Igor Canadi fdb6be4e24 Rewritten system for scheduling background work
Summary:
When scaling to higher number of column families, the worst bottleneck was MaybeScheduleFlushOrCompaction(), which did a for loop over all column families while holding a mutex. This patch addresses the issue.

The approach is similar to our earlier efforts: instead of a pull-model, where we do something for every column family, we can do a push-based model -- when we detect that column family is ready to be flushed/compacted, we add it to the flush_queue_/compaction_queue_. That way we don't need to loop over every column family in MaybeScheduleFlushOrCompaction.

Here are the performance results:

Command:

    ./db_bench --write_buffer_size=268435456 --db_write_buffer_size=268435456 --db=/fast-rocksdb-tmp/rocks_lots_of_cf --use_existing_db=0 --open_files=55000 --statistics=1 --histogram=1 --disable_data_sync=1 --max_write_buffer_number=2 --sync=0 --benchmarks=fillrandom --threads=16 --num_column_families=5000  --disable_wal=1 --max_background_flushes=16 --max_background_compactions=16 --level0_file_num_compaction_trigger=2 --level0_slowdown_writes_trigger=2 --level0_stop_writes_trigger=3 --hard_rate_limit=1 --num=33333333 --writes=33333333

Before the patch:

     fillrandom   :      26.950 micros/op 37105 ops/sec;    4.1 MB/s

After the patch:

      fillrandom   :      17.404 micros/op 57456 ops/sec;    6.4 MB/s

Next bottleneck is VersionSet::AddLiveFiles, which is painfully slow when we have a lot of files. This is coming in the next patch, but when I removed that code, here's what I got:

      fillrandom   :       7.590 micros/op 131758 ops/sec;   14.6 MB/s

Test Plan:
make check

two stress tests:

Big number of compactions and flushes:

    ./db_stress --threads=30 --ops_per_thread=20000000 --max_key=10000 --column_families=20 --clear_column_family_one_in=10000000 --verify_before_write=0  --reopen=15 --max_background_compactions=10 --max_background_flushes=10 --db=/fast-rocksdb-tmp/db_stress --prefixpercent=0 --iterpercent=0 --writepercent=75 --db_write_buffer_size=2000000

max_background_flushes=0, to verify that this case also works correctly

    ./db_stress --threads=30 --ops_per_thread=2000000 --max_key=10000 --column_families=20 --clear_column_family_one_in=10000000 --verify_before_write=0  --reopen=3 --max_background_compactions=3 --max_background_flushes=0 --db=/fast-rocksdb-tmp/db_stress --prefixpercent=0 --iterpercent=0 --writepercent=75 --db_write_buffer_size=2000000

Reviewers: ljin, rven, yhchiang, sdong

Reviewed By: sdong

Subscribers: dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D30123
2014-12-19 20:38:12 +01:00
2014-11-03 14:53:00 -08:00
2014-06-20 10:23:02 +02:00
2014-12-18 06:48:46 -08:00
2014-11-06 11:14:28 -08:00
2014-12-02 13:53:39 -05:00
2014-12-17 16:25:09 -08:00
2014-11-21 11:05:28 -05:00
2014-02-13 17:48:11 -08:00
2014-09-29 10:52:18 -07:00
2014-03-12 12:06:58 -07:00
2013-10-16 15:37:32 -07:00
2014-04-15 13:39:26 -07:00

RocksDB: A Persistent Key-Value Store for Flash and RAM Storage

Build Status

RocksDB is developed and maintained by Facebook Database Engineering Team. It is built on earlier work on LevelDB by Sanjay Ghemawat (sanjay@google.com) and Jeff Dean (jeff@google.com)

This code is a library that forms the core building block for a fast key value server, especially suited for storing data on flash drives. It has a Log-Structured-Merge-Database (LSM) design with flexible tradeoffs between Write-Amplification-Factor (WAF), Read-Amplification-Factor (RAF) and Space-Amplification-Factor (SAF). It has multi-threaded compactions, making it specially suitable for storing multiple terabytes of data in a single database.

Start with example usage here: https://github.com/facebook/rocksdb/tree/master/examples

See the github wiki for more explanation.

The public interface is in include/. Callers should not include or rely on the details of any other header files in this package. Those internal APIs may be changed without warning.

Design discussions are conducted in https://www.facebook.com/groups/rocksdb.dev/

Description
A library that provides an embeddable, persistent key-value store for fast storage.
Readme 271 MiB
Languages
C++ 82.1%
Java 10.3%
C 2.5%
Python 1.7%
Perl 1.1%
Other 2.1%