rocksdb/db/db_basic_test.cc
anand76 feb06e83b2 Initial support for secondary cache in LRUCache (#8271)
Summary:
Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache.

Tests:
Results from cache_bench and db_bench don't show any regression due to these changes.

cache_bench results before and after this change -
Command
```./cache_bench -ops_per_thread=10000000 -threads=1```
Before
```Complete in 40.688 s; QPS = 245774```
```Complete in 40.486 s; QPS = 246996```
```Complete in 42.019 s; QPS = 237989```
After
```Complete in 40.672 s; QPS = 245869```
```Complete in 44.622 s; QPS = 224107```
```Complete in 42.445 s; QPS = 235599```

db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 -
Commands
```./db_bench  --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true```

```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300```
Before
```
DB path: [/home/anand76/nvm_cache/db]
readrandom   :      80.702 micros/op 198104 ops/sec;   54.4 MB/s (3708999 of 3708999 found)
```
```
DB path: [/home/anand76/nvm_cache/db]
readrandom   :      87.124 micros/op 183625 ops/sec;   50.4 MB/s (3439999 of 3439999 found)
```
After
```
DB path: [/home/anand76/nvm_cache/db]
readrandom   :      77.653 micros/op 206025 ops/sec;   56.6 MB/s (3866999 of 3866999 found)
```
```
DB path: [/home/anand76/nvm_cache/db]
readrandom   :      84.962 micros/op 188299 ops/sec;   51.7 MB/s (3535999 of 3535999 found)
```

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271

Reviewed By: zhichao-cao

Differential Revision: D28357511

Pulled By: anand1976

fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
2021-05-13 22:58:40 -07:00

3823 lines
127 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include <cstring>
#include <regex>
#include "db/db_test_util.h"
#include "port/stack_trace.h"
#include "rocksdb/flush_block_policy.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/utilities/debug.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/block_based/block_builder.h"
#if !defined(ROCKSDB_LITE)
#include "test_util/sync_point.h"
#endif
#include "util/file_checksum_helper.h"
#include "util/random.h"
#include "utilities/fault_injection_env.h"
#include "utilities/merge_operators.h"
#include "utilities/merge_operators/string_append/stringappend.h"
namespace ROCKSDB_NAMESPACE {
class DBBasicTest : public DBTestBase {
public:
DBBasicTest() : DBTestBase("/db_basic_test", /*env_do_fsync=*/false) {}
};
TEST_F(DBBasicTest, OpenWhenOpen) {
Options options = CurrentOptions();
options.env = env_;
DB* db2 = nullptr;
Status s = DB::Open(options, dbname_, &db2);
ASSERT_NOK(s) << [db2]() {
delete db2;
return "db2 open: ok";
}();
ASSERT_EQ(Status::Code::kIOError, s.code());
ASSERT_EQ(Status::SubCode::kNone, s.subcode());
ASSERT_TRUE(strstr(s.getState(), "lock ") != nullptr);
delete db2;
}
TEST_F(DBBasicTest, UniqueSession) {
Options options = CurrentOptions();
std::string sid1, sid2, sid3, sid4;
ASSERT_OK(db_->GetDbSessionId(sid1));
Reopen(options);
ASSERT_OK(db_->GetDbSessionId(sid2));
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(db_->GetDbSessionId(sid4));
Reopen(options);
ASSERT_OK(db_->GetDbSessionId(sid3));
ASSERT_NE(sid1, sid2);
ASSERT_NE(sid1, sid3);
ASSERT_NE(sid2, sid3);
ASSERT_EQ(sid2, sid4);
// Expected compact format for session ids (see notes in implementation)
std::regex expected("[0-9A-Z]{20}");
const std::string match("match");
EXPECT_EQ(match, std::regex_replace(sid1, expected, match));
EXPECT_EQ(match, std::regex_replace(sid2, expected, match));
EXPECT_EQ(match, std::regex_replace(sid3, expected, match));
#ifndef ROCKSDB_LITE
Close();
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_OK(db_->GetDbSessionId(sid1));
// Test uniqueness between readonly open (sid1) and regular open (sid3)
ASSERT_NE(sid1, sid3);
Close();
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_OK(db_->GetDbSessionId(sid2));
ASSERT_EQ("v1", Get("foo"));
ASSERT_OK(db_->GetDbSessionId(sid3));
ASSERT_NE(sid1, sid2);
ASSERT_EQ(sid2, sid3);
#endif // ROCKSDB_LITE
CreateAndReopenWithCF({"goku"}, options);
ASSERT_OK(db_->GetDbSessionId(sid1));
ASSERT_OK(Put("bar", "e1"));
ASSERT_OK(db_->GetDbSessionId(sid2));
ASSERT_EQ("e1", Get("bar"));
ASSERT_OK(db_->GetDbSessionId(sid3));
ReopenWithColumnFamilies({"default", "goku"}, options);
ASSERT_OK(db_->GetDbSessionId(sid4));
ASSERT_EQ(sid1, sid2);
ASSERT_EQ(sid2, sid3);
ASSERT_NE(sid1, sid4);
}
#ifndef ROCKSDB_LITE
TEST_F(DBBasicTest, ReadOnlyDB) {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Close();
auto verify_one_iter = [&](Iterator* iter) {
int count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
++count;
}
// Always expect two keys: "foo" and "bar"
ASSERT_EQ(count, 2);
};
auto verify_all_iters = [&]() {
Iterator* iter = db_->NewIterator(ReadOptions());
verify_one_iter(iter);
delete iter;
std::vector<Iterator*> iters;
ASSERT_OK(db_->NewIterators(ReadOptions(),
{dbfull()->DefaultColumnFamily()}, &iters));
ASSERT_EQ(static_cast<uint64_t>(1), iters.size());
verify_one_iter(iters[0]);
delete iters[0];
};
auto options = CurrentOptions();
assert(options.env == env_);
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
verify_all_iters();
Close();
// Reopen and flush memtable.
Reopen(options);
ASSERT_OK(Flush());
Close();
// Now check keys in read only mode.
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
verify_all_iters();
ASSERT_TRUE(db_->SyncWAL().IsNotSupported());
}
TEST_F(DBBasicTest, ReadOnlyDBWithWriteDBIdToManifestSet) {
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put("bar", "v2"));
ASSERT_OK(Put("foo", "v3"));
Close();
auto options = CurrentOptions();
options.write_dbid_to_manifest = true;
assert(options.env == env_);
ASSERT_OK(ReadOnlyReopen(options));
std::string db_id1;
ASSERT_OK(db_->GetDbIdentity(db_id1));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
Iterator* iter = db_->NewIterator(ReadOptions());
int count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
++count;
}
ASSERT_EQ(count, 2);
delete iter;
Close();
// Reopen and flush memtable.
Reopen(options);
ASSERT_OK(Flush());
Close();
// Now check keys in read only mode.
ASSERT_OK(ReadOnlyReopen(options));
ASSERT_EQ("v3", Get("foo"));
ASSERT_EQ("v2", Get("bar"));
ASSERT_TRUE(db_->SyncWAL().IsNotSupported());
std::string db_id2;
ASSERT_OK(db_->GetDbIdentity(db_id2));
ASSERT_EQ(db_id1, db_id2);
}
TEST_F(DBBasicTest, CompactedDB) {
const uint64_t kFileSize = 1 << 20;
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = kFileSize;
options.target_file_size_base = kFileSize;
options.max_bytes_for_level_base = 1 << 30;
options.compression = kNoCompression;
Reopen(options);
// 1 L0 file, use CompactedDB if max_open_files = -1
ASSERT_OK(Put("aaa", DummyString(kFileSize / 2, '1')));
ASSERT_OK(Flush());
Close();
ASSERT_OK(ReadOnlyReopen(options));
Status s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported operation in read only mode.");
ASSERT_EQ(DummyString(kFileSize / 2, '1'), Get("aaa"));
Close();
options.max_open_files = -1;
ASSERT_OK(ReadOnlyReopen(options));
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported in compacted db mode.");
ASSERT_EQ(DummyString(kFileSize / 2, '1'), Get("aaa"));
Close();
Reopen(options);
// Add more L0 files
ASSERT_OK(Put("bbb", DummyString(kFileSize / 2, '2')));
ASSERT_OK(Flush());
ASSERT_OK(Put("aaa", DummyString(kFileSize / 2, 'a')));
ASSERT_OK(Flush());
ASSERT_OK(Put("bbb", DummyString(kFileSize / 2, 'b')));
ASSERT_OK(Put("eee", DummyString(kFileSize / 2, 'e')));
ASSERT_OK(Flush());
Close();
ASSERT_OK(ReadOnlyReopen(options));
// Fallback to read-only DB
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported operation in read only mode.");
Close();
// Full compaction
Reopen(options);
// Add more keys
ASSERT_OK(Put("fff", DummyString(kFileSize / 2, 'f')));
ASSERT_OK(Put("hhh", DummyString(kFileSize / 2, 'h')));
ASSERT_OK(Put("iii", DummyString(kFileSize / 2, 'i')));
ASSERT_OK(Put("jjj", DummyString(kFileSize / 2, 'j')));
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(3, NumTableFilesAtLevel(1));
Close();
// CompactedDB
ASSERT_OK(ReadOnlyReopen(options));
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported in compacted db mode.");
ASSERT_EQ("NOT_FOUND", Get("abc"));
ASSERT_EQ(DummyString(kFileSize / 2, 'a'), Get("aaa"));
ASSERT_EQ(DummyString(kFileSize / 2, 'b'), Get("bbb"));
ASSERT_EQ("NOT_FOUND", Get("ccc"));
ASSERT_EQ(DummyString(kFileSize / 2, 'e'), Get("eee"));
ASSERT_EQ(DummyString(kFileSize / 2, 'f'), Get("fff"));
ASSERT_EQ("NOT_FOUND", Get("ggg"));
ASSERT_EQ(DummyString(kFileSize / 2, 'h'), Get("hhh"));
ASSERT_EQ(DummyString(kFileSize / 2, 'i'), Get("iii"));
ASSERT_EQ(DummyString(kFileSize / 2, 'j'), Get("jjj"));
ASSERT_EQ("NOT_FOUND", Get("kkk"));
// MultiGet
std::vector<std::string> values;
std::vector<Status> status_list = dbfull()->MultiGet(
ReadOptions(),
std::vector<Slice>({Slice("aaa"), Slice("ccc"), Slice("eee"),
Slice("ggg"), Slice("iii"), Slice("kkk")}),
&values);
ASSERT_EQ(status_list.size(), static_cast<uint64_t>(6));
ASSERT_EQ(values.size(), static_cast<uint64_t>(6));
ASSERT_OK(status_list[0]);
ASSERT_EQ(DummyString(kFileSize / 2, 'a'), values[0]);
ASSERT_TRUE(status_list[1].IsNotFound());
ASSERT_OK(status_list[2]);
ASSERT_EQ(DummyString(kFileSize / 2, 'e'), values[2]);
ASSERT_TRUE(status_list[3].IsNotFound());
ASSERT_OK(status_list[4]);
ASSERT_EQ(DummyString(kFileSize / 2, 'i'), values[4]);
ASSERT_TRUE(status_list[5].IsNotFound());
Reopen(options);
// Add a key
ASSERT_OK(Put("fff", DummyString(kFileSize / 2, 'f')));
Close();
ASSERT_OK(ReadOnlyReopen(options));
s = Put("new", "value");
ASSERT_EQ(s.ToString(),
"Not implemented: Not supported operation in read only mode.");
}
TEST_F(DBBasicTest, LevelLimitReopen) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
const std::string value(1024 * 1024, ' ');
int i = 0;
while (NumTableFilesAtLevel(2, 1) == 0) {
ASSERT_OK(Put(1, Key(i++), value));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
options.num_levels = 1;
options.max_bytes_for_level_multiplier_additional.resize(1, 1);
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ(s.IsInvalidArgument(), true);
ASSERT_EQ(s.ToString(),
"Invalid argument: db has more levels than options.num_levels");
options.num_levels = 10;
options.max_bytes_for_level_multiplier_additional.resize(10, 1);
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
#endif // ROCKSDB_LITE
TEST_F(DBBasicTest, PutDeleteGet) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_EQ("v2", Get(1, "foo"));
ASSERT_OK(Delete(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBBasicTest, PutSingleDeleteGet) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo2", "v2"));
ASSERT_EQ("v2", Get(1, "foo2"));
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
// Ski FIFO and universal compaction because they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBBasicTest, EmptyFlush) {
// It is possible to produce empty flushes when using single deletes. Tests
// whether empty flushes cause issues.
do {
Random rnd(301);
Options options = CurrentOptions();
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "a", Slice()));
ASSERT_OK(SingleDelete(1, "a"));
ASSERT_OK(Flush(1));
ASSERT_EQ("[ ]", AllEntriesFor("a", 1));
// Skip FIFO and universal compaction as they do not apply to the test
// case. Skip MergePut because merges cannot be combined with single
// deletions.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBBasicTest, GetFromVersions) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(0, "foo"));
} while (ChangeOptions());
}
#ifndef ROCKSDB_LITE
TEST_F(DBBasicTest, GetSnapshot) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions(options_override));
// Try with both a short key and a long key
for (int i = 0; i < 2; i++) {
std::string key = (i == 0) ? std::string("foo") : std::string(200, 'x');
ASSERT_OK(Put(1, key, "v1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_OK(Put(1, key, "v2"));
ASSERT_EQ("v2", Get(1, key));
ASSERT_EQ("v1", Get(1, key, s1));
ASSERT_OK(Flush(1));
ASSERT_EQ("v2", Get(1, key));
ASSERT_EQ("v1", Get(1, key, s1));
db_->ReleaseSnapshot(s1);
}
} while (ChangeOptions());
}
#endif // ROCKSDB_LITE
TEST_F(DBBasicTest, CheckLock) {
do {
DB* localdb = nullptr;
Options options = CurrentOptions();
ASSERT_OK(TryReopen(options));
// second open should fail
Status s = DB::Open(options, dbname_, &localdb);
ASSERT_NOK(s) << [localdb]() {
delete localdb;
return "localdb open: ok";
}();
#ifdef OS_LINUX
ASSERT_TRUE(s.ToString().find("lock ") != std::string::npos);
#endif // OS_LINUX
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, FlushMultipleMemtable) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
options.max_write_buffer_size_to_maintain = -1;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
ASSERT_OK(Flush(1));
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, FlushEmptyColumnFamily) {
// Block flush thread and disable compaction thread
env_->SetBackgroundThreads(1, Env::HIGH);
env_->SetBackgroundThreads(1, Env::LOW);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
test::SleepingBackgroundTask sleeping_task_high;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_high, Env::Priority::HIGH);
Options options = CurrentOptions();
// disable compaction
options.disable_auto_compactions = true;
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 2;
options.min_write_buffer_number_to_merge = 1;
options.max_write_buffer_size_to_maintain =
static_cast<int64_t>(options.write_buffer_size);
CreateAndReopenWithCF({"pikachu"}, options);
// Compaction can still go through even if no thread can flush the
// mem table.
ASSERT_OK(Flush(0));
ASSERT_OK(Flush(1));
// Insert can go through
ASSERT_OK(dbfull()->Put(writeOpt, handles_[0], "foo", "v1"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ASSERT_EQ("v1", Get(0, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
sleeping_task_high.WakeUp();
sleeping_task_high.WaitUntilDone();
// Flush can still go through.
ASSERT_OK(Flush(0));
ASSERT_OK(Flush(1));
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBBasicTest, Flush) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
SetPerfLevel(kEnableTime);
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
// this will now also flush the last 2 writes
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
get_perf_context()->Reset();
Get(1, "foo");
ASSERT_TRUE((int)get_perf_context()->get_from_output_files_time > 0);
ASSERT_EQ(2, (int)get_perf_context()->get_read_bytes);
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
writeOpt.disableWAL = true;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v2"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v2"));
ASSERT_OK(Flush(1));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
ASSERT_EQ("v2", Get(1, "bar"));
get_perf_context()->Reset();
ASSERT_EQ("v2", Get(1, "foo"));
ASSERT_TRUE((int)get_perf_context()->get_from_output_files_time > 0);
writeOpt.disableWAL = false;
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v3"));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v3"));
ASSERT_OK(Flush(1));
ReopenWithColumnFamilies({"default", "pikachu"}, CurrentOptions());
// 'foo' should be there because its put
// has WAL enabled.
ASSERT_EQ("v3", Get(1, "foo"));
ASSERT_EQ("v3", Get(1, "bar"));
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, ManifestRollOver) {
do {
Options options;
options.max_manifest_file_size = 10; // 10 bytes
options = CurrentOptions(options);
CreateAndReopenWithCF({"pikachu"}, options);
{
ASSERT_OK(Put(1, "manifest_key1", std::string(1000, '1')));
ASSERT_OK(Put(1, "manifest_key2", std::string(1000, '2')));
ASSERT_OK(Put(1, "manifest_key3", std::string(1000, '3')));
uint64_t manifest_before_flush = dbfull()->TEST_Current_Manifest_FileNo();
ASSERT_OK(Flush(1)); // This should trigger LogAndApply.
uint64_t manifest_after_flush = dbfull()->TEST_Current_Manifest_FileNo();
ASSERT_GT(manifest_after_flush, manifest_before_flush);
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_GT(dbfull()->TEST_Current_Manifest_FileNo(), manifest_after_flush);
// check if a new manifest file got inserted or not.
ASSERT_EQ(std::string(1000, '1'), Get(1, "manifest_key1"));
ASSERT_EQ(std::string(1000, '2'), Get(1, "manifest_key2"));
ASSERT_EQ(std::string(1000, '3'), Get(1, "manifest_key3"));
}
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, IdentityAcrossRestarts1) {
do {
std::string id1;
ASSERT_OK(db_->GetDbIdentity(id1));
Options options = CurrentOptions();
Reopen(options);
std::string id2;
ASSERT_OK(db_->GetDbIdentity(id2));
// id1 should match id2 because identity was not regenerated
ASSERT_EQ(id1.compare(id2), 0);
std::string idfilename = IdentityFileName(dbname_);
ASSERT_OK(env_->DeleteFile(idfilename));
Reopen(options);
std::string id3;
ASSERT_OK(db_->GetDbIdentity(id3));
if (options.write_dbid_to_manifest) {
ASSERT_EQ(id1.compare(id3), 0);
} else {
// id1 should NOT match id3 because identity was regenerated
ASSERT_NE(id1.compare(id3), 0);
}
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, IdentityAcrossRestarts2) {
do {
std::string id1;
ASSERT_OK(db_->GetDbIdentity(id1));
Options options = CurrentOptions();
options.write_dbid_to_manifest = true;
Reopen(options);
std::string id2;
ASSERT_OK(db_->GetDbIdentity(id2));
// id1 should match id2 because identity was not regenerated
ASSERT_EQ(id1.compare(id2), 0);
std::string idfilename = IdentityFileName(dbname_);
ASSERT_OK(env_->DeleteFile(idfilename));
Reopen(options);
std::string id3;
ASSERT_OK(db_->GetDbIdentity(id3));
// id1 should NOT match id3 because identity was regenerated
ASSERT_EQ(id1, id3);
} while (ChangeCompactOptions());
}
#ifndef ROCKSDB_LITE
TEST_F(DBBasicTest, Snapshot) {
env_->SetMockSleep();
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions(options_override));
ASSERT_OK(Put(0, "foo", "0v1"));
ASSERT_OK(Put(1, "foo", "1v1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_EQ(1U, GetNumSnapshots());
uint64_t time_snap1 = GetTimeOldestSnapshots();
ASSERT_GT(time_snap1, 0U);
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_OK(Put(0, "foo", "0v2"));
ASSERT_OK(Put(1, "foo", "1v2"));
env_->MockSleepForSeconds(1);
const Snapshot* s2 = db_->GetSnapshot();
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_OK(Put(0, "foo", "0v3"));
ASSERT_OK(Put(1, "foo", "1v3"));
{
ManagedSnapshot s3(db_);
ASSERT_EQ(3U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_OK(Put(0, "foo", "0v4"));
ASSERT_OK(Put(1, "foo", "1v4"));
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v3", Get(0, "foo", s3.snapshot()));
ASSERT_EQ("1v3", Get(1, "foo", s3.snapshot()));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
}
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
ASSERT_EQ(1U, GetNumSnapshots());
ASSERT_LT(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s2->GetSequenceNumber());
db_->ReleaseSnapshot(s2);
ASSERT_EQ(0U, GetNumSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), 0);
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
} while (ChangeOptions());
}
#endif // ROCKSDB_LITE
class DBBasicMultiConfigs : public DBBasicTest,
public ::testing::WithParamInterface<int> {
public:
DBBasicMultiConfigs() { option_config_ = GetParam(); }
static std::vector<int> GenerateOptionConfigs() {
std::vector<int> option_configs;
for (int option_config = kDefault; option_config < kEnd; ++option_config) {
if (!ShouldSkipOptions(option_config, kSkipFIFOCompaction)) {
option_configs.push_back(option_config);
}
}
return option_configs;
}
};
TEST_P(DBBasicMultiConfigs, CompactBetweenSnapshots) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
Options options = CurrentOptions(options_override);
options.disable_auto_compactions = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
FillLevels("a", "z", 1);
ASSERT_OK(Put(1, "foo", "first"));
const Snapshot* snapshot1 = db_->GetSnapshot();
ASSERT_OK(Put(1, "foo", "second"));
ASSERT_OK(Put(1, "foo", "third"));
ASSERT_OK(Put(1, "foo", "fourth"));
const Snapshot* snapshot2 = db_->GetSnapshot();
ASSERT_OK(Put(1, "foo", "fifth"));
ASSERT_OK(Put(1, "foo", "sixth"));
// All entries (including duplicates) exist
// before any compaction or flush is triggered.
ASSERT_EQ(AllEntriesFor("foo", 1),
"[ sixth, fifth, fourth, third, second, first ]");
ASSERT_EQ("sixth", Get(1, "foo"));
ASSERT_EQ("fourth", Get(1, "foo", snapshot2));
ASSERT_EQ("first", Get(1, "foo", snapshot1));
// After a flush, "second", "third" and "fifth" should
// be removed
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ sixth, fourth, first ]");
// after we release the snapshot1, only two values left
db_->ReleaseSnapshot(snapshot1);
FillLevels("a", "z", 1);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr));
// We have only one valid snapshot snapshot2. Since snapshot1 is
// not valid anymore, "first" should be removed by a compaction.
ASSERT_EQ("sixth", Get(1, "foo"));
ASSERT_EQ("fourth", Get(1, "foo", snapshot2));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ sixth, fourth ]");
// after we release the snapshot2, only one value should be left
db_->ReleaseSnapshot(snapshot2);
FillLevels("a", "z", 1);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
nullptr));
ASSERT_EQ("sixth", Get(1, "foo"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ sixth ]");
}
INSTANTIATE_TEST_CASE_P(
DBBasicMultiConfigs, DBBasicMultiConfigs,
::testing::ValuesIn(DBBasicMultiConfigs::GenerateOptionConfigs()));
TEST_F(DBBasicTest, DBOpen_Options) {
Options options = CurrentOptions();
Close();
Destroy(options);
// Does not exist, and create_if_missing == false: error
DB* db = nullptr;
options.create_if_missing = false;
Status s = DB::Open(options, dbname_, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does not exist, and create_if_missing == true: OK
options.create_if_missing = true;
s = DB::Open(options, dbname_, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
// Does exist, and error_if_exists == true: error
options.create_if_missing = false;
options.error_if_exists = true;
s = DB::Open(options, dbname_, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does exist, and error_if_exists == false: OK
options.create_if_missing = true;
options.error_if_exists = false;
s = DB::Open(options, dbname_, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
}
TEST_F(DBBasicTest, CompactOnFlush) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
Options options = CurrentOptions(options_override);
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v1 ]");
// Write two new keys
ASSERT_OK(Put(1, "a", "begin"));
ASSERT_OK(Put(1, "z", "end"));
ASSERT_OK(Flush(1));
// Case1: Delete followed by a put
ASSERT_OK(Delete(1, "foo"));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, DEL, v1 ]");
// After the current memtable is flushed, the DEL should
// have been removed
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2 ]");
// Case 2: Delete followed by another delete
ASSERT_OK(Delete(1, "foo"));
ASSERT_OK(Delete(1, "foo"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, DEL, v2 ]");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v2 ]");
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 3: Put followed by a delete
ASSERT_OK(Put(1, "foo", "v3"));
ASSERT_OK(Delete(1, "foo"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v3 ]");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL ]");
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 4: Put followed by another Put
ASSERT_OK(Put(1, "foo", "v4"));
ASSERT_OK(Put(1, "foo", "v5"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v5, v4 ]");
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v5 ]");
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v5 ]");
// clear database
ASSERT_OK(Delete(1, "foo"));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 5: Put followed by snapshot followed by another Put
// Both puts should remain.
ASSERT_OK(Put(1, "foo", "v6"));
const Snapshot* snapshot = db_->GetSnapshot();
ASSERT_OK(Put(1, "foo", "v7"));
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v7, v6 ]");
db_->ReleaseSnapshot(snapshot);
// clear database
ASSERT_OK(Delete(1, "foo"));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
// Case 5: snapshot followed by a put followed by another Put
// Only the last put should remain.
const Snapshot* snapshot1 = db_->GetSnapshot();
ASSERT_OK(Put(1, "foo", "v8"));
ASSERT_OK(Put(1, "foo", "v9"));
ASSERT_OK(Flush(1));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v9 ]");
db_->ReleaseSnapshot(snapshot1);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, FlushOneColumnFamily) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
ASSERT_OK(Put(0, "Default", "Default"));
ASSERT_OK(Put(1, "pikachu", "pikachu"));
ASSERT_OK(Put(2, "ilya", "ilya"));
ASSERT_OK(Put(3, "muromec", "muromec"));
ASSERT_OK(Put(4, "dobrynia", "dobrynia"));
ASSERT_OK(Put(5, "nikitich", "nikitich"));
ASSERT_OK(Put(6, "alyosha", "alyosha"));
ASSERT_OK(Put(7, "popovich", "popovich"));
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Flush(i));
auto tables = ListTableFiles(env_, dbname_);
ASSERT_EQ(tables.size(), i + 1U);
}
}
TEST_F(DBBasicTest, MultiGetSimple) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k5", "v5"));
ASSERT_OK(Delete(1, "no_key"));
std::vector<Slice> keys({"k1", "k2", "k3", "k4", "k5", "no_key"});
std::vector<std::string> values(20, "Temporary data to be overwritten");
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
get_perf_context()->Reset();
std::vector<Status> s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(values[0], "v1");
ASSERT_EQ(values[1], "v2");
ASSERT_EQ(values[2], "v3");
ASSERT_EQ(values[4], "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(8, (int)get_perf_context()->multiget_read_bytes);
ASSERT_OK(s[0]);
ASSERT_OK(s[1]);
ASSERT_OK(s[2]);
ASSERT_TRUE(s[3].IsNotFound());
ASSERT_OK(s[4]);
ASSERT_TRUE(s[5].IsNotFound());
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, MultiGetEmpty) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
// Empty Key Set
std::vector<Slice> keys;
std::vector<std::string> values;
std::vector<ColumnFamilyHandle*> cfs;
std::vector<Status> s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(s.size(), 0U);
// Empty Database, Empty Key Set
Options options = CurrentOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(s.size(), 0U);
// Empty Database, Search for Keys
keys.resize(2);
keys[0] = "a";
keys[1] = "b";
cfs.push_back(handles_[0]);
cfs.push_back(handles_[1]);
s = db_->MultiGet(ReadOptions(), cfs, keys, &values);
ASSERT_EQ(static_cast<int>(s.size()), 2);
ASSERT_TRUE(s[0].IsNotFound() && s[1].IsNotFound());
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, ChecksumTest) {
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
// change when new checksum type added
int max_checksum = static_cast<int>(kxxHash64);
const int kNumPerFile = 2;
// generate one table with each type of checksum
for (int i = 0; i <= max_checksum; ++i) {
table_options.checksum = static_cast<ChecksumType>(i);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
for (int j = 0; j < kNumPerFile; ++j) {
ASSERT_OK(Put(Key(i * kNumPerFile + j), Key(i * kNumPerFile + j)));
}
ASSERT_OK(Flush());
}
// with each valid checksum type setting...
for (int i = 0; i <= max_checksum; ++i) {
table_options.checksum = static_cast<ChecksumType>(i);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
// verify every type of checksum (should be regardless of that setting)
for (int j = 0; j < (max_checksum + 1) * kNumPerFile; ++j) {
ASSERT_EQ(Key(j), Get(Key(j)));
}
}
}
// On Windows you can have either memory mapped file or a file
// with unbuffered access. So this asserts and does not make
// sense to run
#ifndef OS_WIN
TEST_F(DBBasicTest, MmapAndBufferOptions) {
if (!IsMemoryMappedAccessSupported()) {
return;
}
Options options = CurrentOptions();
options.use_direct_reads = true;
options.allow_mmap_reads = true;
ASSERT_NOK(TryReopen(options));
// All other combinations are acceptable
options.use_direct_reads = false;
ASSERT_OK(TryReopen(options));
if (IsDirectIOSupported()) {
options.use_direct_reads = true;
options.allow_mmap_reads = false;
ASSERT_OK(TryReopen(options));
}
options.use_direct_reads = false;
ASSERT_OK(TryReopen(options));
}
#endif
class TestEnv : public EnvWrapper {
public:
explicit TestEnv(Env* base_env) : EnvWrapper(base_env), close_count(0) {}
class TestLogger : public Logger {
public:
using Logger::Logv;
explicit TestLogger(TestEnv* env_ptr) : Logger() { env = env_ptr; }
~TestLogger() override {
if (!closed_) {
CloseHelper().PermitUncheckedError();
}
}
void Logv(const char* /*format*/, va_list /*ap*/) override {}
protected:
Status CloseImpl() override { return CloseHelper(); }
private:
Status CloseHelper() {
env->CloseCountInc();
;
return Status::IOError();
}
TestEnv* env;
};
void CloseCountInc() { close_count++; }
int GetCloseCount() { return close_count; }
Status NewLogger(const std::string& /*fname*/,
std::shared_ptr<Logger>* result) override {
result->reset(new TestLogger(this));
return Status::OK();
}
private:
int close_count;
};
TEST_F(DBBasicTest, DBClose) {
Options options = GetDefaultOptions();
std::string dbname = test::PerThreadDBPath("db_close_test");
ASSERT_OK(DestroyDB(dbname, options));
DB* db = nullptr;
TestEnv* env = new TestEnv(env_);
std::unique_ptr<TestEnv> local_env_guard(env);
options.create_if_missing = true;
options.env = env;
Status s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
s = db->Close();
ASSERT_EQ(env->GetCloseCount(), 1);
ASSERT_EQ(s, Status::IOError());
delete db;
ASSERT_EQ(env->GetCloseCount(), 1);
// Do not call DB::Close() and ensure our logger Close() still gets called
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
ASSERT_EQ(env->GetCloseCount(), 2);
// Provide our own logger and ensure DB::Close() does not close it
options.info_log.reset(new TestEnv::TestLogger(env));
options.create_if_missing = false;
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
s = db->Close();
ASSERT_EQ(s, Status::OK());
delete db;
ASSERT_EQ(env->GetCloseCount(), 2);
options.info_log.reset();
ASSERT_EQ(env->GetCloseCount(), 3);
}
TEST_F(DBBasicTest, DBCloseFlushError) {
std::unique_ptr<FaultInjectionTestEnv> fault_injection_env(
new FaultInjectionTestEnv(env_));
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.manual_wal_flush = true;
options.write_buffer_size = 100;
options.env = fault_injection_env.get();
Reopen(options);
ASSERT_OK(Put("key1", "value1"));
ASSERT_OK(Put("key2", "value2"));
ASSERT_OK(dbfull()->TEST_SwitchMemtable());
ASSERT_OK(Put("key3", "value3"));
fault_injection_env->SetFilesystemActive(false);
Status s = dbfull()->Close();
fault_injection_env->SetFilesystemActive(true);
ASSERT_NE(s, Status::OK());
Destroy(options);
}
class DBMultiGetTestWithParam : public DBBasicTest,
public testing::WithParamInterface<bool> {};
TEST_P(DBMultiGetTestWithParam, MultiGetMultiCF) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
// <CF, key, value> tuples
std::vector<std::tuple<int, std::string, std::string>> cf_kv_vec;
static const int num_keys = 24;
cf_kv_vec.reserve(num_keys);
for (int i = 0; i < num_keys; ++i) {
int cf = i / 3;
int cf_key = 1 % 3;
cf_kv_vec.emplace_back(std::make_tuple(
cf, "cf" + std::to_string(cf) + "_key_" + std::to_string(cf_key),
"cf" + std::to_string(cf) + "_val_" + std::to_string(cf_key)));
ASSERT_OK(Put(std::get<0>(cf_kv_vec[i]), std::get<1>(cf_kv_vec[i]),
std::get<2>(cf_kv_vec[i])));
}
int get_sv_count = 0;
ROCKSDB_NAMESPACE::DBImpl* db = static_cast_with_check<DBImpl>(db_);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::AfterRefSV", [&](void* /*arg*/) {
if (++get_sv_count == 2) {
// After MultiGet refs a couple of CFs, flush all CFs so MultiGet
// is forced to repeat the process
for (int i = 0; i < num_keys; ++i) {
int cf = i / 3;
int cf_key = i % 8;
if (cf_key == 0) {
ASSERT_OK(Flush(cf));
}
ASSERT_OK(Put(std::get<0>(cf_kv_vec[i]), std::get<1>(cf_kv_vec[i]),
std::get<2>(cf_kv_vec[i]) + "_2"));
}
}
if (get_sv_count == 11) {
for (int i = 0; i < 8; ++i) {
auto* cfd = static_cast_with_check<ColumnFamilyHandleImpl>(
db->GetColumnFamilyHandle(i))
->cfd();
ASSERT_EQ(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<int> cfs;
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 0; i < num_keys; ++i) {
cfs.push_back(std::get<0>(cf_kv_vec[i]));
keys.push_back(std::get<1>(cf_kv_vec[i]));
}
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_EQ(values.size(), num_keys);
for (unsigned int j = 0; j < values.size(); ++j) {
ASSERT_EQ(values[j], std::get<2>(cf_kv_vec[j]) + "_2");
}
keys.clear();
cfs.clear();
cfs.push_back(std::get<0>(cf_kv_vec[0]));
keys.push_back(std::get<1>(cf_kv_vec[0]));
cfs.push_back(std::get<0>(cf_kv_vec[3]));
keys.push_back(std::get<1>(cf_kv_vec[3]));
cfs.push_back(std::get<0>(cf_kv_vec[4]));
keys.push_back(std::get<1>(cf_kv_vec[4]));
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_EQ(values[0], std::get<2>(cf_kv_vec[0]) + "_2");
ASSERT_EQ(values[1], std::get<2>(cf_kv_vec[3]) + "_2");
ASSERT_EQ(values[2], std::get<2>(cf_kv_vec[4]) + "_2");
keys.clear();
cfs.clear();
cfs.push_back(std::get<0>(cf_kv_vec[7]));
keys.push_back(std::get<1>(cf_kv_vec[7]));
cfs.push_back(std::get<0>(cf_kv_vec[6]));
keys.push_back(std::get<1>(cf_kv_vec[6]));
cfs.push_back(std::get<0>(cf_kv_vec[1]));
keys.push_back(std::get<1>(cf_kv_vec[1]));
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_EQ(values[0], std::get<2>(cf_kv_vec[7]) + "_2");
ASSERT_EQ(values[1], std::get<2>(cf_kv_vec[6]) + "_2");
ASSERT_EQ(values[2], std::get<2>(cf_kv_vec[1]) + "_2");
for (int cf = 0; cf < 8; ++cf) {
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(
static_cast_with_check<DBImpl>(db_)->GetColumnFamilyHandle(cf))
->cfd();
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVObsolete);
}
}
TEST_P(DBMultiGetTestWithParam, MultiGetMultiCFMutex) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Put(i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val"));
}
int get_sv_count = 0;
int retries = 0;
bool last_try = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::LastTry", [&](void* /*arg*/) {
last_try = true;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::AfterRefSV", [&](void* /*arg*/) {
if (last_try) {
return;
}
if (++get_sv_count == 2) {
++retries;
get_sv_count = 0;
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Flush(i));
ASSERT_OK(Put(
i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val" + std::to_string(retries)));
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<int> cfs;
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 0; i < 8; ++i) {
cfs.push_back(i);
keys.push_back("cf" + std::to_string(i) + "_key");
}
values = MultiGet(cfs, keys, nullptr, GetParam());
ASSERT_TRUE(last_try);
ASSERT_EQ(values.size(), 8);
for (unsigned int j = 0; j < values.size(); ++j) {
ASSERT_EQ(values[j],
"cf" + std::to_string(j) + "_val" + std::to_string(retries));
}
for (int i = 0; i < 8; ++i) {
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(
static_cast_with_check<DBImpl>(db_)->GetColumnFamilyHandle(i))
->cfd();
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
}
}
TEST_P(DBMultiGetTestWithParam, MultiGetMultiCFSnapshot) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu", "ilya", "muromec", "dobrynia", "nikitich",
"alyosha", "popovich"},
options);
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Put(i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val"));
}
int get_sv_count = 0;
ROCKSDB_NAMESPACE::DBImpl* db = static_cast_with_check<DBImpl>(db_);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MultiGet::AfterRefSV", [&](void* /*arg*/) {
if (++get_sv_count == 2) {
for (int i = 0; i < 8; ++i) {
ASSERT_OK(Flush(i));
ASSERT_OK(Put(i, "cf" + std::to_string(i) + "_key",
"cf" + std::to_string(i) + "_val2"));
}
}
if (get_sv_count == 8) {
for (int i = 0; i < 8; ++i) {
auto* cfd = static_cast_with_check<ColumnFamilyHandleImpl>(
db->GetColumnFamilyHandle(i))
->cfd();
ASSERT_TRUE(
(cfd->TEST_GetLocalSV()->Get() == SuperVersion::kSVInUse) ||
(cfd->TEST_GetLocalSV()->Get() == SuperVersion::kSVObsolete));
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<int> cfs;
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 0; i < 8; ++i) {
cfs.push_back(i);
keys.push_back("cf" + std::to_string(i) + "_key");
}
const Snapshot* snapshot = db_->GetSnapshot();
values = MultiGet(cfs, keys, snapshot, GetParam());
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(values.size(), 8);
for (unsigned int j = 0; j < values.size(); ++j) {
ASSERT_EQ(values[j], "cf" + std::to_string(j) + "_val");
}
for (int i = 0; i < 8; ++i) {
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(
static_cast_with_check<DBImpl>(db_)->GetColumnFamilyHandle(i))
->cfd();
ASSERT_NE(cfd->TEST_GetLocalSV()->Get(), SuperVersion::kSVInUse);
}
}
INSTANTIATE_TEST_CASE_P(DBMultiGetTestWithParam, DBMultiGetTestWithParam,
testing::Bool());
TEST_F(DBBasicTest, MultiGetBatchedSimpleUnsorted) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k5", "v5"));
ASSERT_OK(Delete(1, "no_key"));
get_perf_context()->Reset();
std::vector<Slice> keys({"no_key", "k5", "k4", "k3", "k2", "k1"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), false);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[5].data(), values[5].size()), "v1");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v2");
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v3");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(8, (int)get_perf_context()->multiget_read_bytes);
ASSERT_TRUE(s[0].IsNotFound());
ASSERT_OK(s[1]);
ASSERT_TRUE(s[2].IsNotFound());
ASSERT_OK(s[3]);
ASSERT_OK(s[4]);
ASSERT_OK(s[5]);
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, MultiGetBatchedSortedMultiFile) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
// To expand the power of this test, generate > 1 table file and
// mix with memtable
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
ASSERT_OK(Flush(1));
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k5", "v5"));
ASSERT_OK(Delete(1, "no_key"));
get_perf_context()->Reset();
std::vector<Slice> keys({"k1", "k2", "k3", "k4", "k5", "no_key"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), true);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[0].data(), values[0].size()), "v1");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v2");
ASSERT_EQ(std::string(values[2].data(), values[2].size()), "v3");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(8, (int)get_perf_context()->multiget_read_bytes);
ASSERT_OK(s[0]);
ASSERT_OK(s[1]);
ASSERT_OK(s[2]);
ASSERT_TRUE(s[3].IsNotFound());
ASSERT_OK(s[4]);
ASSERT_TRUE(s[5].IsNotFound());
SetPerfLevel(kDisable);
} while (ChangeOptions());
}
TEST_F(DBBasicTest, MultiGetBatchedDuplicateKeys) {
Options opts = CurrentOptions();
opts.merge_operator = MergeOperators::CreateStringAppendOperator();
CreateAndReopenWithCF({"pikachu"}, opts);
SetPerfLevel(kEnableCount);
// To expand the power of this test, generate > 1 table file and
// mix with memtable
ASSERT_OK(Merge(1, "k1", "v1"));
ASSERT_OK(Merge(1, "k2", "v2"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
ASSERT_OK(Merge(1, "k3", "v3"));
ASSERT_OK(Merge(1, "k4", "v4"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
ASSERT_OK(Merge(1, "k4", "v4_2"));
ASSERT_OK(Merge(1, "k6", "v6"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
ASSERT_OK(Merge(1, "k7", "v7"));
ASSERT_OK(Merge(1, "k8", "v8"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
get_perf_context()->Reset();
std::vector<Slice> keys({"k8", "k8", "k8", "k4", "k4", "k1", "k3"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), false);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[0].data(), values[0].size()), "v8");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v8");
ASSERT_EQ(std::string(values[2].data(), values[2].size()), "v8");
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v4,v4_2");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v4,v4_2");
ASSERT_EQ(std::string(values[5].data(), values[5].size()), "v1");
ASSERT_EQ(std::string(values[6].data(), values[6].size()), "v3");
ASSERT_EQ(24, (int)get_perf_context()->multiget_read_bytes);
for (Status& status : s) {
ASSERT_OK(status);
}
SetPerfLevel(kDisable);
}
TEST_F(DBBasicTest, MultiGetBatchedMultiLevel) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
Reopen(options);
int num_keys = 0;
for (int i = 0; i < 128; ++i) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l2_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
MoveFilesToLevel(2);
for (int i = 0; i < 128; i += 3) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l1_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
MoveFilesToLevel(1);
for (int i = 0; i < 128; i += 5) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l0_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
ASSERT_EQ(0, num_keys);
for (int i = 0; i < 128; i += 9) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_mem_" + std::to_string(i)));
}
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 64; i < 80; ++i) {
keys.push_back("key_" + std::to_string(i));
}
values = MultiGet(keys, nullptr);
ASSERT_EQ(values.size(), 16);
for (unsigned int j = 0; j < values.size(); ++j) {
int key = j + 64;
if (key % 9 == 0) {
ASSERT_EQ(values[j], "val_mem_" + std::to_string(key));
} else if (key % 5 == 0) {
ASSERT_EQ(values[j], "val_l0_" + std::to_string(key));
} else if (key % 3 == 0) {
ASSERT_EQ(values[j], "val_l1_" + std::to_string(key));
} else {
ASSERT_EQ(values[j], "val_l2_" + std::to_string(key));
}
}
}
TEST_F(DBBasicTest, MultiGetBatchedMultiLevelMerge) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
Reopen(options);
int num_keys = 0;
for (int i = 0; i < 128; ++i) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l2_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
MoveFilesToLevel(2);
for (int i = 0; i < 128; i += 3) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l1_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
MoveFilesToLevel(1);
for (int i = 0; i < 128; i += 5) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l0_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
ASSERT_EQ(0, num_keys);
for (int i = 0; i < 128; i += 9) {
ASSERT_OK(
Merge("key_" + std::to_string(i), "val_mem_" + std::to_string(i)));
}
std::vector<std::string> keys;
std::vector<std::string> values;
for (int i = 32; i < 80; ++i) {
keys.push_back("key_" + std::to_string(i));
}
values = MultiGet(keys, nullptr);
ASSERT_EQ(values.size(), keys.size());
for (unsigned int j = 0; j < 48; ++j) {
int key = j + 32;
std::string value;
value.append("val_l2_" + std::to_string(key));
if (key % 3 == 0) {
value.append(",");
value.append("val_l1_" + std::to_string(key));
}
if (key % 5 == 0) {
value.append(",");
value.append("val_l0_" + std::to_string(key));
}
if (key % 9 == 0) {
value.append(",");
value.append("val_mem_" + std::to_string(key));
}
ASSERT_EQ(values[j], value);
}
}
TEST_F(DBBasicTest, MultiGetBatchedValueSizeInMemory) {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v_1"));
ASSERT_OK(Put(1, "k2", "v_2"));
ASSERT_OK(Put(1, "k3", "v_3"));
ASSERT_OK(Put(1, "k4", "v_4"));
ASSERT_OK(Put(1, "k5", "v_5"));
ASSERT_OK(Put(1, "k6", "v_6"));
std::vector<Slice> keys = {"k1", "k2", "k3", "k4", "k5", "k6"};
std::vector<PinnableSlice> values(keys.size());
std::vector<Status> s(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
get_perf_context()->Reset();
ReadOptions ro;
ro.value_size_soft_limit = 11;
db_->MultiGet(ro, handles_[1], keys.size(), keys.data(), values.data(),
s.data(), false);
ASSERT_EQ(values.size(), keys.size());
for (unsigned int i = 0; i < 4; i++) {
ASSERT_EQ(std::string(values[i].data(), values[i].size()),
"v_" + std::to_string(i + 1));
}
for (unsigned int i = 4; i < 6; i++) {
ASSERT_TRUE(s[i].IsAborted());
}
ASSERT_EQ(12, (int)get_perf_context()->multiget_read_bytes);
SetPerfLevel(kDisable);
}
TEST_F(DBBasicTest, MultiGetBatchedValueSize) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k6", "v6"));
ASSERT_OK(Put(1, "k7", "v7_"));
ASSERT_OK(Put(1, "k3", "v3_"));
ASSERT_OK(Put(1, "k4", "v4"));
ASSERT_OK(Flush(1));
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Put(1, "k11", "v11"));
ASSERT_OK(Delete(1, "no_key"));
ASSERT_OK(Put(1, "k8", "v8_"));
ASSERT_OK(Put(1, "k13", "v13"));
ASSERT_OK(Put(1, "k14", "v14"));
ASSERT_OK(Put(1, "k15", "v15"));
ASSERT_OK(Put(1, "k16", "v16"));
ASSERT_OK(Put(1, "k17", "v17"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "k1", "v1_"));
ASSERT_OK(Put(1, "k2", "v2_"));
ASSERT_OK(Put(1, "k5", "v5_"));
ASSERT_OK(Put(1, "k9", "v9_"));
ASSERT_OK(Put(1, "k10", "v10"));
ASSERT_OK(Delete(1, "k2"));
ASSERT_OK(Delete(1, "k6"));
get_perf_context()->Reset();
std::vector<Slice> keys({"k1", "k10", "k11", "k12", "k13", "k14", "k15",
"k16", "k17", "k2", "k3", "k4", "k5", "k6", "k7",
"k8", "k9", "no_key"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
ReadOptions ro;
ro.value_size_soft_limit = 20;
db_->MultiGet(ro, handles_[1], keys.size(), keys.data(), values.data(),
s.data(), false);
ASSERT_EQ(values.size(), keys.size());
// In memory keys
ASSERT_EQ(std::string(values[0].data(), values[0].size()), "v1_");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v10");
ASSERT_TRUE(s[9].IsNotFound()); // k2
ASSERT_EQ(std::string(values[12].data(), values[12].size()), "v5_");
ASSERT_TRUE(s[13].IsNotFound()); // k6
ASSERT_EQ(std::string(values[16].data(), values[16].size()), "v9_");
// In sst files
ASSERT_EQ(std::string(values[2].data(), values[1].size()), "v11");
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v13");
ASSERT_EQ(std::string(values[5].data(), values[5].size()), "v14");
// Remaining aborted after value_size exceeds.
ASSERT_TRUE(s[3].IsAborted());
ASSERT_TRUE(s[6].IsAborted());
ASSERT_TRUE(s[7].IsAborted());
ASSERT_TRUE(s[8].IsAborted());
ASSERT_TRUE(s[10].IsAborted());
ASSERT_TRUE(s[11].IsAborted());
ASSERT_TRUE(s[14].IsAborted());
ASSERT_TRUE(s[15].IsAborted());
ASSERT_TRUE(s[17].IsAborted());
// 6 kv pairs * 3 bytes per value (i.e. 18)
ASSERT_EQ(21, (int)get_perf_context()->multiget_read_bytes);
SetPerfLevel(kDisable);
} while (ChangeCompactOptions());
}
TEST_F(DBBasicTest, MultiGetBatchedValueSizeMultiLevelMerge) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
Reopen(options);
int num_keys = 0;
for (int i = 0; i < 64; ++i) {
ASSERT_OK(Put("key_" + std::to_string(i), "val_l2_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
MoveFilesToLevel(2);
for (int i = 0; i < 64; i += 3) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l1_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
MoveFilesToLevel(1);
for (int i = 0; i < 64; i += 5) {
ASSERT_OK(Merge("key_" + std::to_string(i), "val_l0_" + std::to_string(i)));
num_keys++;
if (num_keys == 8) {
ASSERT_OK(Flush());
num_keys = 0;
}
}
if (num_keys > 0) {
ASSERT_OK(Flush());
num_keys = 0;
}
ASSERT_EQ(0, num_keys);
for (int i = 0; i < 64; i += 9) {
ASSERT_OK(
Merge("key_" + std::to_string(i), "val_mem_" + std::to_string(i)));
}
std::vector<std::string> keys_str;
for (int i = 10; i < 50; ++i) {
keys_str.push_back("key_" + std::to_string(i));
}
std::vector<Slice> keys(keys_str.size());
for (int i = 0; i < 40; i++) {
keys[i] = Slice(keys_str[i]);
}
std::vector<PinnableSlice> values(keys_str.size());
std::vector<Status> statuses(keys_str.size());
ReadOptions read_options;
read_options.verify_checksums = true;
read_options.value_size_soft_limit = 380;
db_->MultiGet(read_options, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data());
ASSERT_EQ(values.size(), keys.size());
uint64_t curr_value_size = 0;
for (unsigned int j = 0; j < 26; ++j) {
int key = j + 10;
std::string value;
value.append("val_l2_" + std::to_string(key));
if (key % 3 == 0) {
value.append(",");
value.append("val_l1_" + std::to_string(key));
}
if (key % 5 == 0) {
value.append(",");
value.append("val_l0_" + std::to_string(key));
}
if (key % 9 == 0) {
value.append(",");
value.append("val_mem_" + std::to_string(key));
}
curr_value_size += value.size();
ASSERT_EQ(values[j], value);
ASSERT_OK(statuses[j]);
}
// ASSERT_TRUE(curr_value_size <= read_options.value_size_hard_limit);
// All remaning keys status is set Status::Abort
for (unsigned int j = 26; j < 40; j++) {
ASSERT_TRUE(statuses[j].IsAborted());
}
}
TEST_F(DBBasicTest, MultiGetStats) {
Options options;
options.create_if_missing = true;
options.disable_auto_compactions = true;
options.env = env_;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
BlockBasedTableOptions table_options;
table_options.block_size = 1;
table_options.index_type =
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
table_options.partition_filters = true;
table_options.no_block_cache = true;
table_options.cache_index_and_filter_blocks = false;
table_options.filter_policy.reset(NewBloomFilterPolicy(10, false));
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
CreateAndReopenWithCF({"pikachu"}, options);
int total_keys = 2000;
std::vector<std::string> keys_str(total_keys);
std::vector<Slice> keys(total_keys);
std::vector<PinnableSlice> values(total_keys);
std::vector<Status> s(total_keys);
ReadOptions read_opts;
Random rnd(309);
// Create Multiple SST files at multiple levels.
for (int i = 0; i < 500; ++i) {
keys_str[i] = "k" + std::to_string(i);
keys[i] = Slice(keys_str[i]);
ASSERT_OK(Put(1, "k" + std::to_string(i), rnd.RandomString(1000)));
if (i % 100 == 0) {
ASSERT_OK(Flush(1));
}
}
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
for (int i = 501; i < 1000; ++i) {
keys_str[i] = "k" + std::to_string(i);
keys[i] = Slice(keys_str[i]);
ASSERT_OK(Put(1, "k" + std::to_string(i), rnd.RandomString(1000)));
if (i % 100 == 0) {
ASSERT_OK(Flush(1));
}
}
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
for (int i = 1001; i < total_keys; ++i) {
keys_str[i] = "k" + std::to_string(i);
keys[i] = Slice(keys_str[i]);
ASSERT_OK(Put(1, "k" + std::to_string(i), rnd.RandomString(1000)));
if (i % 100 == 0) {
ASSERT_OK(Flush(1));
}
}
ASSERT_OK(Flush(1));
Close();
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_OK(options.statistics->Reset());
db_->MultiGet(read_opts, handles_[1], total_keys, keys.data(), values.data(),
s.data(), false);
ASSERT_EQ(values.size(), total_keys);
HistogramData hist_data_blocks;
HistogramData hist_index_and_filter_blocks;
HistogramData hist_sst;
options.statistics->histogramData(NUM_DATA_BLOCKS_READ_PER_LEVEL,
&hist_data_blocks);
options.statistics->histogramData(NUM_INDEX_AND_FILTER_BLOCKS_READ_PER_LEVEL,
&hist_index_and_filter_blocks);
options.statistics->histogramData(NUM_SST_READ_PER_LEVEL, &hist_sst);
// Maximum number of blocks read from a file system in a level.
ASSERT_GT(hist_data_blocks.max, 0);
ASSERT_GT(hist_index_and_filter_blocks.max, 0);
// Maximum number of sst files read from file system in a level.
ASSERT_GT(hist_sst.max, 0);
// Minimun number of blocks read in a level.
ASSERT_EQ(hist_data_blocks.min, 3);
ASSERT_GT(hist_index_and_filter_blocks.min, 0);
// Minimun number of sst files read in a level.
ASSERT_GT(hist_sst.max, 0);
}
// Test class for batched MultiGet with prefix extractor
// Param bool - If true, use partitioned filters
// If false, use full filter block
class MultiGetPrefixExtractorTest : public DBBasicTest,
public ::testing::WithParamInterface<bool> {
};
TEST_P(MultiGetPrefixExtractorTest, Batched) {
Options options = CurrentOptions();
options.prefix_extractor.reset(NewFixedPrefixTransform(2));
options.memtable_prefix_bloom_size_ratio = 10;
BlockBasedTableOptions bbto;
if (GetParam()) {
bbto.index_type = BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch;
bbto.partition_filters = true;
}
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.whole_key_filtering = false;
bbto.cache_index_and_filter_blocks = false;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
Reopen(options);
SetPerfLevel(kEnableCount);
get_perf_context()->Reset();
// First key is not in the prefix_extractor domain
ASSERT_OK(Put("k", "v0"));
ASSERT_OK(Put("kk1", "v1"));
ASSERT_OK(Put("kk2", "v2"));
ASSERT_OK(Put("kk3", "v3"));
ASSERT_OK(Put("kk4", "v4"));
std::vector<std::string> mem_keys(
{"k", "kk1", "kk2", "kk3", "kk4", "rofl", "lmho"});
std::vector<std::string> inmem_values;
inmem_values = MultiGet(mem_keys, nullptr);
ASSERT_EQ(inmem_values[0], "v0");
ASSERT_EQ(inmem_values[1], "v1");
ASSERT_EQ(inmem_values[2], "v2");
ASSERT_EQ(inmem_values[3], "v3");
ASSERT_EQ(inmem_values[4], "v4");
ASSERT_EQ(get_perf_context()->bloom_memtable_miss_count, 2);
ASSERT_EQ(get_perf_context()->bloom_memtable_hit_count, 5);
ASSERT_OK(Flush());
std::vector<std::string> keys({"k", "kk1", "kk2", "kk3", "kk4"});
std::vector<std::string> values;
get_perf_context()->Reset();
values = MultiGet(keys, nullptr);
ASSERT_EQ(values[0], "v0");
ASSERT_EQ(values[1], "v1");
ASSERT_EQ(values[2], "v2");
ASSERT_EQ(values[3], "v3");
ASSERT_EQ(values[4], "v4");
// Filter hits for 4 in-domain keys
ASSERT_EQ(get_perf_context()->bloom_sst_hit_count, 4);
}
INSTANTIATE_TEST_CASE_P(MultiGetPrefix, MultiGetPrefixExtractorTest,
::testing::Bool());
#ifndef ROCKSDB_LITE
class DBMultiGetRowCacheTest : public DBBasicTest,
public ::testing::WithParamInterface<bool> {};
TEST_P(DBMultiGetRowCacheTest, MultiGetBatched) {
do {
option_config_ = kRowCache;
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
CreateAndReopenWithCF({"pikachu"}, options);
SetPerfLevel(kEnableCount);
ASSERT_OK(Put(1, "k1", "v1"));
ASSERT_OK(Put(1, "k2", "v2"));
ASSERT_OK(Put(1, "k3", "v3"));
ASSERT_OK(Put(1, "k4", "v4"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "k5", "v5"));
const Snapshot* snap1 = dbfull()->GetSnapshot();
ASSERT_OK(Delete(1, "k4"));
ASSERT_OK(Flush(1));
const Snapshot* snap2 = dbfull()->GetSnapshot();
get_perf_context()->Reset();
std::vector<Slice> keys({"no_key", "k5", "k4", "k3", "k1"});
std::vector<PinnableSlice> values(keys.size());
std::vector<ColumnFamilyHandle*> cfs(keys.size(), handles_[1]);
std::vector<Status> s(keys.size());
ReadOptions ro;
bool use_snapshots = GetParam();
if (use_snapshots) {
ro.snapshot = snap2;
}
db_->MultiGet(ro, handles_[1], keys.size(), keys.data(), values.data(),
s.data(), false);
ASSERT_EQ(values.size(), keys.size());
ASSERT_EQ(std::string(values[4].data(), values[4].size()), "v1");
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v3");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(6, (int)get_perf_context()->multiget_read_bytes);
ASSERT_TRUE(s[0].IsNotFound());
ASSERT_OK(s[1]);
ASSERT_TRUE(s[2].IsNotFound());
ASSERT_OK(s[3]);
ASSERT_OK(s[4]);
// Call MultiGet() again with some intersection with the previous set of
// keys. Those should already be in the row cache.
keys.assign({"no_key", "k5", "k3", "k2"});
for (size_t i = 0; i < keys.size(); ++i) {
values[i].Reset();
s[i] = Status::OK();
}
get_perf_context()->Reset();
if (use_snapshots) {
ro.snapshot = snap1;
}
db_->MultiGet(ReadOptions(), handles_[1], keys.size(), keys.data(),
values.data(), s.data(), false);
ASSERT_EQ(std::string(values[3].data(), values[3].size()), "v2");
ASSERT_EQ(std::string(values[2].data(), values[2].size()), "v3");
ASSERT_EQ(std::string(values[1].data(), values[1].size()), "v5");
// four kv pairs * two bytes per value
ASSERT_EQ(6, (int)get_perf_context()->multiget_read_bytes);
ASSERT_TRUE(s[0].IsNotFound());
ASSERT_OK(s[1]);
ASSERT_OK(s[2]);
ASSERT_OK(s[3]);
if (use_snapshots) {
// Only reads from the first SST file would have been cached, since
// snapshot seq no is > fd.largest_seqno
ASSERT_EQ(1, TestGetTickerCount(options, ROW_CACHE_HIT));
} else {
ASSERT_EQ(2, TestGetTickerCount(options, ROW_CACHE_HIT));
}
SetPerfLevel(kDisable);
dbfull()->ReleaseSnapshot(snap1);
dbfull()->ReleaseSnapshot(snap2);
} while (ChangeCompactOptions());
}
INSTANTIATE_TEST_CASE_P(DBMultiGetRowCacheTest, DBMultiGetRowCacheTest,
testing::Values(true, false));
TEST_F(DBBasicTest, GetAllKeyVersions) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_EQ(2, handles_.size());
const size_t kNumInserts = 4;
const size_t kNumDeletes = 4;
const size_t kNumUpdates = 4;
// Check default column family
for (size_t i = 0; i != kNumInserts; ++i) {
ASSERT_OK(Put(std::to_string(i), "value"));
}
for (size_t i = 0; i != kNumUpdates; ++i) {
ASSERT_OK(Put(std::to_string(i), "value1"));
}
for (size_t i = 0; i != kNumDeletes; ++i) {
ASSERT_OK(Delete(std::to_string(i)));
}
std::vector<KeyVersion> key_versions;
ASSERT_OK(ROCKSDB_NAMESPACE::GetAllKeyVersions(
db_, Slice(), Slice(), std::numeric_limits<size_t>::max(),
&key_versions));
ASSERT_EQ(kNumInserts + kNumDeletes + kNumUpdates, key_versions.size());
ASSERT_OK(ROCKSDB_NAMESPACE::GetAllKeyVersions(
db_, handles_[0], Slice(), Slice(), std::numeric_limits<size_t>::max(),
&key_versions));
ASSERT_EQ(kNumInserts + kNumDeletes + kNumUpdates, key_versions.size());
// Check non-default column family
for (size_t i = 0; i + 1 != kNumInserts; ++i) {
ASSERT_OK(Put(1, std::to_string(i), "value"));
}
for (size_t i = 0; i + 1 != kNumUpdates; ++i) {
ASSERT_OK(Put(1, std::to_string(i), "value1"));
}
for (size_t i = 0; i + 1 != kNumDeletes; ++i) {
ASSERT_OK(Delete(1, std::to_string(i)));
}
ASSERT_OK(ROCKSDB_NAMESPACE::GetAllKeyVersions(
db_, handles_[1], Slice(), Slice(), std::numeric_limits<size_t>::max(),
&key_versions));
ASSERT_EQ(kNumInserts + kNumDeletes + kNumUpdates - 3, key_versions.size());
}
#endif // !ROCKSDB_LITE
TEST_F(DBBasicTest, MultiGetIOBufferOverrun) {
Options options = CurrentOptions();
Random rnd(301);
BlockBasedTableOptions table_options;
table_options.pin_l0_filter_and_index_blocks_in_cache = true;
table_options.block_size = 16 * 1024;
ASSERT_TRUE(table_options.block_size >
BlockBasedTable::kMultiGetReadStackBufSize);
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
std::string zero_str(128, '\0');
for (int i = 0; i < 100; ++i) {
// Make the value compressible. A purely random string doesn't compress
// and the resultant data block will not be compressed
std::string value(rnd.RandomString(128) + zero_str);
assert(Put(Key(i), value) == Status::OK());
}
ASSERT_OK(Flush());
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
ReadOptions ro;
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
}
TEST_F(DBBasicTest, IncrementalRecoveryNoCorrupt) {
Options options = CurrentOptions();
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
WriteOptions write_opts;
write_opts.disableWAL = true;
for (size_t cf = 0; cf != num_cfs; ++cf) {
for (size_t i = 0; i != 10000; ++i) {
std::string key_str = Key(static_cast<int>(i));
std::string value_str = std::to_string(cf) + "_" + std::to_string(i);
ASSERT_OK(Put(static_cast<int>(cf), key_str, value_str));
if (0 == (i % 1000)) {
ASSERT_OK(Flush(static_cast<int>(cf)));
}
}
}
for (size_t cf = 0; cf != num_cfs; ++cf) {
ASSERT_OK(Flush(static_cast<int>(cf)));
}
Close();
options.best_efforts_recovery = true;
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu", "eevee"},
options);
num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
for (size_t cf = 0; cf != num_cfs; ++cf) {
for (int i = 0; i != 10000; ++i) {
std::string key_str = Key(static_cast<int>(i));
std::string expected_value_str =
std::to_string(cf) + "_" + std::to_string(i);
ASSERT_EQ(expected_value_str, Get(static_cast<int>(cf), key_str));
}
}
}
TEST_F(DBBasicTest, BestEffortsRecoveryWithVersionBuildingFailure) {
Options options = CurrentOptions();
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"VersionBuilder::CheckConsistencyBeforeReturn", [&](void* arg) {
ASSERT_NE(nullptr, arg);
*(reinterpret_cast<Status*>(arg)) =
Status::Corruption("Inject corruption");
});
SyncPoint::GetInstance()->EnableProcessing();
options.best_efforts_recovery = true;
Status s = TryReopen(options);
ASSERT_TRUE(s.IsCorruption());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
#ifndef ROCKSDB_LITE
namespace {
class TableFileListener : public EventListener {
public:
void OnTableFileCreated(const TableFileCreationInfo& info) override {
InstrumentedMutexLock lock(&mutex_);
cf_to_paths_[info.cf_name].push_back(info.file_path);
}
std::vector<std::string>& GetFiles(const std::string& cf_name) {
InstrumentedMutexLock lock(&mutex_);
return cf_to_paths_[cf_name];
}
private:
InstrumentedMutex mutex_;
std::unordered_map<std::string, std::vector<std::string>> cf_to_paths_;
};
} // namespace
TEST_F(DBBasicTest, LastSstFileNotInManifest) {
// If the last sst file is not tracked in MANIFEST,
// or the VersionEdit for the last sst file is not synced,
// on recovery, the last sst file should be deleted,
// and new sst files shouldn't reuse its file number.
Options options = CurrentOptions();
DestroyAndReopen(options);
Close();
// Manually add a sst file.
constexpr uint64_t kSstFileNumber = 100;
const std::string kSstFile = MakeTableFileName(dbname_, kSstFileNumber);
ASSERT_OK(WriteStringToFile(env_, /* data = */ "bad sst file content",
/* fname = */ kSstFile,
/* should_sync = */ true));
ASSERT_OK(env_->FileExists(kSstFile));
TableFileListener* listener = new TableFileListener();
options.listeners.emplace_back(listener);
Reopen(options);
// kSstFile should already be deleted.
ASSERT_TRUE(env_->FileExists(kSstFile).IsNotFound());
ASSERT_OK(Put("k", "v"));
ASSERT_OK(Flush());
// New sst file should have file number > kSstFileNumber.
std::vector<std::string>& files =
listener->GetFiles(kDefaultColumnFamilyName);
ASSERT_EQ(files.size(), 1);
const std::string fname = files[0].erase(0, (dbname_ + "/").size());
uint64_t number = 0;
FileType type = kTableFile;
ASSERT_TRUE(ParseFileName(fname, &number, &type));
ASSERT_EQ(type, kTableFile);
ASSERT_GT(number, kSstFileNumber);
}
TEST_F(DBBasicTest, RecoverWithMissingFiles) {
Options options = CurrentOptions();
DestroyAndReopen(options);
TableFileListener* listener = new TableFileListener();
// Disable auto compaction to simplify SST file name tracking.
options.disable_auto_compactions = true;
options.listeners.emplace_back(listener);
CreateAndReopenWithCF({"pikachu", "eevee"}, options);
std::vector<std::string> all_cf_names = {kDefaultColumnFamilyName, "pikachu",
"eevee"};
size_t num_cfs = handles_.size();
ASSERT_EQ(3, num_cfs);
for (size_t cf = 0; cf != num_cfs; ++cf) {
ASSERT_OK(Put(static_cast<int>(cf), "a", "0_value"));
ASSERT_OK(Flush(static_cast<int>(cf)));
ASSERT_OK(Put(static_cast<int>(cf), "b", "0_value"));
ASSERT_OK(Flush(static_cast<int>(cf)));
ASSERT_OK(Put(static_cast<int>(cf), "c", "0_value"));
ASSERT_OK(Flush(static_cast<int>(cf)));
}
// Delete and corrupt files
for (size_t i = 0; i < all_cf_names.size(); ++i) {
std::vector<std::string>& files = listener->GetFiles(all_cf_names[i]);
ASSERT_EQ(3, files.size());
std::string corrupted_data;
ASSERT_OK(ReadFileToString(env_, files[files.size() - 1], &corrupted_data));
ASSERT_OK(WriteStringToFile(
env_, corrupted_data.substr(0, corrupted_data.size() - 2),
files[files.size() - 1], /*should_sync=*/true));
for (int j = static_cast<int>(files.size() - 2); j >= static_cast<int>(i);
--j) {
ASSERT_OK(env_->DeleteFile(files[j]));
}
}
options.best_efforts_recovery = true;
ReopenWithColumnFamilies(all_cf_names, options);
// Verify data
ReadOptions read_opts;
read_opts.total_order_seek = true;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts, handles_[0]));
iter->SeekToFirst();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
iter.reset(db_->NewIterator(read_opts, handles_[1]));
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
iter.reset(db_->NewIterator(read_opts, handles_[2]));
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->key());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("b", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
}
}
TEST_F(DBBasicTest, BestEffortsRecoveryTryMultipleManifests) {
Options options = CurrentOptions();
options.env = env_;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value0"));
ASSERT_OK(Flush());
Close();
{
// Hack by adding a new MANIFEST with high file number
std::string garbage(10, '\0');
ASSERT_OK(WriteStringToFile(env_, garbage, dbname_ + "/MANIFEST-001000",
/*should_sync=*/true));
}
{
// Hack by adding a corrupted SST not referenced by any MANIFEST
std::string garbage(10, '\0');
ASSERT_OK(WriteStringToFile(env_, garbage, dbname_ + "/001001.sst",
/*should_sync=*/true));
}
options.best_efforts_recovery = true;
Reopen(options);
ASSERT_OK(Put("bar", "value"));
}
TEST_F(DBBasicTest, RecoverWithNoCurrentFile) {
Options options = CurrentOptions();
options.env = env_;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
options.best_efforts_recovery = true;
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
ASSERT_EQ(2, handles_.size());
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Put(1, "bar", "value"));
ASSERT_OK(Flush());
ASSERT_OK(Flush(1));
Close();
ASSERT_OK(env_->DeleteFile(CurrentFileName(dbname_)));
ReopenWithColumnFamilies({kDefaultColumnFamilyName, "pikachu"}, options);
std::vector<std::string> cf_names;
ASSERT_OK(DB::ListColumnFamilies(DBOptions(options), dbname_, &cf_names));
ASSERT_EQ(2, cf_names.size());
for (const auto& name : cf_names) {
ASSERT_TRUE(name == kDefaultColumnFamilyName || name == "pikachu");
}
}
TEST_F(DBBasicTest, RecoverWithNoManifest) {
Options options = CurrentOptions();
options.env = env_;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "value"));
ASSERT_OK(Flush());
Close();
{
// Delete all MANIFEST.
std::vector<std::string> files;
ASSERT_OK(env_->GetChildren(dbname_, &files));
for (const auto& file : files) {
uint64_t number = 0;
FileType type = kWalFile;
if (ParseFileName(file, &number, &type) && type == kDescriptorFile) {
ASSERT_OK(env_->DeleteFile(dbname_ + "/" + file));
}
}
}
options.best_efforts_recovery = true;
options.create_if_missing = false;
Status s = TryReopen(options);
ASSERT_TRUE(s.IsInvalidArgument());
options.create_if_missing = true;
Reopen(options);
// Since no MANIFEST exists, best-efforts recovery creates a new, empty db.
ASSERT_EQ("NOT_FOUND", Get("foo"));
}
TEST_F(DBBasicTest, SkipWALIfMissingTableFiles) {
Options options = CurrentOptions();
DestroyAndReopen(options);
TableFileListener* listener = new TableFileListener();
options.listeners.emplace_back(listener);
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<std::string> kAllCfNames = {kDefaultColumnFamilyName, "pikachu"};
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
for (int cf = 0; cf < static_cast<int>(kAllCfNames.size()); ++cf) {
ASSERT_OK(Put(cf, "a", "0_value"));
ASSERT_OK(Flush(cf));
ASSERT_OK(Put(cf, "b", "0_value"));
}
// Delete files
for (size_t i = 0; i < kAllCfNames.size(); ++i) {
std::vector<std::string>& files = listener->GetFiles(kAllCfNames[i]);
ASSERT_EQ(1, files.size());
for (int j = static_cast<int>(files.size() - 1); j >= static_cast<int>(i);
--j) {
ASSERT_OK(env_->DeleteFile(files[j]));
}
}
options.best_efforts_recovery = true;
ReopenWithColumnFamilies(kAllCfNames, options);
// Verify WAL is not applied
ReadOptions read_opts;
read_opts.total_order_seek = true;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts, handles_[0]));
iter->SeekToFirst();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
iter.reset(db_->NewIterator(read_opts, handles_[1]));
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->key());
iter->Next();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
}
TEST_F(DBBasicTest, DisableTrackWal) {
// If WAL tracking was enabled, and then disabled during reopen,
// the previously tracked WALs should be removed from MANIFEST.
Options options = CurrentOptions();
options.track_and_verify_wals_in_manifest = true;
// extremely small write buffer size,
// so that new WALs are created more frequently.
options.write_buffer_size = 100;
options.env = env_;
DestroyAndReopen(options);
for (int i = 0; i < 100; i++) {
ASSERT_OK(Put("foo" + std::to_string(i), "value" + std::to_string(i)));
}
ASSERT_OK(dbfull()->TEST_SwitchMemtable());
ASSERT_OK(db_->SyncWAL());
// Some WALs are tracked.
ASSERT_FALSE(dbfull()->TEST_GetVersionSet()->GetWalSet().GetWals().empty());
Close();
// Disable WAL tracking.
options.track_and_verify_wals_in_manifest = false;
options.create_if_missing = false;
ASSERT_OK(TryReopen(options));
// Previously tracked WALs are cleared.
ASSERT_TRUE(dbfull()->TEST_GetVersionSet()->GetWalSet().GetWals().empty());
Close();
// Re-enable WAL tracking again.
options.track_and_verify_wals_in_manifest = true;
options.create_if_missing = false;
ASSERT_OK(TryReopen(options));
ASSERT_TRUE(dbfull()->TEST_GetVersionSet()->GetWalSet().GetWals().empty());
Close();
}
#endif // !ROCKSDB_LITE
TEST_F(DBBasicTest, ManifestChecksumMismatch) {
Options options = CurrentOptions();
DestroyAndReopen(options);
ASSERT_OK(Put("bar", "value"));
ASSERT_OK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"LogWriter::EmitPhysicalRecord:BeforeEncodeChecksum", [&](void* arg) {
auto* crc = reinterpret_cast<uint32_t*>(arg);
*crc = *crc + 1;
});
SyncPoint::GetInstance()->EnableProcessing();
WriteOptions write_opts;
write_opts.disableWAL = true;
Status s = db_->Put(write_opts, "foo", "value");
ASSERT_OK(s);
ASSERT_OK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
ASSERT_OK(Put("foo", "value1"));
ASSERT_OK(Flush());
s = TryReopen(options);
ASSERT_TRUE(s.IsCorruption());
}
#ifndef ROCKSDB_LITE
class DBBasicTestTrackWal : public DBTestBase,
public testing::WithParamInterface<bool> {
public:
DBBasicTestTrackWal()
: DBTestBase("/db_basic_test_track_wal", /*env_do_fsync=*/false) {}
int CountWalFiles() {
VectorLogPtr log_files;
EXPECT_OK(dbfull()->GetSortedWalFiles(log_files));
return static_cast<int>(log_files.size());
};
};
TEST_P(DBBasicTestTrackWal, DoNotTrackObsoleteWal) {
// If a WAL becomes obsolete after flushing, but is not deleted from disk yet,
// then if SyncWAL is called afterwards, the obsolete WAL should not be
// tracked in MANIFEST.
Options options = CurrentOptions();
options.create_if_missing = true;
options.track_and_verify_wals_in_manifest = true;
options.atomic_flush = GetParam();
DestroyAndReopen(options);
CreateAndReopenWithCF({"cf"}, options);
ASSERT_EQ(handles_.size(), 2); // default, cf
// Do not delete WALs.
ASSERT_OK(db_->DisableFileDeletions());
constexpr int n = 10;
std::vector<std::unique_ptr<LogFile>> wals(n);
for (size_t i = 0; i < n; i++) {
// Generate a new WAL for each key-value.
const int cf = i % 2;
ASSERT_OK(db_->GetCurrentWalFile(&wals[i]));
ASSERT_OK(Put(cf, "k" + std::to_string(i), "v" + std::to_string(i)));
ASSERT_OK(Flush({0, 1}));
}
ASSERT_EQ(CountWalFiles(), n);
// Since all WALs are obsolete, no WAL should be tracked in MANIFEST.
ASSERT_OK(db_->SyncWAL());
// Manually delete all WALs.
Close();
for (const auto& wal : wals) {
ASSERT_OK(env_->DeleteFile(LogFileName(dbname_, wal->LogNumber())));
}
// If SyncWAL tracks the obsolete WALs in MANIFEST,
// reopen will fail because the WALs are missing from disk.
ASSERT_OK(TryReopenWithColumnFamilies({"default", "cf"}, options));
Destroy(options);
}
INSTANTIATE_TEST_CASE_P(DBBasicTestTrackWal, DBBasicTestTrackWal,
testing::Bool());
#endif // ROCKSDB_LITE
class DBBasicTestMultiGet : public DBTestBase {
public:
DBBasicTestMultiGet(std::string test_dir, int num_cfs, bool compressed_cache,
bool uncompressed_cache, bool _compression_enabled,
bool _fill_cache, uint32_t compression_parallel_threads)
: DBTestBase(test_dir, /*env_do_fsync=*/false) {
compression_enabled_ = _compression_enabled;
fill_cache_ = _fill_cache;
if (compressed_cache) {
std::shared_ptr<Cache> cache = NewLRUCache(1048576);
compressed_cache_ = std::make_shared<MyBlockCache>(cache);
}
if (uncompressed_cache) {
std::shared_ptr<Cache> cache = NewLRUCache(1048576);
uncompressed_cache_ = std::make_shared<MyBlockCache>(cache);
}
env_->count_random_reads_ = true;
Options options = CurrentOptions();
Random rnd(301);
BlockBasedTableOptions table_options;
#ifndef ROCKSDB_LITE
if (compression_enabled_) {
std::vector<CompressionType> compression_types;
compression_types = GetSupportedCompressions();
// Not every platform may have compression libraries available, so
// dynamically pick based on what's available
CompressionType tmp_type = kNoCompression;
for (auto c_type : compression_types) {
if (c_type != kNoCompression) {
tmp_type = c_type;
break;
}
}
if (tmp_type != kNoCompression) {
options.compression = tmp_type;
} else {
compression_enabled_ = false;
}
}
#else
// GetSupportedCompressions() is not available in LITE build
if (!Snappy_Supported()) {
compression_enabled_ = false;
}
#endif // ROCKSDB_LITE
table_options.block_cache = uncompressed_cache_;
if (table_options.block_cache == nullptr) {
table_options.no_block_cache = true;
} else {
table_options.pin_l0_filter_and_index_blocks_in_cache = true;
}
table_options.block_cache_compressed = compressed_cache_;
table_options.flush_block_policy_factory.reset(
new MyFlushBlockPolicyFactory());
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
if (!compression_enabled_) {
options.compression = kNoCompression;
} else {
options.compression_opts.parallel_threads = compression_parallel_threads;
}
options_ = options;
Reopen(options);
if (num_cfs > 1) {
for (int cf = 0; cf < num_cfs; ++cf) {
cf_names_.emplace_back("cf" + std::to_string(cf));
}
CreateColumnFamilies(cf_names_, options);
cf_names_.emplace_back("default");
}
std::string zero_str(128, '\0');
for (int cf = 0; cf < num_cfs; ++cf) {
for (int i = 0; i < 100; ++i) {
// Make the value compressible. A purely random string doesn't compress
// and the resultant data block will not be compressed
values_.emplace_back(rnd.RandomString(128) + zero_str);
assert(((num_cfs == 1) ? Put(Key(i), values_[i])
: Put(cf, Key(i), values_[i])) == Status::OK());
}
if (num_cfs == 1) {
EXPECT_OK(Flush());
} else {
EXPECT_OK(dbfull()->Flush(FlushOptions(), handles_[cf]));
}
for (int i = 0; i < 100; ++i) {
// block cannot gain space by compression
uncompressable_values_.emplace_back(rnd.RandomString(256) + '\0');
std::string tmp_key = "a" + Key(i);
assert(((num_cfs == 1) ? Put(tmp_key, uncompressable_values_[i])
: Put(cf, tmp_key, uncompressable_values_[i])) ==
Status::OK());
}
if (num_cfs == 1) {
EXPECT_OK(Flush());
} else {
EXPECT_OK(dbfull()->Flush(FlushOptions(), handles_[cf]));
}
}
}
bool CheckValue(int i, const std::string& value) {
if (values_[i].compare(value) == 0) {
return true;
}
return false;
}
bool CheckUncompressableValue(int i, const std::string& value) {
if (uncompressable_values_[i].compare(value) == 0) {
return true;
}
return false;
}
const std::vector<std::string>& GetCFNames() const { return cf_names_; }
int num_lookups() { return uncompressed_cache_->num_lookups(); }
int num_found() { return uncompressed_cache_->num_found(); }
int num_inserts() { return uncompressed_cache_->num_inserts(); }
int num_lookups_compressed() { return compressed_cache_->num_lookups(); }
int num_found_compressed() { return compressed_cache_->num_found(); }
int num_inserts_compressed() { return compressed_cache_->num_inserts(); }
bool fill_cache() { return fill_cache_; }
bool compression_enabled() { return compression_enabled_; }
bool has_compressed_cache() { return compressed_cache_ != nullptr; }
bool has_uncompressed_cache() { return uncompressed_cache_ != nullptr; }
Options get_options() { return options_; }
static void SetUpTestCase() {}
static void TearDownTestCase() {}
protected:
class MyFlushBlockPolicyFactory : public FlushBlockPolicyFactory {
public:
MyFlushBlockPolicyFactory() {}
virtual const char* Name() const override {
return "MyFlushBlockPolicyFactory";
}
virtual FlushBlockPolicy* NewFlushBlockPolicy(
const BlockBasedTableOptions& /*table_options*/,
const BlockBuilder& data_block_builder) const override {
return new MyFlushBlockPolicy(data_block_builder);
}
};
class MyFlushBlockPolicy : public FlushBlockPolicy {
public:
explicit MyFlushBlockPolicy(const BlockBuilder& data_block_builder)
: num_keys_(0), data_block_builder_(data_block_builder) {}
bool Update(const Slice& /*key*/, const Slice& /*value*/) override {
if (data_block_builder_.empty()) {
// First key in this block
num_keys_ = 1;
return false;
}
// Flush every 10 keys
if (num_keys_ == 10) {
num_keys_ = 1;
return true;
}
num_keys_++;
return false;
}
private:
int num_keys_;
const BlockBuilder& data_block_builder_;
};
class MyBlockCache : public CacheWrapper {
public:
explicit MyBlockCache(std::shared_ptr<Cache> target)
: CacheWrapper(target),
num_lookups_(0),
num_found_(0),
num_inserts_(0) {}
const char* Name() const override { return "MyBlockCache"; }
using Cache::Insert;
Status Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value),
Handle** handle = nullptr,
Priority priority = Priority::LOW) override {
num_inserts_++;
return target_->Insert(key, value, charge, deleter, handle, priority);
}
using Cache::Lookup;
Handle* Lookup(const Slice& key, Statistics* stats = nullptr) override {
num_lookups_++;
Handle* handle = target_->Lookup(key, stats);
if (handle != nullptr) {
num_found_++;
}
return handle;
}
int num_lookups() { return num_lookups_; }
int num_found() { return num_found_; }
int num_inserts() { return num_inserts_; }
private:
int num_lookups_;
int num_found_;
int num_inserts_;
};
std::shared_ptr<MyBlockCache> compressed_cache_;
std::shared_ptr<MyBlockCache> uncompressed_cache_;
Options options_;
bool compression_enabled_;
std::vector<std::string> values_;
std::vector<std::string> uncompressable_values_;
bool fill_cache_;
std::vector<std::string> cf_names_;
};
class DBBasicTestWithParallelIO
: public DBBasicTestMultiGet,
public testing::WithParamInterface<
std::tuple<bool, bool, bool, bool, uint32_t>> {
public:
DBBasicTestWithParallelIO()
: DBBasicTestMultiGet("/db_basic_test_with_parallel_io", 1,
std::get<0>(GetParam()), std::get<1>(GetParam()),
std::get<2>(GetParam()), std::get<3>(GetParam()),
std::get<4>(GetParam())) {}
};
TEST_P(DBBasicTestWithParallelIO, MultiGet) {
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
ReadOptions ro;
ro.fill_cache = fill_cache();
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(0, values[0].ToString()));
ASSERT_TRUE(CheckValue(50, values[1].ToString()));
int random_reads = env_->random_read_counter_.Read();
key_data[0] = Key(1);
key_data[1] = Key(51);
keys[0] = Slice(key_data[0]);
keys[1] = Slice(key_data[1]);
values[0].Reset();
values[1].Reset();
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(1, values[0].ToString()));
ASSERT_TRUE(CheckValue(51, values[1].ToString()));
bool read_from_cache = false;
if (fill_cache()) {
if (has_uncompressed_cache()) {
read_from_cache = true;
} else if (has_compressed_cache() && compression_enabled()) {
read_from_cache = true;
}
}
int expected_reads = random_reads + (read_from_cache ? 0 : 2);
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
keys.resize(10);
statuses.resize(10);
std::vector<int> key_ints{1, 2, 15, 16, 55, 81, 82, 83, 84, 85};
for (size_t i = 0; i < key_ints.size(); ++i) {
key_data[i] = Key(key_ints[i]);
keys[i] = Slice(key_data[i]);
statuses[i] = Status::OK();
values[i].Reset();
}
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
for (size_t i = 0; i < key_ints.size(); ++i) {
ASSERT_OK(statuses[i]);
ASSERT_TRUE(CheckValue(key_ints[i], values[i].ToString()));
}
if (compression_enabled() && !has_compressed_cache()) {
expected_reads += (read_from_cache ? 2 : 3);
} else {
expected_reads += (read_from_cache ? 2 : 4);
}
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
keys.resize(10);
statuses.resize(10);
std::vector<int> key_uncmp{1, 2, 15, 16, 55, 81, 82, 83, 84, 85};
for (size_t i = 0; i < key_uncmp.size(); ++i) {
key_data[i] = "a" + Key(key_uncmp[i]);
keys[i] = Slice(key_data[i]);
statuses[i] = Status::OK();
values[i].Reset();
}
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
for (size_t i = 0; i < key_uncmp.size(); ++i) {
ASSERT_OK(statuses[i]);
ASSERT_TRUE(CheckUncompressableValue(key_uncmp[i], values[i].ToString()));
}
if (compression_enabled() && !has_compressed_cache()) {
expected_reads += (read_from_cache ? 3 : 3);
} else {
expected_reads += (read_from_cache ? 4 : 4);
}
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
keys.resize(5);
statuses.resize(5);
std::vector<int> key_tr{1, 2, 15, 16, 55};
for (size_t i = 0; i < key_tr.size(); ++i) {
key_data[i] = "a" + Key(key_tr[i]);
keys[i] = Slice(key_data[i]);
statuses[i] = Status::OK();
values[i].Reset();
}
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
for (size_t i = 0; i < key_tr.size(); ++i) {
ASSERT_OK(statuses[i]);
ASSERT_TRUE(CheckUncompressableValue(key_tr[i], values[i].ToString()));
}
if (compression_enabled() && !has_compressed_cache()) {
expected_reads += (read_from_cache ? 0 : 2);
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
} else {
if (has_uncompressed_cache()) {
expected_reads += (read_from_cache ? 0 : 3);
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
} else {
// A rare case, even we enable the block compression but some of data
// blocks are not compressed due to content. If user only enable the
// compressed cache, the uncompressed blocks will not tbe cached, and
// block reads will be triggered. The number of reads is related to
// the compression algorithm.
ASSERT_TRUE(env_->random_read_counter_.Read() >= expected_reads);
}
}
}
#ifndef ROCKSDB_LITE
TEST_P(DBBasicTestWithParallelIO, MultiGetDirectIO) {
class FakeDirectIOEnv : public EnvWrapper {
class FakeDirectIOSequentialFile;
class FakeDirectIORandomAccessFile;
public:
FakeDirectIOEnv(Env* env) : EnvWrapper(env) {}
Status NewRandomAccessFile(const std::string& fname,
std::unique_ptr<RandomAccessFile>* result,
const EnvOptions& options) override {
std::unique_ptr<RandomAccessFile> file;
assert(options.use_direct_reads);
EnvOptions opts = options;
opts.use_direct_reads = false;
Status s = target()->NewRandomAccessFile(fname, &file, opts);
if (!s.ok()) {
return s;
}
result->reset(new FakeDirectIORandomAccessFile(std::move(file)));
return s;
}
private:
class FakeDirectIOSequentialFile : public SequentialFileWrapper {
public:
FakeDirectIOSequentialFile(std::unique_ptr<SequentialFile>&& file)
: SequentialFileWrapper(file.get()), file_(std::move(file)) {}
~FakeDirectIOSequentialFile() {}
bool use_direct_io() const override { return true; }
size_t GetRequiredBufferAlignment() const override { return 1; }
private:
std::unique_ptr<SequentialFile> file_;
};
class FakeDirectIORandomAccessFile : public RandomAccessFileWrapper {
public:
FakeDirectIORandomAccessFile(std::unique_ptr<RandomAccessFile>&& file)
: RandomAccessFileWrapper(file.get()), file_(std::move(file)) {}
~FakeDirectIORandomAccessFile() {}
bool use_direct_io() const override { return true; }
size_t GetRequiredBufferAlignment() const override { return 1; }
private:
std::unique_ptr<RandomAccessFile> file_;
};
};
std::unique_ptr<FakeDirectIOEnv> env(new FakeDirectIOEnv(env_));
Options opts = get_options();
opts.env = env.get();
opts.use_direct_reads = true;
Reopen(opts);
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
ReadOptions ro;
ro.fill_cache = fill_cache();
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(0, values[0].ToString()));
ASSERT_TRUE(CheckValue(50, values[1].ToString()));
int random_reads = env_->random_read_counter_.Read();
key_data[0] = Key(1);
key_data[1] = Key(51);
keys[0] = Slice(key_data[0]);
keys[1] = Slice(key_data[1]);
values[0].Reset();
values[1].Reset();
if (uncompressed_cache_) {
uncompressed_cache_->SetCapacity(0);
uncompressed_cache_->SetCapacity(1048576);
}
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(1, values[0].ToString()));
ASSERT_TRUE(CheckValue(51, values[1].ToString()));
bool read_from_cache = false;
if (fill_cache()) {
if (has_uncompressed_cache()) {
read_from_cache = true;
} else if (has_compressed_cache() && compression_enabled()) {
read_from_cache = true;
}
}
int expected_reads = random_reads;
if (!compression_enabled() || !has_compressed_cache()) {
expected_reads += 2;
} else {
expected_reads += (read_from_cache ? 0 : 2);
}
if (env_->random_read_counter_.Read() != expected_reads) {
ASSERT_EQ(env_->random_read_counter_.Read(), expected_reads);
}
Close();
}
#endif // ROCKSDB_LITE
TEST_P(DBBasicTestWithParallelIO, MultiGetWithChecksumMismatch) {
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
int read_count = 0;
ReadOptions ro;
ro.fill_cache = fill_cache();
SyncPoint::GetInstance()->SetCallBack(
"RetrieveMultipleBlocks:VerifyChecksum", [&](void* status) {
Status* s = static_cast<Status*>(status);
read_count++;
if (read_count == 2) {
*s = Status::Corruption();
}
});
SyncPoint::GetInstance()->EnableProcessing();
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_TRUE(CheckValue(0, values[0].ToString()));
// ASSERT_TRUE(CheckValue(50, values[1].ToString()));
ASSERT_EQ(statuses[0], Status::OK());
ASSERT_EQ(statuses[1], Status::Corruption());
SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBBasicTestWithParallelIO, MultiGetWithMissingFile) {
std::vector<std::string> key_data(10);
std::vector<Slice> keys;
// We cannot resize a PinnableSlice vector, so just set initial size to
// largest we think we will need
std::vector<PinnableSlice> values(10);
std::vector<Status> statuses;
ReadOptions ro;
ro.fill_cache = fill_cache();
SyncPoint::GetInstance()->SetCallBack(
"TableCache::MultiGet:FindTable", [&](void* status) {
Status* s = static_cast<Status*>(status);
*s = Status::IOError();
});
// DB open will create table readers unless we reduce the table cache
// capacity.
// SanitizeOptions will set max_open_files to minimum of 20. Table cache
// is allocated with max_open_files - 10 as capacity. So override
// max_open_files to 11 so table cache capacity will become 1. This will
// prevent file open during DB open and force the file to be opened
// during MultiGet
SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = (int*)arg;
*max_open_files = 11;
});
SyncPoint::GetInstance()->EnableProcessing();
Reopen(CurrentOptions());
// Warm up the cache first
key_data.emplace_back(Key(0));
keys.emplace_back(Slice(key_data.back()));
key_data.emplace_back(Key(50));
keys.emplace_back(Slice(key_data.back()));
statuses.resize(keys.size());
dbfull()->MultiGet(ro, dbfull()->DefaultColumnFamily(), keys.size(),
keys.data(), values.data(), statuses.data(), true);
ASSERT_EQ(statuses[0], Status::IOError());
ASSERT_EQ(statuses[1], Status::IOError());
SyncPoint::GetInstance()->DisableProcessing();
}
INSTANTIATE_TEST_CASE_P(ParallelIO, DBBasicTestWithParallelIO,
// Params are as follows -
// Param 0 - Compressed cache enabled
// Param 1 - Uncompressed cache enabled
// Param 2 - Data compression enabled
// Param 3 - ReadOptions::fill_cache
// Param 4 - CompressionOptions::parallel_threads
::testing::Combine(::testing::Bool(), ::testing::Bool(),
::testing::Bool(), ::testing::Bool(),
::testing::Values(1, 4)));
// Forward declaration
class DeadlineFS;
class DeadlineRandomAccessFile : public FSRandomAccessFileWrapper {
public:
DeadlineRandomAccessFile(DeadlineFS& fs,
std::unique_ptr<FSRandomAccessFile>& file)
: FSRandomAccessFileWrapper(file.get()),
fs_(fs),
file_(std::move(file)) {}
IOStatus Read(uint64_t offset, size_t len, const IOOptions& opts,
Slice* result, char* scratch,
IODebugContext* dbg) const override;
IOStatus MultiRead(FSReadRequest* reqs, size_t num_reqs,
const IOOptions& options, IODebugContext* dbg) override;
private:
DeadlineFS& fs_;
std::unique_ptr<FSRandomAccessFile> file_;
};
class DeadlineFS : public FileSystemWrapper {
public:
// The error_on_delay parameter specifies whether a IOStatus::TimedOut()
// status should be returned after delaying the IO to exceed the timeout,
// or to simply delay but return success anyway. The latter mimics the
// behavior of PosixFileSystem, which does not enforce any timeout
explicit DeadlineFS(SpecialEnv* env, bool error_on_delay)
: FileSystemWrapper(env->GetFileSystem()),
deadline_(std::chrono::microseconds::zero()),
io_timeout_(std::chrono::microseconds::zero()),
env_(env),
timedout_(false),
ignore_deadline_(false),
error_on_delay_(error_on_delay) {}
IOStatus NewRandomAccessFile(const std::string& fname,
const FileOptions& opts,
std::unique_ptr<FSRandomAccessFile>* result,
IODebugContext* dbg) override {
std::unique_ptr<FSRandomAccessFile> file;
IOStatus s = target()->NewRandomAccessFile(fname, opts, &file, dbg);
EXPECT_OK(s);
result->reset(new DeadlineRandomAccessFile(*this, file));
const std::chrono::microseconds deadline = GetDeadline();
const std::chrono::microseconds io_timeout = GetIOTimeout();
if (deadline.count() || io_timeout.count()) {
AssertDeadline(deadline, io_timeout, opts.io_options);
}
return ShouldDelay(opts.io_options);
}
// Set a vector of {IO counter, delay in microseconds, return status} tuples
// that control when to inject a delay and duration of the delay
void SetDelayTrigger(const std::chrono::microseconds deadline,
const std::chrono::microseconds io_timeout,
const int trigger) {
delay_trigger_ = trigger;
io_count_ = 0;
deadline_ = deadline;
io_timeout_ = io_timeout;
timedout_ = false;
}
// Increment the IO counter and return a delay in microseconds
IOStatus ShouldDelay(const IOOptions& opts) {
if (timedout_) {
return IOStatus::TimedOut();
} else if (!deadline_.count() && !io_timeout_.count()) {
return IOStatus::OK();
}
if (!ignore_deadline_ && delay_trigger_ == io_count_++) {
env_->SleepForMicroseconds(static_cast<int>(opts.timeout.count() + 1));
timedout_ = true;
if (error_on_delay_) {
return IOStatus::TimedOut();
}
}
return IOStatus::OK();
}
const std::chrono::microseconds GetDeadline() {
return ignore_deadline_ ? std::chrono::microseconds::zero() : deadline_;
}
const std::chrono::microseconds GetIOTimeout() {
return ignore_deadline_ ? std::chrono::microseconds::zero() : io_timeout_;
}
bool TimedOut() { return timedout_; }
void IgnoreDeadline(bool ignore) { ignore_deadline_ = ignore; }
void AssertDeadline(const std::chrono::microseconds deadline,
const std::chrono::microseconds io_timeout,
const IOOptions& opts) const {
// Give a leeway of +- 10us as it can take some time for the Get/
// MultiGet call to reach here, in order to avoid false alarms
std::chrono::microseconds now =
std::chrono::microseconds(env_->NowMicros());
std::chrono::microseconds timeout;
if (deadline.count()) {
timeout = deadline - now;
if (io_timeout.count()) {
timeout = std::min(timeout, io_timeout);
}
} else {
timeout = io_timeout;
}
if (opts.timeout != timeout) {
ASSERT_EQ(timeout, opts.timeout);
}
}
private:
// The number of IOs to trigger the delay after
int delay_trigger_;
// Current IO count
int io_count_;
// ReadOptions deadline for the Get/MultiGet/Iterator
std::chrono::microseconds deadline_;
// ReadOptions io_timeout for the Get/MultiGet/Iterator
std::chrono::microseconds io_timeout_;
SpecialEnv* env_;
// Flag to indicate whether we injected a delay
bool timedout_;
// Temporarily ignore deadlines/timeouts
bool ignore_deadline_;
// Return IOStatus::TimedOut() or IOStatus::OK()
bool error_on_delay_;
};
IOStatus DeadlineRandomAccessFile::Read(uint64_t offset, size_t len,
const IOOptions& opts, Slice* result,
char* scratch,
IODebugContext* dbg) const {
const std::chrono::microseconds deadline = fs_.GetDeadline();
const std::chrono::microseconds io_timeout = fs_.GetIOTimeout();
IOStatus s;
if (deadline.count() || io_timeout.count()) {
fs_.AssertDeadline(deadline, io_timeout, opts);
}
if (s.ok()) {
s = FSRandomAccessFileWrapper::Read(offset, len, opts, result, scratch,
dbg);
}
if (s.ok()) {
s = fs_.ShouldDelay(opts);
}
return s;
}
IOStatus DeadlineRandomAccessFile::MultiRead(FSReadRequest* reqs,
size_t num_reqs,
const IOOptions& options,
IODebugContext* dbg) {
const std::chrono::microseconds deadline = fs_.GetDeadline();
const std::chrono::microseconds io_timeout = fs_.GetIOTimeout();
IOStatus s;
if (deadline.count() || io_timeout.count()) {
fs_.AssertDeadline(deadline, io_timeout, options);
}
if (s.ok()) {
s = FSRandomAccessFileWrapper::MultiRead(reqs, num_reqs, options, dbg);
}
if (s.ok()) {
s = fs_.ShouldDelay(options);
}
return s;
}
// A test class for intercepting random reads and injecting artificial
// delays. Used for testing the MultiGet deadline feature
class DBBasicTestMultiGetDeadline : public DBBasicTestMultiGet {
public:
DBBasicTestMultiGetDeadline()
: DBBasicTestMultiGet(
"db_basic_test_multiget_deadline" /*Test dir*/,
10 /*# of column families*/, false /*compressed cache enabled*/,
true /*uncompressed cache enabled*/, true /*compression enabled*/,
true /*ReadOptions.fill_cache*/,
1 /*# of parallel compression threads*/) {}
inline void CheckStatus(std::vector<Status>& statuses, size_t num_ok) {
for (size_t i = 0; i < statuses.size(); ++i) {
if (i < num_ok) {
EXPECT_OK(statuses[i]);
} else {
if (statuses[i] != Status::TimedOut()) {
EXPECT_EQ(statuses[i], Status::TimedOut());
}
}
}
}
};
TEST_F(DBBasicTestMultiGetDeadline, MultiGetDeadlineExceeded) {
std::shared_ptr<DeadlineFS> fs = std::make_shared<DeadlineFS>(env_, false);
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
Options options = CurrentOptions();
std::shared_ptr<Cache> cache = NewLRUCache(1048576);
BlockBasedTableOptions table_options;
table_options.block_cache = cache;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.env = env.get();
SetTimeElapseOnlySleepOnReopen(&options);
ReopenWithColumnFamilies(GetCFNames(), options);
// Test the non-batched version of MultiGet with multiple column
// families
std::vector<std::string> key_str;
size_t i;
for (i = 0; i < 5; ++i) {
key_str.emplace_back(Key(static_cast<int>(i)));
}
std::vector<ColumnFamilyHandle*> cfs(key_str.size());
;
std::vector<Slice> keys(key_str.size());
std::vector<std::string> values(key_str.size());
for (i = 0; i < key_str.size(); ++i) {
cfs[i] = handles_[i];
keys[i] = Slice(key_str[i].data(), key_str[i].size());
}
ReadOptions ro;
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
// Delay the first IO
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, 0);
std::vector<Status> statuses = dbfull()->MultiGet(ro, cfs, keys, &values);
// The first key is successful because we check after the lookup, but
// subsequent keys fail due to deadline exceeded
CheckStatus(statuses, 1);
// Clear the cache
cache->SetCapacity(0);
cache->SetCapacity(1048576);
// Test non-batched Multiget with multiple column families and
// introducing an IO delay in one of the middle CFs
key_str.clear();
for (i = 0; i < 10; ++i) {
key_str.emplace_back(Key(static_cast<int>(i)));
}
cfs.resize(key_str.size());
keys.resize(key_str.size());
values.resize(key_str.size());
for (i = 0; i < key_str.size(); ++i) {
// 2 keys per CF
cfs[i] = handles_[i / 2];
keys[i] = Slice(key_str[i].data(), key_str[i].size());
}
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, 1);
statuses = dbfull()->MultiGet(ro, cfs, keys, &values);
CheckStatus(statuses, 3);
// Test batched MultiGet with an IO delay in the first data block read.
// Both keys in the first CF should succeed as they're in the same data
// block and would form one batch, and we check for deadline between
// batches.
std::vector<PinnableSlice> pin_values(keys.size());
cache->SetCapacity(0);
cache->SetCapacity(1048576);
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, 0);
dbfull()->MultiGet(ro, keys.size(), cfs.data(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 2);
// Similar to the previous one, but an IO delay in the third CF data block
// read
for (PinnableSlice& value : pin_values) {
value.Reset();
}
cache->SetCapacity(0);
cache->SetCapacity(1048576);
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, 2);
dbfull()->MultiGet(ro, keys.size(), cfs.data(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 6);
// Similar to the previous one, but an IO delay in the last but one CF
for (PinnableSlice& value : pin_values) {
value.Reset();
}
cache->SetCapacity(0);
cache->SetCapacity(1048576);
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, 3);
dbfull()->MultiGet(ro, keys.size(), cfs.data(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 8);
// Test batched MultiGet with single CF and lots of keys. Inject delay
// into the second batch of keys. As each batch is 32, the first 64 keys,
// i.e first two batches, should succeed and the rest should time out
for (PinnableSlice& value : pin_values) {
value.Reset();
}
cache->SetCapacity(0);
cache->SetCapacity(1048576);
key_str.clear();
for (i = 0; i < 100; ++i) {
key_str.emplace_back(Key(static_cast<int>(i)));
}
keys.resize(key_str.size());
pin_values.clear();
pin_values.resize(key_str.size());
for (i = 0; i < key_str.size(); ++i) {
keys[i] = Slice(key_str[i].data(), key_str[i].size());
}
statuses.clear();
statuses.resize(keys.size());
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, 1);
dbfull()->MultiGet(ro, handles_[0], keys.size(), keys.data(),
pin_values.data(), statuses.data());
CheckStatus(statuses, 64);
Close();
}
TEST_F(DBBasicTest, ManifestWriteFailure) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.disable_auto_compactions = true;
options.env = env_;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::ProcessManifestWrites:AfterSyncManifest", [&](void* arg) {
ASSERT_NE(nullptr, arg);
auto* s = reinterpret_cast<Status*>(arg);
ASSERT_OK(*s);
// Manually overwrite return status
*s = Status::IOError();
});
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_OK(Put("key", "value"));
ASSERT_NOK(Flush());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
}
#ifndef ROCKSDB_LITE
TEST_F(DBBasicTest, VerifyFileChecksums) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.env = env_;
DestroyAndReopen(options);
ASSERT_OK(Put("a", "value"));
ASSERT_OK(Flush());
ASSERT_TRUE(db_->VerifyFileChecksums(ReadOptions()).IsInvalidArgument());
options.file_checksum_gen_factory = GetFileChecksumGenCrc32cFactory();
Reopen(options);
ASSERT_OK(db_->VerifyFileChecksums(ReadOptions()));
// Write an L0 with checksum computed.
ASSERT_OK(Put("b", "value"));
ASSERT_OK(Flush());
ASSERT_OK(db_->VerifyFileChecksums(ReadOptions()));
// Does the right thing but with the wrong name -- using it should lead to an
// error.
class MisnamedFileChecksumGenerator : public FileChecksumGenCrc32c {
public:
MisnamedFileChecksumGenerator(const FileChecksumGenContext& context)
: FileChecksumGenCrc32c(context) {}
const char* Name() const override { return "sha1"; }
};
class MisnamedFileChecksumGenFactory : public FileChecksumGenCrc32cFactory {
public:
std::unique_ptr<FileChecksumGenerator> CreateFileChecksumGenerator(
const FileChecksumGenContext& context) override {
return std::unique_ptr<FileChecksumGenerator>(
new MisnamedFileChecksumGenerator(context));
}
};
options.file_checksum_gen_factory.reset(new MisnamedFileChecksumGenFactory());
Reopen(options);
ASSERT_TRUE(db_->VerifyFileChecksums(ReadOptions()).IsInvalidArgument());
}
#endif // !ROCKSDB_LITE
// A test class for intercepting random reads and injecting artificial
// delays. Used for testing the deadline/timeout feature
class DBBasicTestDeadline
: public DBBasicTest,
public testing::WithParamInterface<std::tuple<bool, bool>> {};
TEST_P(DBBasicTestDeadline, PointLookupDeadline) {
std::shared_ptr<DeadlineFS> fs = std::make_shared<DeadlineFS>(env_, true);
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
bool set_deadline = std::get<0>(GetParam());
bool set_timeout = std::get<1>(GetParam());
for (int option_config = kDefault; option_config < kEnd; ++option_config) {
if (ShouldSkipOptions(option_config, kSkipPlainTable | kSkipMmapReads)) {
continue;
}
option_config_ = option_config;
Options options = CurrentOptions();
if (options.use_direct_reads) {
continue;
}
options.env = env.get();
options.disable_auto_compactions = true;
Cache* block_cache = nullptr;
// Fileter block reads currently don't cause the request to get
// aborted on a read timeout, so its possible those block reads
// may get issued even if the deadline is past
SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTable::Get:BeforeFilterMatch",
[&](void* /*arg*/) { fs->IgnoreDeadline(true); });
SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTable::Get:AfterFilterMatch",
[&](void* /*arg*/) { fs->IgnoreDeadline(false); });
// DB open will create table readers unless we reduce the table cache
// capacity.
// SanitizeOptions will set max_open_files to minimum of 20. Table cache
// is allocated with max_open_files - 10 as capacity. So override
// max_open_files to 11 so table cache capacity will become 1. This will
// prevent file open during DB open and force the file to be opened
// during MultiGet
SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = (int*)arg;
*max_open_files = 11;
});
SyncPoint::GetInstance()->EnableProcessing();
SetTimeElapseOnlySleepOnReopen(&options);
Reopen(options);
if (options.table_factory) {
block_cache = options.table_factory->GetOptions<Cache>(
TableFactory::kBlockCacheOpts());
}
Random rnd(301);
for (int i = 0; i < 400; ++i) {
std::string key = "k" + ToString(i);
ASSERT_OK(Put(key, rnd.RandomString(100)));
}
ASSERT_OK(Flush());
bool timedout = true;
// A timeout will be forced when the IO counter reaches this value
int io_deadline_trigger = 0;
// Keep incrementing io_deadline_trigger and call Get() until there is an
// iteration that doesn't cause a timeout. This ensures that we cover
// all file reads in the point lookup path that can potentially timeout
// and cause the Get() to fail.
while (timedout) {
ReadOptions ro;
if (set_deadline) {
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
}
if (set_timeout) {
ro.io_timeout = std::chrono::microseconds{5000};
}
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, io_deadline_trigger);
block_cache->SetCapacity(0);
block_cache->SetCapacity(1048576);
std::string value;
Status s = dbfull()->Get(ro, "k50", &value);
if (fs->TimedOut()) {
ASSERT_EQ(s, Status::TimedOut());
} else {
timedout = false;
ASSERT_OK(s);
}
io_deadline_trigger++;
}
// Reset the delay sequence in order to avoid false alarms during Reopen
fs->SetDelayTrigger(std::chrono::microseconds::zero(),
std::chrono::microseconds::zero(), 0);
}
Close();
}
TEST_P(DBBasicTestDeadline, IteratorDeadline) {
std::shared_ptr<DeadlineFS> fs = std::make_shared<DeadlineFS>(env_, true);
std::unique_ptr<Env> env(new CompositeEnvWrapper(env_, fs));
bool set_deadline = std::get<0>(GetParam());
bool set_timeout = std::get<1>(GetParam());
for (int option_config = kDefault; option_config < kEnd; ++option_config) {
if (ShouldSkipOptions(option_config, kSkipPlainTable | kSkipMmapReads)) {
continue;
}
Options options = CurrentOptions();
if (options.use_direct_reads) {
continue;
}
options.env = env.get();
options.disable_auto_compactions = true;
Cache* block_cache = nullptr;
// DB open will create table readers unless we reduce the table cache
// capacity.
// SanitizeOptions will set max_open_files to minimum of 20. Table cache
// is allocated with max_open_files - 10 as capacity. So override
// max_open_files to 11 so table cache capacity will become 1. This will
// prevent file open during DB open and force the file to be opened
// during MultiGet
SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = (int*)arg;
*max_open_files = 11;
});
SyncPoint::GetInstance()->EnableProcessing();
SetTimeElapseOnlySleepOnReopen(&options);
Reopen(options);
if (options.table_factory) {
block_cache = options.table_factory->GetOptions<Cache>(
TableFactory::kBlockCacheOpts());
}
Random rnd(301);
for (int i = 0; i < 400; ++i) {
std::string key = "k" + ToString(i);
ASSERT_OK(Put(key, rnd.RandomString(100)));
}
ASSERT_OK(Flush());
bool timedout = true;
// A timeout will be forced when the IO counter reaches this value
int io_deadline_trigger = 0;
// Keep incrementing io_deadline_trigger and call Get() until there is an
// iteration that doesn't cause a timeout. This ensures that we cover
// all file reads in the point lookup path that can potentially timeout
while (timedout) {
ReadOptions ro;
if (set_deadline) {
ro.deadline = std::chrono::microseconds{env->NowMicros() + 10000};
}
if (set_timeout) {
ro.io_timeout = std::chrono::microseconds{5000};
}
fs->SetDelayTrigger(ro.deadline, ro.io_timeout, io_deadline_trigger);
block_cache->SetCapacity(0);
block_cache->SetCapacity(1048576);
Iterator* iter = dbfull()->NewIterator(ro);
int count = 0;
iter->Seek("k50");
while (iter->Valid() && count++ < 100) {
iter->Next();
}
if (fs->TimedOut()) {
ASSERT_FALSE(iter->Valid());
ASSERT_EQ(iter->status(), Status::TimedOut());
} else {
timedout = false;
ASSERT_OK(iter->status());
}
delete iter;
io_deadline_trigger++;
}
// Reset the delay sequence in order to avoid false alarms during Reopen
fs->SetDelayTrigger(std::chrono::microseconds::zero(),
std::chrono::microseconds::zero(), 0);
}
Close();
}
// Param 0: If true, set read_options.deadline
// Param 1: If true, set read_options.io_timeout
INSTANTIATE_TEST_CASE_P(DBBasicTestDeadline, DBBasicTestDeadline,
::testing::Values(std::make_tuple(true, false),
std::make_tuple(false, true),
std::make_tuple(true, true)));
} // namespace ROCKSDB_NAMESPACE
#ifdef ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
extern "C" {
void RegisterCustomObjects(int argc, char** argv);
}
#else
void RegisterCustomObjects(int /*argc*/, char** /*argv*/) {}
#endif // !ROCKSDB_UNITTESTS_WITH_CUSTOM_OBJECTS_FROM_STATIC_LIBS
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}