(datablock_size_min, datablock_size);
datablock_size_max = std::max(datablock_size_max, datablock_size);
datablock_size_sum += datablock_size;
out_file->Append("Data Block # ");
out_file->Append(rocksdb::ToString(block_id));
out_file->Append(" @ ");
out_file->Append(blockhandles_iter->value().ToString(true).c_str());
out_file->Append("\n");
out_file->Append("--------------------------------------\n");
std::unique_ptr<InternalIterator> datablock_iter;
datablock_iter.reset(
NewDataBlockIterator(rep_, ReadOptions(), blockhandles_iter->value()));
s = datablock_iter->status();
if (!s.ok()) {
out_file->Append("Error reading the block - Skipped \n\n");
continue;
}
for (datablock_iter->SeekToFirst(); datablock_iter->Valid();
datablock_iter->Next()) {
s = datablock_iter->status();
if (!s.ok()) {
out_file->Append("Error reading the block - Skipped \n");
break;
}
DumpKeyValue(datablock_iter->key(), datablock_iter->value(), out_file);
}
out_file->Append("\n");
}
uint64_t num_datablocks = block_id - 1;
if (num_datablocks) {
double datablock_size_avg =
static_cast<double>(datablock_size_sum) / num_datablocks;
out_file->Append("Data Block Summary:\n");
out_file->Append("--------------------------------------");
out_file->Append("\n # data blocks: ");
out_file->Append(rocksdb::ToString(num_datablocks));
out_file->Append("\n min data block size: ");
out_file->Append(rocksdb::ToString(datablock_size_min));
out_file->Append("\n max data block size: ");
out_file->Append(rocksdb::ToString(datablock_size_max));
out_file->Append("\n avg data block size: ");
out_file->Append(rocksdb::ToString(datablock_size_avg));
out_file->Append("\n");
}
return Status::OK();
}
void BlockBasedTable::DumpKeyValue(const Slice& key, const Slice& value,
WritableFile* out_file) {
InternalKey ikey;
ikey.DecodeFrom(key);
out_file->Append(" HEX ");
out_file->Append(ikey.user_key().ToString(true).c_str());
out_file->Append(": ");
out_file->Append(value.ToString(true).c_str());
out_file->Append("\n");
std::string str_key = ikey.user_key().ToString();
std::string str_value = value.ToString();
std::string res_key(""), res_value("");
char cspace = ' ';
for (size_t i = 0; i < str_key.size(); i++) {
if (str_key[i] == '\0') {
res_key.append("\\0", 2);
} else {
res_key.append(&str_key[i], 1);
}
res_key.append(1, cspace);
}
for (size_t i = 0; i < str_value.size(); i++) {
if (str_value[i] == '\0') {
res_value.append("\\0", 2);
} else {
res_value.append(&str_value[i], 1);
}
res_value.append(1, cspace);
}
out_file->Append(" ASCII ");
out_file->Append(res_key.c_str());
out_file->Append(": ");
out_file->Append(res_value.c_str());
out_file->Append("\n ------\n");
}
namespace {
void DeleteCachedFilterEntry(const Slice& /*key*/, void* value) {
FilterBlockReader* filter = reinterpret_cast<FilterBlockReader*>(value);
if (filter->statistics() != nullptr) {
RecordTick(filter->statistics(), BLOCK_CACHE_FILTER_BYTES_EVICT,
filter->size());
}
delete filter;
}
void DeleteCachedIndexEntry(const Slice& /*key*/, void* value) {
IndexReader* index_reader = reinterpret_cast<IndexReader*>(value);
if (index_reader->statistics() != nullptr) {
RecordTick(index_reader->statistics(), BLOCK_CACHE_INDEX_BYTES_EVICT,
index_reader->usable_size());
}
delete index_reader;
}
} // anonymous namespace
} // namespace rocksdb