Fix macros in combination with serde1 feature

Before, the feature would be resolved in the crate where the macro was used,
not in the `average` crate as intended.  Now, the macros are defined depending
on the `serde1` feature, fixing this issue.
This commit is contained in:
Vinzent Steinberg 2019-07-31 16:22:55 +02:00
parent 20eeebe727
commit a76014227c
2 changed files with 361 additions and 284 deletions

View File

@ -1,3 +1,264 @@
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_common {
($LEN:expr) => (
use $crate::Histogram as Trait;
/// The number of bins of the histogram.
const LEN: usize = $LEN;
impl ::core::fmt::Debug for Histogram {
fn fmt(&self, formatter: &mut ::core::fmt::Formatter<'_>)
-> ::core::fmt::Result {
formatter.write_str("Histogram {{ range: ")?;
self.range[..].fmt(formatter)?;
formatter.write_str(", bins: ")?;
self.bin[..].fmt(formatter)?;
formatter.write_str(" }}")
}
}
impl Histogram {
/// Construct a histogram with constant bin width.
#[inline]
pub fn with_const_width(start: f64, end: f64) -> Self {
let step = (end - start) / (LEN as f64);
let mut range = [0.; LEN + 1];
for (i, r) in range.iter_mut().enumerate() {
*r = start + step * (i as f64);
}
Self {
range,
bin: [0; LEN],
}
}
/// Construct a histogram from given ranges.
///
/// The ranges are given by an iterator of floats where neighboring
/// pairs `(a, b)` define a bin for all `x` where `a <= x < b`.
///
/// Fails if the iterator is too short (less than `n + 1` where `n`
/// is the number of bins), is not sorted or contains `nan`. `inf`
/// and empty ranges are allowed.
#[inline]
pub fn from_ranges<T>(ranges: T) -> Result<Self, ()>
where T: IntoIterator<Item = f64>
{
let mut range = [0.; LEN + 1];
let mut last_i = 0;
for (i, r) in ranges.into_iter().enumerate() {
if i > LEN {
break;
}
if r.is_nan() {
return Err(());
}
if i > 0 && range[i - 1] > r {
return Err(());
}
range[i] = r;
last_i = i;
}
if last_i != LEN {
return Err(());
}
Ok(Self {
range,
bin: [0; LEN],
})
}
/// Find the index of the bin corresponding to the given sample.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn find(&self, x: f64) -> Result<usize, ()> {
// We made sure our ranges are valid at construction, so we can
// safely unwrap.
match self.range.binary_search_by(|p| p.partial_cmp(&x).unwrap()) {
Ok(i) if i < LEN => {
Ok(i)
},
Err(i) if i > 0 && i < LEN + 1 => {
Ok(i - 1)
},
_ => {
Err(())
},
}
}
/// Add a sample to the histogram.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn add(&mut self, x: f64) -> Result<(), ()> {
if let Ok(i) = self.find(x) {
self.bin[i] += 1;
Ok(())
} else {
Err(())
}
}
/// Return the ranges of the histogram.
#[inline]
pub fn ranges(&self) -> &[f64] {
&self.range[..]
}
/// Return an iterator over the bins and corresponding ranges:
/// `((lower, upper), count)`
#[inline]
pub fn iter(&self) -> IterHistogram<'_> {
self.into_iter()
}
/// Reset all bins to zero.
#[inline]
pub fn reset(&mut self) {
self.bin = [0; LEN];
}
/// Return the lower range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_min(&self) -> f64 {
self.range[0]
}
/// Return the upper range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_max(&self) -> f64 {
self.range[LEN]
}
}
/// Iterate over all `(range, count)` pairs in the histogram.
pub struct IterHistogram<'a> {
remaining_bin: &'a [u64],
remaining_range: &'a [f64],
}
impl<'a> ::core::iter::Iterator for IterHistogram<'a> {
type Item = ((f64, f64), u64);
fn next(&mut self) -> Option<((f64, f64), u64)> {
if let Some((&bin, rest)) = self.remaining_bin.split_first() {
let left = self.remaining_range[0];
let right = self.remaining_range[1];
self.remaining_bin = rest;
self.remaining_range = &self.remaining_range[1..];
return Some(((left, right), bin));
}
None
}
}
impl<'a> ::core::iter::IntoIterator for &'a Histogram {
type Item = ((f64, f64), u64);
type IntoIter = IterHistogram<'a>;
fn into_iter(self) -> IterHistogram<'a> {
IterHistogram {
remaining_bin: self.bins(),
remaining_range: self.ranges(),
}
}
}
impl $crate::Histogram for Histogram {
#[inline]
fn bins(&self) -> &[u64] {
&self.bin[..]
}
}
impl<'a> ::core::ops::AddAssign<&'a Self> for Histogram {
#[inline]
fn add_assign(&mut self, other: &Self) {
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (x, y) in self.bin.iter_mut().zip(other.bin.iter()) {
*x += y;
}
}
}
impl ::core::ops::MulAssign<u64> for Histogram {
#[inline]
fn mul_assign(&mut self, other: u64) {
for x in &mut self.bin[..] {
*x *= other;
}
}
}
impl $crate::Merge for Histogram {
fn merge(&mut self, other: &Self) {
assert_eq!(self.bin.len(), other.bin.len());
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (a, b) in self.bin.iter_mut().zip(other.bin.iter()) {
*a += *b;
}
}
}
);
}
#[cfg(feature = "serde1")]
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_inner {
($name:ident, $LEN:expr) => (
mod $name {
$crate::define_histogram_common!($LEN);
use ::serde::{Serialize, Deserialize};
serde_big_array::big_array! {
BigArray; LEN, (LEN + 1),
}
/// A histogram with a number of bins known at compile time.
#[derive(Clone, Serialize, Deserialize)]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
#[serde(with = "BigArray")]
range: [f64; LEN + 1],
/// The bins of the histogram.
#[serde(with = "BigArray")]
bin: [u64; LEN],
}
}
);
}
#[cfg(not(feature = "serde1"))]
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_inner {
($name:ident, $LEN:expr) => (
mod $name {
$crate::define_histogram_common!($LEN);
/// A histogram with a number of bins known at compile time.
#[derive(Clone)]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
range: [f64; LEN + 1],
/// The bins of the histogram.
bin: [u64; LEN],
}
}
);
}
/// Define a histogram with a number of bins known at compile time.
///
/// Because macros are not hygenic for items, everything is defined in a private
@ -21,231 +282,5 @@
/// ```
#[macro_export]
macro_rules! define_histogram {
($name:ident, $LEN:expr) => (
mod $name {
use $crate::Histogram as Trait;
#[cfg(feature = "serde1")] use ::serde::{Serialize, Deserialize};
#[cfg(feature = "serde1")] serde_big_array::big_array! {
BigArray; LEN, (LEN + 1),
}
/// The number of bins of the histogram.
const LEN: usize = $LEN;
/// A histogram with a number of bins known at compile time.
#[derive(Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
#[cfg_attr(feature = "serde1", serde(with = "BigArray"))]
range: [f64; LEN + 1],
/// The bins of the histogram.
#[cfg_attr(feature = "serde1", serde(with = "BigArray"))]
bin: [u64; LEN],
}
impl ::core::fmt::Debug for Histogram {
fn fmt(&self, formatter: &mut ::core::fmt::Formatter<'_>)
-> ::core::fmt::Result {
formatter.write_str("Histogram {{ range: ")?;
self.range[..].fmt(formatter)?;
formatter.write_str(", bins: ")?;
self.bin[..].fmt(formatter)?;
formatter.write_str(" }}")
}
}
impl Histogram {
/// Construct a histogram with constant bin width.
#[inline]
pub fn with_const_width(start: f64, end: f64) -> Self {
let step = (end - start) / (LEN as f64);
let mut range = [0.; LEN + 1];
for (i, r) in range.iter_mut().enumerate() {
*r = start + step * (i as f64);
}
Self {
range,
bin: [0; LEN],
}
}
/// Construct a histogram from given ranges.
///
/// The ranges are given by an iterator of floats where neighboring
/// pairs `(a, b)` define a bin for all `x` where `a <= x < b`.
///
/// Fails if the iterator is too short (less than `n + 1` where `n`
/// is the number of bins), is not sorted or contains `nan`. `inf`
/// and empty ranges are allowed.
#[inline]
pub fn from_ranges<T>(ranges: T) -> Result<Self, ()>
where T: IntoIterator<Item = f64>
{
let mut range = [0.; LEN + 1];
let mut last_i = 0;
for (i, r) in ranges.into_iter().enumerate() {
if i > LEN {
break;
}
if r.is_nan() {
return Err(());
}
if i > 0 && range[i - 1] > r {
return Err(());
}
range[i] = r;
last_i = i;
}
if last_i != LEN {
return Err(());
}
Ok(Self {
range,
bin: [0; LEN],
})
}
/// Find the index of the bin corresponding to the given sample.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn find(&self, x: f64) -> Result<usize, ()> {
// We made sure our ranges are valid at construction, so we can
// safely unwrap.
match self.range.binary_search_by(|p| p.partial_cmp(&x).unwrap()) {
Ok(i) if i < LEN => {
Ok(i)
},
Err(i) if i > 0 && i < LEN + 1 => {
Ok(i - 1)
},
_ => {
Err(())
},
}
}
/// Add a sample to the histogram.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn add(&mut self, x: f64) -> Result<(), ()> {
if let Ok(i) = self.find(x) {
self.bin[i] += 1;
Ok(())
} else {
Err(())
}
}
/// Return the ranges of the histogram.
#[inline]
pub fn ranges(&self) -> &[f64] {
&self.range[..]
}
/// Return an iterator over the bins and corresponding ranges:
/// `((lower, upper), count)`
#[inline]
pub fn iter(&self) -> IterHistogram<'_> {
self.into_iter()
}
/// Reset all bins to zero.
#[inline]
pub fn reset(&mut self) {
self.bin = [0; LEN];
}
/// Return the lower range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_min(&self) -> f64 {
self.range[0]
}
/// Return the upper range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_max(&self) -> f64 {
self.range[LEN]
}
}
/// Iterate over all `(range, count)` pairs in the histogram.
pub struct IterHistogram<'a> {
remaining_bin: &'a [u64],
remaining_range: &'a [f64],
}
impl<'a> ::core::iter::Iterator for IterHistogram<'a> {
type Item = ((f64, f64), u64);
fn next(&mut self) -> Option<((f64, f64), u64)> {
if let Some((&bin, rest)) = self.remaining_bin.split_first() {
let left = self.remaining_range[0];
let right = self.remaining_range[1];
self.remaining_bin = rest;
self.remaining_range = &self.remaining_range[1..];
return Some(((left, right), bin));
}
None
}
}
impl<'a> ::core::iter::IntoIterator for &'a Histogram {
type Item = ((f64, f64), u64);
type IntoIter = IterHistogram<'a>;
fn into_iter(self) -> IterHistogram<'a> {
IterHistogram {
remaining_bin: self.bins(),
remaining_range: self.ranges(),
}
}
}
impl $crate::Histogram for Histogram {
#[inline]
fn bins(&self) -> &[u64] {
&self.bin[..]
}
}
impl<'a> ::core::ops::AddAssign<&'a Self> for Histogram {
#[inline]
fn add_assign(&mut self, other: &Self) {
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (x, y) in self.bin.iter_mut().zip(other.bin.iter()) {
*x += y;
}
}
}
impl ::core::ops::MulAssign<u64> for Histogram {
#[inline]
fn mul_assign(&mut self, other: u64) {
for x in &mut self.bin[..] {
*x *= other;
}
}
}
impl $crate::Merge for Histogram {
fn merge(&mut self, other: &Self) {
assert_eq!(self.bin.len(), other.bin.len());
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (a, b) in self.bin.iter_mut().zip(other.bin.iter()) {
*a += *b;
}
}
}
}
);
($name:ident, $LEN:expr) => ($crate::define_histogram_inner!($name, $LEN););
}

View File

@ -13,50 +13,12 @@ include!("kurtosis.rs");
/// Alias for `Variance`.
pub type MeanWithError = Variance;
/// Define an estimator of all moments up to a number given at compile time.
///
/// This uses a [general algorithm][paper] and is slightly less efficient than
/// the specialized implementations (such as [`Mean`], [`Variance`],
/// [`Skewness`] and [`Kurtosis`]), but it works for any number of moments >= 4.
///
/// (In practise, there is an upper limit due to integer overflow and possibly
/// numerical issues.)
///
/// [paper]: https://doi.org/10.1007/s00180-015-0637-z.
/// [`Mean`]: ./struct.Mean.html
/// [`Variance`]: ./struct.Variance.html
/// [`Skewness`]: ./struct.Skewness.html
/// [`Kurtosis`]: ./struct.Kurtosis.html
///
///
/// # Example
///
/// ```
/// use average::{define_moments, assert_almost_eq};
///
/// define_moments!(Moments4, 4);
///
/// let mut a: Moments4 = (1..6).map(f64::from).collect();
/// assert_eq!(a.len(), 5);
/// assert_eq!(a.mean(), 3.0);
/// assert_eq!(a.central_moment(0), 1.0);
/// assert_eq!(a.central_moment(1), 0.0);
/// assert_eq!(a.central_moment(2), 2.0);
/// assert_eq!(a.standardized_moment(0), 5.0);
/// assert_eq!(a.standardized_moment(1), 0.0);
/// assert_eq!(a.standardized_moment(2), 1.0);
/// a.add(1.0);
/// // skewness
/// assert_almost_eq!(a.standardized_moment(3), 0.2795084971874741, 1e-15);
/// // kurtosis
/// assert_almost_eq!(a.standardized_moment(4), -1.365 + 3.0, 1e-14);
/// ```
#[doc(hidden)]
#[macro_export]
macro_rules! define_moments {
macro_rules! define_moments_common {
($name:ident, $MAX_MOMENT:expr) => (
use ::conv::ApproxFrom;
use ::num_traits::pow;
#[cfg(feature = "serde1")] use ::serde::{Serialize, Deserialize};
/// An iterator over binomial coefficients.
struct IterBinomial {
@ -98,23 +60,6 @@ macro_rules! define_moments {
/// The maximal order of the moment to be calculated.
const MAX_MOMENT: usize = $MAX_MOMENT;
/// Estimate the first N moments of a sequence of numbers ("population").
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct $name {
/// Number of samples.
///
/// Technically, this is the same as m_0, but we want this to be an integer
/// to avoid numerical issues, so we store it separately.
n: u64,
/// Average.
avg: f64,
/// Moments times `n`.
///
/// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
m: [f64; MAX_MOMENT - 1],
}
impl $name {
/// Create a new moments estimator.
#[inline]
@ -298,3 +243,100 @@ macro_rules! define_moments {
$crate::impl_from_iterator!($name);
);
}
#[cfg(feature = "serde1")]
#[doc(hidden)]
#[macro_export]
macro_rules! define_moments_inner {
($name:ident, $MAX_MOMENT:expr) => (
$crate::define_moments_common!($name, $MAX_MOMENT);
use ::serde::{Serialize, Deserialize};
/// Estimate the first N moments of a sequence of numbers ("population").
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct $name {
/// Number of samples.
///
/// Technically, this is the same as m_0, but we want this to be an integer
/// to avoid numerical issues, so we store it separately.
n: u64,
/// Average.
avg: f64,
/// Moments times `n`.
///
/// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
m: [f64; MAX_MOMENT - 1],
}
);
}
#[cfg(not(feature = "serde1"))]
#[doc(hidden)]
#[macro_export]
macro_rules! define_moments_inner {
($name:ident, $MAX_MOMENT:expr) => (
$crate::define_moments_common!($name, $MAX_MOMENT);
/// Estimate the first N moments of a sequence of numbers ("population").
#[derive(Debug, Clone)]
pub struct $name {
/// Number of samples.
///
/// Technically, this is the same as m_0, but we want this to be an integer
/// to avoid numerical issues, so we store it separately.
n: u64,
/// Average.
avg: f64,
/// Moments times `n`.
///
/// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
m: [f64; MAX_MOMENT - 1],
}
);
}
/// Define an estimator of all moments up to a number given at compile time.
///
/// This uses a [general algorithm][paper] and is slightly less efficient than
/// the specialized implementations (such as [`Mean`], [`Variance`],
/// [`Skewness`] and [`Kurtosis`]), but it works for any number of moments >= 4.
///
/// (In practise, there is an upper limit due to integer overflow and possibly
/// numerical issues.)
///
/// [paper]: https://doi.org/10.1007/s00180-015-0637-z.
/// [`Mean`]: ./struct.Mean.html
/// [`Variance`]: ./struct.Variance.html
/// [`Skewness`]: ./struct.Skewness.html
/// [`Kurtosis`]: ./struct.Kurtosis.html
///
///
/// # Example
///
/// ```
/// use average::{define_moments, assert_almost_eq};
///
/// define_moments!(Moments4, 4);
///
/// let mut a: Moments4 = (1..6).map(f64::from).collect();
/// assert_eq!(a.len(), 5);
/// assert_eq!(a.mean(), 3.0);
/// assert_eq!(a.central_moment(0), 1.0);
/// assert_eq!(a.central_moment(1), 0.0);
/// assert_eq!(a.central_moment(2), 2.0);
/// assert_eq!(a.standardized_moment(0), 5.0);
/// assert_eq!(a.standardized_moment(1), 0.0);
/// assert_eq!(a.standardized_moment(2), 1.0);
/// a.add(1.0);
/// // skewness
/// assert_almost_eq!(a.standardized_moment(3), 0.2795084971874741, 1e-15);
/// // kurtosis
/// assert_almost_eq!(a.standardized_moment(4), -1.365 + 3.0, 1e-14);
/// ```
#[macro_export]
macro_rules! define_moments {
($name:ident, $MAX_MOMENT:expr) => ($crate::define_moments_inner!($name, $MAX_MOMENT););
}