Refactor code into more files

This commit is contained in:
Vinzent Steinberg 2017-05-05 17:42:21 +02:00
parent 623c50c936
commit 068381f366
3 changed files with 215 additions and 210 deletions

196
src/average.rs Normal file
View File

@ -0,0 +1,196 @@
use core;
use conv::ApproxFrom;
/// Represent the arithmetic mean and the variance of a sequence of numbers.
///
/// Everything is calculated iteratively using constant memory, so the sequence
/// of numbers can be an iterator. The used algorithms try to avoid numerical
/// instabilities.
///
/// ```
/// use average::Average;
///
/// let a: Average = (1..6).map(Into::into).collect();
/// assert_eq!(a.mean(), 3.0);
/// assert_eq!(a.sample_variance(), 2.5);
/// ```
#[derive(Debug, Clone)]
pub struct Average {
/// Average value.
avg: f64,
/// Number of samples.
n: u64,
/// Intermediate sum of squares for calculating the variance.
v: f64,
}
impl Average {
/// Create a new average.
pub fn new() -> Average {
Average { avg: 0., n: 0, v: 0. }
}
/// Add a number to the sequence of which the average is calculated.
pub fn add(&mut self, x: f64) {
// This algorithm introduced by Welford in 1962 trades numerical
// stability for a division inside the loop.
//
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
self.n += 1;
let delta = x - self.avg;
self.avg += delta / f64::approx_from(self.n).unwrap();
self.v += delta * (x - self.avg);
}
/// Return the mean of the sequence.
pub fn mean(&self) -> f64 {
self.avg
}
/// Return the number of elements in the sequence.
pub fn len(&self) -> u64 {
self.n
}
/// Calculate the unbiased sample variance of the sequence.
///
/// This assumes that the sequence consists of samples of a larger population.
pub fn sample_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n - 1).unwrap()
}
/// Calculate the population variance of the sequence.
///
/// This assumes that the sequence consists of the entire population.
pub fn population_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n).unwrap()
}
/// Calculate the standard error of the mean of the sequence.
pub fn error(&self) -> f64 {
if self.n == 0 {
return 0.;
}
(self.sample_variance() / f64::approx_from(self.n).unwrap()).sqrt()
}
/// Merge the average of another sequence into this one.
///
/// ```
/// use average::Average;
///
/// let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
/// let (left, right) = sequence.split_at(3);
/// let avg_total: Average = sequence.iter().map(|x| *x).collect();
/// let mut avg_left: Average = left.iter().map(|x| *x).collect();
/// let avg_right: Average = right.iter().map(|x| *x).collect();
/// avg_left.merge(&avg_right);
/// assert_eq!(avg_total.mean(), avg_left.mean());
/// assert_eq!(avg_total.sample_variance(), avg_left.sample_variance());
/// ```
pub fn merge(&mut self, other: &Average) {
// This algorithm was proposed by Chan et al. in 1979.
//
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
let delta = other.avg - self.avg;
let len_self = f64::approx_from(self.n).unwrap();
let len_other = f64::approx_from(other.n).unwrap();
let len_total = len_self + len_other;
self.n += other.n;
self.avg = (len_self * self.avg + len_other * other.avg) / len_total;
// Chan et al. use
//
// self.avg += delta * len_other / len_total;
//
// instead but this results in cancelation if the number of samples are similar.
self.v += other.v + delta*delta * len_self * len_other / len_total;
}
}
impl core::default::Default for Average {
fn default() -> Average {
Average::new()
}
}
impl core::iter::FromIterator<f64> for Average {
fn from_iter<T>(iter: T) -> Average
where T: IntoIterator<Item=f64>
{
let mut a = Average::new();
for i in iter {
a.add(i);
}
a
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::iter::Iterator;
#[test]
fn average_trivial() {
let mut a = Average::new();
assert_eq!(a.len(), 0);
a.add(1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.len(), 1);
assert_eq!(a.sample_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn average_simple() {
let a: Average = (1..6).map(f64::from).collect();
assert_eq!(a.mean(), 3.0);
assert_eq!(a.len(), 5);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn average_numerically_unstable() {
// The naive algorithm fails for this example due to cancelation.
let big = 1e9;
let sample = &[big + 4., big + 7., big + 13., big + 16.];
let a: Average = sample.iter().map(|x| *x).collect();
assert_eq!(a.sample_variance(), 30.);
}
#[test]
fn average_normal_distribution() {
use rand::distributions::{Normal, IndependentSample};
let normal = Normal::new(2.0, 3.0);
let mut a = Average::new();
for _ in 0..1_000_000 {
a.add(normal.ind_sample(&mut ::rand::thread_rng()));
}
assert_almost_eq!(a.mean(), 2.0, 1e-2);
assert_almost_eq!(a.sample_variance().sqrt(), 3.0, 1e-2);
}
#[test]
fn merge() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: Average = sequence.iter().map(|x| *x).collect();
let mut avg_left: Average = left.iter().map(|x| *x).collect();
let avg_right: Average = right.iter().map(|x| *x).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.n, avg_left.n);
assert_eq!(avg_total.avg, avg_left.avg);
assert_eq!(avg_total.v, avg_left.v);
}
}
}

View File

@ -4,214 +4,7 @@ extern crate conv;
#[cfg(test)] extern crate rand;
#[cfg(test)] #[macro_use] extern crate std;
use conv::ApproxFrom;
#[macro_use] mod macros;
mod average;
/// Represent the arithmetic mean and the variance of a sequence of numbers.
///
/// Everything is calculated iteratively using constant memory, so the sequence
/// of numbers can be an iterator. The used algorithms try to avoid numerical
/// instabilities.
///
/// ```
/// use average::Average;
///
/// let a: Average = (1..6).map(Into::into).collect();
/// assert_eq!(a.mean(), 3.0);
/// assert_eq!(a.sample_variance(), 2.5);
/// ```
#[derive(Debug, Clone)]
pub struct Average {
/// Average value.
avg: f64,
/// Number of samples.
n: u64,
/// Intermediate sum of squares for calculating the variance.
v: f64,
}
impl Average {
/// Create a new average.
pub fn new() -> Average {
Average { avg: 0., n: 0, v: 0. }
}
/// Add a number to the sequence of which the average is calculated.
pub fn add(&mut self, x: f64) {
// This algorithm introduced by Welford in 1962 trades numerical
// stability for a division inside the loop.
//
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
self.n += 1;
let delta = x - self.avg;
self.avg += delta / f64::approx_from(self.n).unwrap();
self.v += delta * (x - self.avg);
}
/// Return the mean of the sequence.
pub fn mean(&self) -> f64 {
self.avg
}
/// Return the number of elements in the sequence.
pub fn len(&self) -> u64 {
self.n
}
/// Calculate the unbiased sample variance of the sequence.
///
/// This assumes that the sequence consists of samples of a larger population.
pub fn sample_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n - 1).unwrap()
}
/// Calculate the population variance of the sequence.
///
/// This assumes that the sequence consists of the entire population.
pub fn population_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n).unwrap()
}
/// Calculate the standard error of the mean of the sequence.
pub fn error(&self) -> f64 {
if self.n == 0 {
return 0.;
}
(self.sample_variance() / f64::approx_from(self.n).unwrap()).sqrt()
}
/// Merge the average of another sequence into this one.
///
/// ```
/// use average::Average;
///
/// let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
/// let (left, right) = sequence.split_at(3);
/// let avg_total: Average = sequence.iter().map(|x| *x).collect();
/// let mut avg_left: Average = left.iter().map(|x| *x).collect();
/// let avg_right: Average = right.iter().map(|x| *x).collect();
/// avg_left.merge(&avg_right);
/// assert_eq!(avg_total.mean(), avg_left.mean());
/// assert_eq!(avg_total.sample_variance(), avg_left.sample_variance());
/// ```
pub fn merge(&mut self, other: &Average) {
// This algorithm was proposed by Chan et al. in 1979.
//
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
let delta = other.avg - self.avg;
let len_self = f64::approx_from(self.n).unwrap();
let len_other = f64::approx_from(other.n).unwrap();
let len_total = len_self + len_other;
self.n += other.n;
self.avg = (len_self * self.avg + len_other * other.avg) / len_total;
// Chan et al. use
//
// self.avg += delta * len_other / len_total;
//
// instead but this results in cancelation if the number of samples are similar.
self.v += other.v + delta*delta * len_self * len_other / len_total;
}
}
impl core::default::Default for Average {
fn default() -> Average {
Average::new()
}
}
impl core::iter::FromIterator<f64> for Average {
fn from_iter<T>(iter: T) -> Average
where T: IntoIterator<Item=f64>
{
let mut a = Average::new();
for i in iter {
a.add(i);
}
a
}
}
/// Assert that two numbers are almost equal to each other.
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
#[macro_export]
macro_rules! assert_almost_eq {
($a:expr, $b:expr, $prec:expr) => (
let diff = ($a - $b).abs();
if diff > $prec {
panic!(format!(
"assertion failed: `abs(left - right) = {:.1e} < {:e}`, \
(left: `{}`, right: `{}`)",
diff, $prec, $a, $b));
}
);
}
#[cfg(test)]
mod tests {
use super::*;
use core::iter::Iterator;
#[test]
fn average_trivial() {
let mut a = Average::new();
assert_eq!(a.len(), 0);
a.add(1.0);
assert_eq!(a.mean(), 1.0);
assert_eq!(a.len(), 1);
assert_eq!(a.sample_variance(), 0.0);
assert_eq!(a.error(), 0.0);
}
#[test]
fn average_simple() {
let a: Average = (1..6).map(f64::from).collect();
assert_eq!(a.mean(), 3.0);
assert_eq!(a.len(), 5);
assert_eq!(a.sample_variance(), 2.5);
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
}
#[test]
fn average_numerically_unstable() {
// The naive algorithm fails for this example due to cancelation.
let big = 1e9;
let sample = &[big + 4., big + 7., big + 13., big + 16.];
let a: Average = sample.iter().map(|x| *x).collect();
assert_eq!(a.sample_variance(), 30.);
}
#[test]
fn average_normal_distribution() {
use rand::distributions::{Normal, IndependentSample};
let normal = Normal::new(2.0, 3.0);
let mut a = Average::new();
for _ in 0..1_000_000 {
a.add(normal.ind_sample(&mut ::rand::thread_rng()));
}
assert_almost_eq!(a.mean(), 2.0, 1e-2);
assert_almost_eq!(a.sample_variance().sqrt(), 3.0, 1e-2);
}
#[test]
fn merge() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: Average = sequence.iter().map(|x| *x).collect();
let mut avg_left: Average = left.iter().map(|x| *x).collect();
let avg_right: Average = right.iter().map(|x| *x).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.n, avg_left.n);
assert_eq!(avg_total.avg, avg_left.avg);
assert_eq!(avg_total.v, avg_left.v);
}
}
}
pub use average::Average;

16
src/macros.rs Normal file
View File

@ -0,0 +1,16 @@
/// Assert that two numbers are almost equal to each other.
///
/// On panic, this macro will print the values of the expressions with their
/// debug representations.
#[macro_export]
macro_rules! assert_almost_eq {
($a:expr, $b:expr, $prec:expr) => (
let diff = ($a - $b).abs();
if diff > $prec {
panic!(format!(
"assertion failed: `abs(left - right) = {:.1e} < {:e}`, \
(left: `{}`, right: `{}`)",
diff, $prec, $a, $b));
}
);
}