Fix macros in combination with serde1 feature

Before, the feature would be resolved in the crate where the macro was used,
not in the `average` crate as intended.  Now, the macros are defined depending
on the `serde1` feature, fixing this issue.
This commit is contained in:
Vinzent Steinberg 2019-07-31 16:22:55 +02:00
parent 20eeebe727
commit a76014227c
2 changed files with 361 additions and 284 deletions

View File

@ -1,49 +1,12 @@
/// Define a histogram with a number of bins known at compile time. #[doc(hidden)]
///
/// Because macros are not hygenic for items, everything is defined in a private
/// module with the given name. This includes the `Histogram` struct, the number
/// of bins `LEN` and the histogram iterator `HistogramIter`.
///
/// Note that you need to make sure that `core` is accessible to the macro.
///
///
/// # Example
///
/// ```
/// use average::{Histogram, define_histogram};
///
/// define_histogram!(hist, 10);
/// let mut h = hist::Histogram::with_const_width(0., 100.);
/// for i in 0..100 {
/// h.add(i as f64).unwrap();
/// }
/// assert_eq!(h.bins(), &[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]);
/// ```
#[macro_export] #[macro_export]
macro_rules! define_histogram { macro_rules! define_histogram_common {
($name:ident, $LEN:expr) => ( ($LEN:expr) => (
mod $name {
use $crate::Histogram as Trait; use $crate::Histogram as Trait;
#[cfg(feature = "serde1")] use ::serde::{Serialize, Deserialize};
#[cfg(feature = "serde1")] serde_big_array::big_array! {
BigArray; LEN, (LEN + 1),
}
/// The number of bins of the histogram. /// The number of bins of the histogram.
const LEN: usize = $LEN; const LEN: usize = $LEN;
/// A histogram with a number of bins known at compile time.
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
#[cfg_attr(feature = "serde1", serde(with = "BigArray"))]
range: [f64; LEN + 1],
/// The bins of the histogram.
#[cfg_attr(feature = "serde1", serde(with = "BigArray"))]
bin: [u64; LEN],
}
impl ::core::fmt::Debug for Histogram { impl ::core::fmt::Debug for Histogram {
fn fmt(&self, formatter: &mut ::core::fmt::Formatter<'_>) fn fmt(&self, formatter: &mut ::core::fmt::Formatter<'_>)
-> ::core::fmt::Result { -> ::core::fmt::Result {
@ -246,6 +209,78 @@ macro_rules! define_histogram {
} }
} }
} }
);
}
#[cfg(feature = "serde1")]
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_inner {
($name:ident, $LEN:expr) => (
mod $name {
$crate::define_histogram_common!($LEN);
use ::serde::{Serialize, Deserialize};
serde_big_array::big_array! {
BigArray; LEN, (LEN + 1),
}
/// A histogram with a number of bins known at compile time.
#[derive(Clone, Serialize, Deserialize)]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
#[serde(with = "BigArray")]
range: [f64; LEN + 1],
/// The bins of the histogram.
#[serde(with = "BigArray")]
bin: [u64; LEN],
}
} }
); );
} }
#[cfg(not(feature = "serde1"))]
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_inner {
($name:ident, $LEN:expr) => (
mod $name {
$crate::define_histogram_common!($LEN);
/// A histogram with a number of bins known at compile time.
#[derive(Clone)]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
range: [f64; LEN + 1],
/// The bins of the histogram.
bin: [u64; LEN],
}
}
);
}
/// Define a histogram with a number of bins known at compile time.
///
/// Because macros are not hygenic for items, everything is defined in a private
/// module with the given name. This includes the `Histogram` struct, the number
/// of bins `LEN` and the histogram iterator `HistogramIter`.
///
/// Note that you need to make sure that `core` is accessible to the macro.
///
///
/// # Example
///
/// ```
/// use average::{Histogram, define_histogram};
///
/// define_histogram!(hist, 10);
/// let mut h = hist::Histogram::with_const_width(0., 100.);
/// for i in 0..100 {
/// h.add(i as f64).unwrap();
/// }
/// assert_eq!(h.bins(), &[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]);
/// ```
#[macro_export]
macro_rules! define_histogram {
($name:ident, $LEN:expr) => ($crate::define_histogram_inner!($name, $LEN););
}

View File

@ -13,50 +13,12 @@ include!("kurtosis.rs");
/// Alias for `Variance`. /// Alias for `Variance`.
pub type MeanWithError = Variance; pub type MeanWithError = Variance;
/// Define an estimator of all moments up to a number given at compile time. #[doc(hidden)]
///
/// This uses a [general algorithm][paper] and is slightly less efficient than
/// the specialized implementations (such as [`Mean`], [`Variance`],
/// [`Skewness`] and [`Kurtosis`]), but it works for any number of moments >= 4.
///
/// (In practise, there is an upper limit due to integer overflow and possibly
/// numerical issues.)
///
/// [paper]: https://doi.org/10.1007/s00180-015-0637-z.
/// [`Mean`]: ./struct.Mean.html
/// [`Variance`]: ./struct.Variance.html
/// [`Skewness`]: ./struct.Skewness.html
/// [`Kurtosis`]: ./struct.Kurtosis.html
///
///
/// # Example
///
/// ```
/// use average::{define_moments, assert_almost_eq};
///
/// define_moments!(Moments4, 4);
///
/// let mut a: Moments4 = (1..6).map(f64::from).collect();
/// assert_eq!(a.len(), 5);
/// assert_eq!(a.mean(), 3.0);
/// assert_eq!(a.central_moment(0), 1.0);
/// assert_eq!(a.central_moment(1), 0.0);
/// assert_eq!(a.central_moment(2), 2.0);
/// assert_eq!(a.standardized_moment(0), 5.0);
/// assert_eq!(a.standardized_moment(1), 0.0);
/// assert_eq!(a.standardized_moment(2), 1.0);
/// a.add(1.0);
/// // skewness
/// assert_almost_eq!(a.standardized_moment(3), 0.2795084971874741, 1e-15);
/// // kurtosis
/// assert_almost_eq!(a.standardized_moment(4), -1.365 + 3.0, 1e-14);
/// ```
#[macro_export] #[macro_export]
macro_rules! define_moments { macro_rules! define_moments_common {
($name:ident, $MAX_MOMENT:expr) => ( ($name:ident, $MAX_MOMENT:expr) => (
use ::conv::ApproxFrom; use ::conv::ApproxFrom;
use ::num_traits::pow; use ::num_traits::pow;
#[cfg(feature = "serde1")] use ::serde::{Serialize, Deserialize};
/// An iterator over binomial coefficients. /// An iterator over binomial coefficients.
struct IterBinomial { struct IterBinomial {
@ -98,23 +60,6 @@ macro_rules! define_moments {
/// The maximal order of the moment to be calculated. /// The maximal order of the moment to be calculated.
const MAX_MOMENT: usize = $MAX_MOMENT; const MAX_MOMENT: usize = $MAX_MOMENT;
/// Estimate the first N moments of a sequence of numbers ("population").
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct $name {
/// Number of samples.
///
/// Technically, this is the same as m_0, but we want this to be an integer
/// to avoid numerical issues, so we store it separately.
n: u64,
/// Average.
avg: f64,
/// Moments times `n`.
///
/// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
m: [f64; MAX_MOMENT - 1],
}
impl $name { impl $name {
/// Create a new moments estimator. /// Create a new moments estimator.
#[inline] #[inline]
@ -298,3 +243,100 @@ macro_rules! define_moments {
$crate::impl_from_iterator!($name); $crate::impl_from_iterator!($name);
); );
} }
#[cfg(feature = "serde1")]
#[doc(hidden)]
#[macro_export]
macro_rules! define_moments_inner {
($name:ident, $MAX_MOMENT:expr) => (
$crate::define_moments_common!($name, $MAX_MOMENT);
use ::serde::{Serialize, Deserialize};
/// Estimate the first N moments of a sequence of numbers ("population").
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct $name {
/// Number of samples.
///
/// Technically, this is the same as m_0, but we want this to be an integer
/// to avoid numerical issues, so we store it separately.
n: u64,
/// Average.
avg: f64,
/// Moments times `n`.
///
/// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
m: [f64; MAX_MOMENT - 1],
}
);
}
#[cfg(not(feature = "serde1"))]
#[doc(hidden)]
#[macro_export]
macro_rules! define_moments_inner {
($name:ident, $MAX_MOMENT:expr) => (
$crate::define_moments_common!($name, $MAX_MOMENT);
/// Estimate the first N moments of a sequence of numbers ("population").
#[derive(Debug, Clone)]
pub struct $name {
/// Number of samples.
///
/// Technically, this is the same as m_0, but we want this to be an integer
/// to avoid numerical issues, so we store it separately.
n: u64,
/// Average.
avg: f64,
/// Moments times `n`.
///
/// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
m: [f64; MAX_MOMENT - 1],
}
);
}
/// Define an estimator of all moments up to a number given at compile time.
///
/// This uses a [general algorithm][paper] and is slightly less efficient than
/// the specialized implementations (such as [`Mean`], [`Variance`],
/// [`Skewness`] and [`Kurtosis`]), but it works for any number of moments >= 4.
///
/// (In practise, there is an upper limit due to integer overflow and possibly
/// numerical issues.)
///
/// [paper]: https://doi.org/10.1007/s00180-015-0637-z.
/// [`Mean`]: ./struct.Mean.html
/// [`Variance`]: ./struct.Variance.html
/// [`Skewness`]: ./struct.Skewness.html
/// [`Kurtosis`]: ./struct.Kurtosis.html
///
///
/// # Example
///
/// ```
/// use average::{define_moments, assert_almost_eq};
///
/// define_moments!(Moments4, 4);
///
/// let mut a: Moments4 = (1..6).map(f64::from).collect();
/// assert_eq!(a.len(), 5);
/// assert_eq!(a.mean(), 3.0);
/// assert_eq!(a.central_moment(0), 1.0);
/// assert_eq!(a.central_moment(1), 0.0);
/// assert_eq!(a.central_moment(2), 2.0);
/// assert_eq!(a.standardized_moment(0), 5.0);
/// assert_eq!(a.standardized_moment(1), 0.0);
/// assert_eq!(a.standardized_moment(2), 1.0);
/// a.add(1.0);
/// // skewness
/// assert_almost_eq!(a.standardized_moment(3), 0.2795084971874741, 1e-15);
/// // kurtosis
/// assert_almost_eq!(a.standardized_moment(4), -1.365 + 3.0, 1e-14);
/// ```
#[macro_export]
macro_rules! define_moments {
($name:ident, $MAX_MOMENT:expr) => ($crate::define_moments_inner!($name, $MAX_MOMENT););
}