Factor out calculation of average

Now it is possible to calculate the average without calculating the
error.
This commit is contained in:
Vinzent Steinberg 2017-05-24 10:48:27 +02:00
parent 962adb91d7
commit a95ab05c10
5 changed files with 335 additions and 126 deletions

View File

@ -2,6 +2,118 @@ use core;
use conv::ApproxFrom; use conv::ApproxFrom;
/// Estimate the arithmetic mean of a sequence of numbers ("population").
///
/// Everything is calculated iteratively using constant memory, so the sequence
/// of numbers can be an iterator. The used algorithms try to avoid numerical
/// instabilities.
///
///
/// ## Example
///
/// ```
/// use average::Average;
///
/// let a: Average = (1..6).map(Into::into).collect();
/// println!("The average is {}.", a.mean());
/// ```
#[derive(Debug, Clone)]
pub struct Average {
/// Average value.
avg: f64,
/// Sample size.
n: u64,
}
impl Average {
/// Create a new average estimator.
pub fn new() -> Average {
Average { avg: 0., n: 0 }
}
/// Add an element sampled from the population.
#[inline]
pub fn add(&mut self, sample: f64) {
// This algorithm introduced by Welford in 1962 trades numerical
// stability for a division inside the loop.
//
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
self.n += 1;
let delta = sample - self.avg;
self.avg += delta / f64::approx_from(self.n).unwrap();
}
/// Determine whether the samples are empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.n == 0
}
/// Estimate the mean of the population.
#[inline]
pub fn mean(&self) -> f64 {
self.avg
}
/// Return the number of samples.
#[inline]
pub fn len(&self) -> u64 {
self.n
}
/// Merge another sample into this one.
///
///
/// ## Example
///
/// ```
/// use average::Average;
///
/// let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
/// let (left, right) = sequence.split_at(3);
/// let avg_total: Average = sequence.iter().map(|x| *x).collect();
/// let mut avg_left: Average = left.iter().map(|x| *x).collect();
/// let avg_right: Average = right.iter().map(|x| *x).collect();
/// avg_left.merge(&avg_right);
/// assert_eq!(avg_total.mean(), avg_left.mean());
/// ```
#[inline]
pub fn merge(&mut self, other: &Average) {
// This algorithm was proposed by Chan et al. in 1979.
//
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
let len_self = f64::approx_from(self.n).unwrap();
let len_other = f64::approx_from(other.n).unwrap();
let len_total = len_self + len_other;
self.n += other.n;
self.avg = (len_self * self.avg + len_other * other.avg) / len_total;
// Chan et al. use
//
// self.avg += delta * len_other / len_total;
//
// instead but this results in cancelation if the number of samples are similar.
}
}
impl core::default::Default for Average {
fn default() -> Average {
Average::new()
}
}
impl core::iter::FromIterator<f64> for Average {
fn from_iter<T>(iter: T) -> Average
where T: IntoIterator<Item=f64>
{
let mut a = Average::new();
for i in iter {
a.add(i);
}
a
}
}
/// Estimate the arithmetic mean and the variance of a sequence of numbers /// Estimate the arithmetic mean and the variance of a sequence of numbers
/// ("population"). /// ("population").
/// ///
@ -22,10 +134,8 @@ use conv::ApproxFrom;
/// ``` /// ```
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct AverageWithError { pub struct AverageWithError {
/// Average value. /// Estimator of average.
avg: f64, avg: Average,
/// Number of samples.
n: u64,
/// Intermediate sum of squares for calculating the variance. /// Intermediate sum of squares for calculating the variance.
v: f64, v: f64,
} }
@ -33,7 +143,7 @@ pub struct AverageWithError {
impl AverageWithError { impl AverageWithError {
/// Create a new average estimator. /// Create a new average estimator.
pub fn new() -> AverageWithError { pub fn new() -> AverageWithError {
AverageWithError { avg: 0., n: 0, v: 0. } AverageWithError { avg: Average::new(), v: 0. }
} }
/// Add an element sampled from the population. /// Add an element sampled from the population.
@ -43,53 +153,60 @@ impl AverageWithError {
// stability for a division inside the loop. // stability for a division inside the loop.
// //
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance. // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
self.n += 1; let delta = sample - self.avg.mean();
let delta = sample - self.avg; self.avg.add(sample);
self.avg += delta / f64::approx_from(self.n).unwrap(); self.v += delta * (sample - self.avg.mean());
self.v += delta * (sample - self.avg);
} }
/// Determine whether the samples are empty. /// Determine whether the samples are empty.
#[inline]
pub fn is_empty(&self) -> bool { pub fn is_empty(&self) -> bool {
self.n == 0 self.avg.is_empty()
} }
/// Estimate the mean of the population. /// Estimate the mean of the population.
#[inline]
pub fn mean(&self) -> f64 { pub fn mean(&self) -> f64 {
self.avg self.avg.mean()
} }
/// Return the number of samples. /// Return the number of samples.
#[inline]
pub fn len(&self) -> u64 { pub fn len(&self) -> u64 {
self.n self.avg.len()
} }
/// Calculate the sample variance. /// Calculate the sample variance.
/// ///
/// This is an unbiased estimator of the variance of the population. /// This is an unbiased estimator of the variance of the population.
#[inline]
pub fn sample_variance(&self) -> f64 { pub fn sample_variance(&self) -> f64 {
if self.n < 2 { if self.avg.len() < 2 {
return 0.; return 0.;
} }
self.v / f64::approx_from(self.n - 1).unwrap() self.v / f64::approx_from(self.avg.len() - 1).unwrap()
} }
/// Calculate the population variance of the sample. /// Calculate the population variance of the sample.
/// ///
/// This is a biased estimator of the variance of the population. /// This is a biased estimator of the variance of the population.
#[inline]
pub fn population_variance(&self) -> f64 { pub fn population_variance(&self) -> f64 {
if self.n < 2 { let n = self.avg.len();
if n < 2 {
return 0.; return 0.;
} }
self.v / f64::approx_from(self.n).unwrap() self.v / f64::approx_from(n).unwrap()
} }
/// Estimate the standard error of the mean of the population. /// Estimate the standard error of the mean of the population.
#[inline]
pub fn error(&self) -> f64 { pub fn error(&self) -> f64 {
if self.n == 0 { let n = self.avg.len();
if n == 0 {
return 0.; return 0.;
} }
(self.sample_variance() / f64::approx_from(self.n).unwrap()).sqrt() (self.sample_variance() / f64::approx_from(n).unwrap()).sqrt()
} }
/// Merge another sample into this one. /// Merge another sample into this one.
@ -109,21 +226,16 @@ impl AverageWithError {
/// assert_eq!(avg_total.mean(), avg_left.mean()); /// assert_eq!(avg_total.mean(), avg_left.mean());
/// assert_eq!(avg_total.sample_variance(), avg_left.sample_variance()); /// assert_eq!(avg_total.sample_variance(), avg_left.sample_variance());
/// ``` /// ```
#[inline]
pub fn merge(&mut self, other: &AverageWithError) { pub fn merge(&mut self, other: &AverageWithError) {
// This algorithm was proposed by Chan et al. in 1979. // This algorithm was proposed by Chan et al. in 1979.
// //
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance. // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
let delta = other.avg - self.avg; let len_self = f64::approx_from(self.len()).unwrap();
let len_self = f64::approx_from(self.n).unwrap(); let len_other = f64::approx_from(other.len()).unwrap();
let len_other = f64::approx_from(other.n).unwrap();
let len_total = len_self + len_other; let len_total = len_self + len_other;
self.n += other.n; let delta = other.mean() - self.mean();
self.avg = (len_self * self.avg + len_other * other.avg) / len_total; self.avg.merge(&other.avg);
// Chan et al. use
//
// self.avg += delta * len_other / len_total;
//
// instead but this results in cancelation if the number of samples are similar.
self.v += other.v + delta*delta * len_self * len_other / len_total; self.v += other.v + delta*delta * len_self * len_other / len_total;
} }
} }
@ -145,23 +257,3 @@ impl core::iter::FromIterator<f64> for AverageWithError {
a a
} }
} }
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn merge() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: AverageWithError = sequence.iter().map(|x| *x).collect();
let mut avg_left: AverageWithError = left.iter().map(|x| *x).collect();
let avg_right: AverageWithError = right.iter().map(|x| *x).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.n, avg_left.n);
assert_eq!(avg_total.avg, avg_left.avg);
assert_eq!(avg_total.v, avg_left.v);
}
}
}

View File

@ -2,8 +2,8 @@
//! sequence of numbers, and for their standard errors. The typical workflow //! sequence of numbers, and for their standard errors. The typical workflow
//! looks like this: //! looks like this:
//! //!
//! 1. Initialize your estimator of choice ([`AverageWithError`] or //! 1. Initialize your estimator of choice ([`Average`], [`AverageWithError`],
//! [`WeightedAverageWithError`]) with `new()`. //! [`WeightedAverage`] or [`WeightedAverageWithError`]) with `new()`.
//! 2. Add some subset (called "samples") of the sequence of numbers (called //! 2. Add some subset (called "samples") of the sequence of numbers (called
//! "population") for which you want to estimate the average, using `add()` //! "population") for which you want to estimate the average, using `add()`
//! or `collect()`. //! or `collect()`.
@ -13,8 +13,11 @@
//! You can run several estimators in parallel and merge them into one with //! You can run several estimators in parallel and merge them into one with
//! `merge()`. //! `merge()`.
//! //!
//! [`AverageWithError`]: ./average/struct.Average.html //! [`Average`]: ./average/struct.Average.html
//! [`WeightedAverageWithError`]: ./weighted_average/struct.WeightedAverage.html //! [`AverageWithError`]: ./average/struct.AverageWithError.html
//! [`WeightedAverage`]: ./weighted_average/struct.WeightedAverage.html
//! [`WeightedAverageWithError`]: ./weighted_average/struct.WeightedAverageWithError.html
//!
//! //!
//! ## Example //! ## Example
//! //!
@ -29,12 +32,10 @@
#![no_std] #![no_std]
extern crate conv; extern crate conv;
#[cfg(test)] extern crate rand;
#[cfg(test)] #[macro_use] extern crate std;
#[macro_use] mod macros; #[macro_use] mod macros;
mod average; mod average;
mod weighted_average; mod weighted_average;
pub use average::AverageWithError; pub use average::{Average, AverageWithError};
pub use weighted_average::WeightedAverageWithError; pub use weighted_average::{WeightedAverage, WeightedAverageWithError};

View File

@ -2,6 +2,117 @@ use core;
use super::AverageWithError; use super::AverageWithError;
/// Estimate the weighted and unweighted arithmetic mean of a sequence of
/// numbers ("population").
///
///
/// ## Example
///
/// ```
/// use average::WeightedAverage;
///
/// let a: WeightedAverage = (1..6).zip(1..6)
/// .map(|(x, w)| (f64::from(x), f64::from(w))).collect();
/// println!("The weighted average is {}.", a.mean());
/// ```
#[derive(Debug, Clone)]
pub struct WeightedAverage {
/// Sum of the weights.
weight_sum: f64,
/// Weighted average value.
weighted_avg: f64,
}
impl WeightedAverage {
/// Create a new weighted and unweighted average estimator.
pub fn new() -> WeightedAverage {
WeightedAverage {
weight_sum: 0., weighted_avg: 0.,
}
}
/// Add a weighted element sampled from the population.
#[inline]
pub fn add(&mut self, sample: f64, weight: f64) {
// The algorithm for the unweighted average was suggested by Welford in 1962.
//
// See
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// and
// http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf.
self.weight_sum += weight;
let prev_avg = self.weighted_avg;
self.weighted_avg = prev_avg + (weight / self.weight_sum) * (sample - prev_avg);
}
/// Determine whether the sample is empty.
///
/// Might be a false positive if the sum of weights is zero.
#[inline]
pub fn is_empty(&self) -> bool {
self.weight_sum == 0.
}
/// Return the sum of the weights.
#[inline]
pub fn sum_weights(&self) -> f64 {
self.weight_sum
}
/// Estimate the weighted mean of the sequence.
#[inline]
pub fn mean(&self) -> f64 {
self.weighted_avg
}
/// Merge another sample into this one.
///
///
/// ## Example
///
/// ```
/// use average::WeightedAverage;
///
/// let weighted_sequence: &[(f64, f64)] = &[
/// (1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
/// (6., 0.6), (7., 0.7), (8., 0.8), (9., 0.9)];
/// let (left, right) = weighted_sequence.split_at(3);
/// let avg_total: WeightedAverage = weighted_sequence.iter().map(|&x| x).collect();
/// let mut avg_left: WeightedAverage = left.iter().map(|&x| x).collect();
/// let avg_right: WeightedAverage = right.iter().map(|&x| x).collect();
/// avg_left.merge(&avg_right);
/// assert!((avg_total.mean() - avg_left.mean()).abs() < 1e-15);
/// ```
#[inline]
pub fn merge(&mut self, other: &WeightedAverage) {
let total_weight_sum = self.weight_sum + other.weight_sum;
self.weighted_avg = (self.weight_sum * self.weighted_avg
+ other.weight_sum * other.weighted_avg)
/ total_weight_sum;
self.weight_sum = total_weight_sum;
}
}
impl core::default::Default for WeightedAverage {
fn default() -> WeightedAverage {
WeightedAverage::new()
}
}
impl core::iter::FromIterator<(f64, f64)> for WeightedAverage {
fn from_iter<T>(iter: T) -> WeightedAverage
where T: IntoIterator<Item=(f64, f64)>
{
let mut a = WeightedAverage::new();
for (i, w) in iter {
a.add(i, w);
}
a
}
}
/// Estimate the weighted and unweighted arithmetic mean and the unweighted /// Estimate the weighted and unweighted arithmetic mean and the unweighted
/// variance of a sequence of numbers ("population"). /// variance of a sequence of numbers ("population").
/// ///
@ -19,13 +130,10 @@ use super::AverageWithError;
/// ``` /// ```
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct WeightedAverageWithError { pub struct WeightedAverageWithError {
/// Sum of the weights.
weight_sum: f64,
/// Sum of the squares of the weights. /// Sum of the squares of the weights.
weight_sum_sq: f64, weight_sum_sq: f64,
/// Weighted average value. /// Estimator of the weighted average.
weighted_avg: f64, weighted_avg: WeightedAverage,
/// Estimator of unweighted average and its variance. /// Estimator of unweighted average and its variance.
unweighted_avg: AverageWithError, unweighted_avg: AverageWithError,
} }
@ -34,7 +142,8 @@ impl WeightedAverageWithError {
/// Create a new weighted and unweighted average estimator. /// Create a new weighted and unweighted average estimator.
pub fn new() -> WeightedAverageWithError { pub fn new() -> WeightedAverageWithError {
WeightedAverageWithError { WeightedAverageWithError {
weight_sum: 0., weight_sum_sq: 0., weighted_avg: 0., weight_sum_sq: 0.,
weighted_avg: WeightedAverage::new(),
unweighted_avg: AverageWithError::new(), unweighted_avg: AverageWithError::new(),
} }
} }
@ -49,51 +158,55 @@ impl WeightedAverageWithError {
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
// and // and
// http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf. // http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf.
self.weight_sum += weight;
self.weight_sum_sq += weight*weight; self.weight_sum_sq += weight*weight;
self.weighted_avg.add(sample, weight);
let prev_avg = self.weighted_avg;
self.weighted_avg = prev_avg + (weight / self.weight_sum) * (sample - prev_avg);
self.unweighted_avg.add(sample); self.unweighted_avg.add(sample);
} }
/// Determine whether the sample is empty. /// Determine whether the sample is empty.
#[inline]
pub fn is_empty(&self) -> bool { pub fn is_empty(&self) -> bool {
self.unweighted_avg.is_empty() self.unweighted_avg.is_empty()
} }
/// Return the sum of the weights. /// Return the sum of the weights.
#[inline]
pub fn sum_weights(&self) -> f64 { pub fn sum_weights(&self) -> f64 {
self.weight_sum self.weighted_avg.sum_weights()
} }
/// Return the sum of the squared weights. /// Return the sum of the squared weights.
#[inline]
pub fn sum_weights_sq(&self) -> f64 { pub fn sum_weights_sq(&self) -> f64 {
self.weight_sum_sq self.weight_sum_sq
} }
/// Estimate the weighted mean of the sequence. /// Estimate the weighted mean of the sequence.
#[inline]
pub fn weighted_mean(&self) -> f64 { pub fn weighted_mean(&self) -> f64 {
self.weighted_avg self.weighted_avg.mean()
} }
/// Estimate the unweighted mean of the sequence. /// Estimate the unweighted mean of the sequence.
#[inline]
pub fn unweighted_mean(&self) -> f64 { pub fn unweighted_mean(&self) -> f64 {
self.unweighted_avg.mean() self.unweighted_avg.mean()
} }
/// Return sample size. /// Return sample size.
#[inline]
pub fn len(&self) -> u64 { pub fn len(&self) -> u64 {
self.unweighted_avg.len() self.unweighted_avg.len()
} }
/// Calculate the effective sample size. /// Calculate the effective sample size.
#[inline]
pub fn effective_len(&self) -> f64 { pub fn effective_len(&self) -> f64 {
if self.is_empty() { if self.is_empty() {
return 0. return 0.
} }
self.weight_sum * self.weight_sum / self.weight_sum_sq let weight_sum = self.weighted_avg.sum_weights();
weight_sum * weight_sum / self.weight_sum_sq
} }
/// Calculate the *unweighted* population variance of the sample. /// Calculate the *unweighted* population variance of the sample.
@ -121,10 +234,11 @@ impl WeightedAverageWithError {
// results than the ones used by SPSS or Mentor. // results than the ones used by SPSS or Mentor.
// //
// See http://www.analyticalgroup.com/download/WEIGHTED_VARIANCE.pdf. // See http://www.analyticalgroup.com/download/WEIGHTED_VARIANCE.pdf.
if self.weight_sum == 0. { let weight_sum = self.weighted_avg.sum_weights();
if weight_sum == 0. {
return 0.; return 0.;
} }
let inv_effective_len = self.weight_sum_sq / (self.weight_sum * self.weight_sum); let inv_effective_len = self.weight_sum_sq / (weight_sum * weight_sum);
(self.sample_variance() * inv_effective_len).sqrt() (self.sample_variance() * inv_effective_len).sqrt()
} }
@ -148,13 +262,8 @@ impl WeightedAverageWithError {
/// assert!((avg_total.error() - avg_left.error()).abs() < 1e-15); /// assert!((avg_total.error() - avg_left.error()).abs() < 1e-15);
/// ``` /// ```
pub fn merge(&mut self, other: &WeightedAverageWithError) { pub fn merge(&mut self, other: &WeightedAverageWithError) {
let total_weight_sum = self.weight_sum + other.weight_sum;
self.weighted_avg = (self.weight_sum * self.weighted_avg
+ other.weight_sum * other.weighted_avg)
/ total_weight_sum;
self.weight_sum = total_weight_sum;
self.weight_sum_sq += other.weight_sum_sq; self.weight_sum_sq += other.weight_sum_sq;
self.weighted_avg.merge(&other.weighted_avg);
self.unweighted_avg.merge(&other.unweighted_avg); self.unweighted_avg.merge(&other.unweighted_avg);
} }
} }
@ -176,51 +285,3 @@ impl core::iter::FromIterator<(f64, f64)> for WeightedAverageWithError {
a a
} }
} }
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn merge_unweighted() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: WeightedAverageWithError = sequence.iter().map(|x| (*x, 1.)).collect();
let mut avg_left: WeightedAverageWithError = left.iter().map(|x| (*x, 1.)).collect();
let avg_right: WeightedAverageWithError = right.iter().map(|x| (*x, 1.)).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.weight_sum, avg_left.weight_sum);
assert_eq!(avg_total.weight_sum_sq, avg_left.weight_sum_sq);
assert_eq!(avg_total.weighted_avg, avg_left.weighted_avg);
assert_eq!(avg_total.unweighted_avg.len(), avg_left.unweighted_avg.len());
assert_eq!(avg_total.unweighted_avg.mean(), avg_left.unweighted_avg.mean());
assert_eq!(avg_total.unweighted_avg.sample_variance(),
avg_left.unweighted_avg.sample_variance());
}
}
#[test]
fn merge_weighted() {
let sequence: &[(f64, f64)] = &[
(1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
(6., 0.6), (7., 0.7), (8., 0.8), (9., 0.)];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: WeightedAverageWithError = sequence.iter().map(|&(x, w)| (x, w)).collect();
let mut avg_left: WeightedAverageWithError = left.iter().map(|&(x, w)| (x, w)).collect();
let avg_right: WeightedAverageWithError = right.iter().map(|&(x, w)| (x, w)).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.unweighted_avg.len(), avg_left.unweighted_avg.len());
assert_almost_eq!(avg_total.weight_sum, avg_left.weight_sum, 1e-15);
assert_eq!(avg_total.weight_sum_sq, avg_left.weight_sum_sq);
assert_almost_eq!(avg_total.weighted_avg, avg_left.weighted_avg, 1e-15);
assert_almost_eq!(avg_total.unweighted_avg.mean(),
avg_left.unweighted_avg.mean(), 1e-15);
assert_almost_eq!(avg_total.unweighted_avg.sample_variance(),
avg_left.unweighted_avg.sample_variance(), 1e-14);
}
}
}

View File

@ -44,6 +44,21 @@ fn numerically_unstable() {
assert_eq!(a.sample_variance(), 30.); assert_eq!(a.sample_variance(), 30.);
} }
#[test]
fn merge() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: AverageWithError = sequence.iter().map(|x| *x).collect();
let mut avg_left: AverageWithError = left.iter().map(|x| *x).collect();
let avg_right: AverageWithError = right.iter().map(|x| *x).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.len(), avg_left.len());
assert_eq!(avg_total.mean(), avg_left.mean());
assert_eq!(avg_total.sample_variance(), avg_left.sample_variance());
}
}
#[test] #[test]
fn normal_distribution() { fn normal_distribution() {
use rand::distributions::{Normal, IndependentSample}; use rand::distributions::{Normal, IndependentSample};

View File

@ -64,3 +64,43 @@ fn error_corner_case() {
.map(|(x, w)| (*x, *w)).collect(); .map(|(x, w)| (*x, *w)).collect();
assert_eq!(a.error(), 0.5); assert_eq!(a.error(), 0.5);
} }
#[test]
fn merge_unweighted() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: WeightedAverageWithError = sequence.iter().map(|x| (*x, 1.)).collect();
let mut avg_left: WeightedAverageWithError = left.iter().map(|x| (*x, 1.)).collect();
let avg_right: WeightedAverageWithError = right.iter().map(|x| (*x, 1.)).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.sum_weights(), avg_left.sum_weights());
assert_eq!(avg_total.sum_weights_sq(), avg_left.sum_weights_sq());
assert_eq!(avg_total.len(), avg_left.len());
assert_eq!(avg_total.unweighted_mean(), avg_left.unweighted_mean());
assert_eq!(avg_total.weighted_mean(), avg_left.weighted_mean());
assert_eq!(avg_total.sample_variance(), avg_left.sample_variance());
}
}
#[test]
fn merge_weighted() {
let sequence: &[(f64, f64)] = &[
(1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
(6., 0.6), (7., 0.7), (8., 0.8), (9., 0.)];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: WeightedAverageWithError = sequence.iter().map(|&(x, w)| (x, w)).collect();
let mut avg_left: WeightedAverageWithError = left.iter().map(|&(x, w)| (x, w)).collect();
let avg_right: WeightedAverageWithError = right.iter().map(|&(x, w)| (x, w)).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.len(), avg_left.len());
assert_almost_eq!(avg_total.sum_weights(), avg_left.sum_weights(), 1e-15);
assert_eq!(avg_total.sum_weights_sq(), avg_left.sum_weights_sq());
assert_almost_eq!(avg_total.weighted_mean(), avg_left.weighted_mean(), 1e-15);
assert_almost_eq!(avg_total.unweighted_mean(), avg_left.unweighted_mean(), 1e-15);
assert_almost_eq!(avg_total.sample_variance(), avg_left.sample_variance(), 1e-14);
}
}