Implement WinCross estimator of standard error of weighted average
This commit is contained in:
parent
eb0fa41619
commit
fbdb247a0e
@ -7,6 +7,8 @@ extern crate conv;
|
||||
#[macro_use] mod macros;
|
||||
mod average;
|
||||
mod weighted_average;
|
||||
mod weighted_average2;
|
||||
|
||||
pub use average::Average;
|
||||
pub use weighted_average::WeightedAverage;
|
||||
pub use weighted_average2::WeightedAverage as WeightedAverage2;
|
||||
|
@ -99,14 +99,14 @@ impl WeightedAverage {
|
||||
///
|
||||
/// let weighted_sequence: &[(f64, f64)] = &[
|
||||
/// (1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
|
||||
/// (6., 0.6), (7., 0.7), (8., 0.8), (9., 0.)];
|
||||
/// (6., 0.6), (7., 0.7), (8., 0.8), (9., 0.9)];
|
||||
/// let (left, right) = weighted_sequence.split_at(3);
|
||||
/// let avg_total: WeightedAverage = weighted_sequence.iter().map(|&x| x).collect();
|
||||
/// let mut avg_left: WeightedAverage = left.iter().map(|&x| x).collect();
|
||||
/// let avg_right: WeightedAverage = right.iter().map(|&x| x).collect();
|
||||
/// avg_left.merge(&avg_right);
|
||||
/// assert!((avg_total.mean() - avg_left.mean()).abs() < 1e-15);
|
||||
/// assert!((avg_total.sample_variance() - avg_left.sample_variance()).abs() < 1e-15);
|
||||
/// assert!((avg_total.error() - avg_left.error()).abs() < 1e-15);
|
||||
/// ```
|
||||
pub fn merge(&mut self, other: &WeightedAverage) {
|
||||
// This is similar to the algorithm proposed by Chan et al. in 1979.
|
||||
|
288
src/weighted_average2.rs
Normal file
288
src/weighted_average2.rs
Normal file
@ -0,0 +1,288 @@
|
||||
use core;
|
||||
|
||||
use conv::ApproxFrom;
|
||||
|
||||
/// Represent the weighted and unweighted arithmetic mean and the unweighted
|
||||
/// variance of a sequence of numbers.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct WeightedAverage {
|
||||
/// Sum of the weights.
|
||||
weight_sum: f64,
|
||||
/// Sum of the squares of the weights.
|
||||
weight_sum_sq: f64,
|
||||
/// Weighted verage value.
|
||||
weighted_avg: f64,
|
||||
|
||||
/// Number of samples.
|
||||
n: u64,
|
||||
/// Unweighted verage value.
|
||||
unweighted_avg: f64,
|
||||
/// Intermediate sum of squares for calculating the *unweighted* variance.
|
||||
v: f64,
|
||||
}
|
||||
|
||||
impl WeightedAverage {
|
||||
/// Create a new weighted average.
|
||||
pub fn new() -> WeightedAverage {
|
||||
WeightedAverage {
|
||||
weight_sum: 0., weight_sum_sq: 0., weighted_avg: 0.,
|
||||
n: 0, unweighted_avg: 0., v: 0.,
|
||||
}
|
||||
}
|
||||
|
||||
/// Add a sample to the weighted sequence of which the average is calculated.
|
||||
pub fn add(&mut self, sample: f64, weight: f64) {
|
||||
// The algorithm for the unweighted average was suggested by Welford in 1962.
|
||||
// The algorithm for the weighted average was suggested by West in 1979.
|
||||
//
|
||||
// See
|
||||
// https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
||||
// and
|
||||
// http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf.
|
||||
self.weight_sum += weight;
|
||||
self.weight_sum_sq += weight*weight;
|
||||
|
||||
let prev_avg = self.weighted_avg;
|
||||
self.weighted_avg = prev_avg + (weight / self.weight_sum) * (sample - prev_avg);
|
||||
|
||||
self.n += 1;
|
||||
let delta = sample - self.unweighted_avg;
|
||||
self.unweighted_avg += delta / f64::approx_from(self.n).unwrap();
|
||||
self.v += delta * (sample - self.unweighted_avg);
|
||||
}
|
||||
|
||||
/// Determine whether the sequence is empty.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.n == 0
|
||||
}
|
||||
|
||||
/// Return the sum of the weights.
|
||||
pub fn sum_weights(&self) -> f64 {
|
||||
self.weight_sum
|
||||
}
|
||||
|
||||
/// Return the sum of the squared weights.
|
||||
pub fn sum_weights_sq(&self) -> f64 {
|
||||
self.weight_sum_sq
|
||||
}
|
||||
|
||||
/// Estimate the weighted mean of the sequence.
|
||||
pub fn weighted_mean(&self) -> f64 {
|
||||
self.weighted_avg
|
||||
}
|
||||
|
||||
/// Estimate the unweighted mean of the sequence.
|
||||
pub fn unweighted_mean(&self) -> f64 {
|
||||
self.unweighted_avg
|
||||
}
|
||||
|
||||
/// Return sample size.
|
||||
pub fn len(&self) -> u64 {
|
||||
self.n
|
||||
}
|
||||
|
||||
/// Calculate the effective sample size.
|
||||
pub fn effective_len(&self) -> f64 {
|
||||
if self.is_empty() {
|
||||
return 0.
|
||||
}
|
||||
self.weight_sum * self.weight_sum / self.weight_sum_sq
|
||||
}
|
||||
|
||||
/// Calculate the *unweighted* population variance of the sequence.
|
||||
///
|
||||
/// This assumes that the sequence consists of the entire population.
|
||||
pub fn population_variance(&self) -> f64 {
|
||||
if self.n < 2 {
|
||||
return 0.;
|
||||
}
|
||||
self.v / f64::approx_from(self.n).unwrap()
|
||||
}
|
||||
|
||||
/// Calculate the *unweighted*, unbiased sample variance of the sequence.
|
||||
///
|
||||
/// This assumes that the sequence consists of samples of a larger population.
|
||||
pub fn sample_variance(&self) -> f64 {
|
||||
if self.n < 2 {
|
||||
return 0.;
|
||||
}
|
||||
self.v / f64::approx_from(self.n - 1).unwrap()
|
||||
}
|
||||
|
||||
/// Estimate the standard error of the weighted mean of the sequence.
|
||||
///
|
||||
/// Returns 0 if the sum of weights is 0.
|
||||
pub fn error(&self) -> f64 {
|
||||
// This uses the same estimate as WinCross.
|
||||
//
|
||||
// See http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
|
||||
if self.weight_sum_sq == 0. || self.weight_sum == 0. {
|
||||
return 0.;
|
||||
}
|
||||
let effective_base = self.weight_sum * self.weight_sum / self.weight_sum_sq;
|
||||
(self.sample_variance() / effective_base).sqrt()
|
||||
}
|
||||
|
||||
/// Merge the weighted average of another sequence into this one.
|
||||
///
|
||||
/// ```
|
||||
/// use average::WeightedAverage2 as WeightedAverage;
|
||||
///
|
||||
/// let weighted_sequence: &[(f64, f64)] = &[
|
||||
/// (1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
|
||||
/// (6., 0.6), (7., 0.7), (8., 0.8), (9., 0.)];
|
||||
/// let (left, right) = weighted_sequence.split_at(3);
|
||||
/// let avg_total: WeightedAverage = weighted_sequence.iter().map(|&x| x).collect();
|
||||
/// let mut avg_left: WeightedAverage = left.iter().map(|&x| x).collect();
|
||||
/// let avg_right: WeightedAverage = right.iter().map(|&x| x).collect();
|
||||
/// avg_left.merge(&avg_right);
|
||||
/// assert!((avg_total.weighted_mean() - avg_left.weighted_mean()).abs() < 1e-15);
|
||||
/// assert!((avg_total.error() - avg_left.error()).abs() < 1e-15);
|
||||
/// ```
|
||||
pub fn merge(&mut self, other: &WeightedAverage) {
|
||||
// This is similar to the algorithm proposed by Chan et al. in 1979.
|
||||
//
|
||||
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
|
||||
{
|
||||
let total_weight_sum = self.weight_sum + other.weight_sum;
|
||||
self.weighted_avg = (self.weight_sum * self.weighted_avg
|
||||
+ other.weight_sum * other.weighted_avg)
|
||||
/ (self.weight_sum + other.weight_sum);
|
||||
self.weight_sum = total_weight_sum;
|
||||
self.weight_sum_sq += other.weight_sum_sq;
|
||||
}
|
||||
{
|
||||
let delta = other.unweighted_avg - self.unweighted_avg;
|
||||
let len_self = f64::approx_from(self.n).unwrap();
|
||||
let len_other = f64::approx_from(other.n).unwrap();
|
||||
let len_total = len_self + len_other;
|
||||
self.n += other.n;
|
||||
self.unweighted_avg = (len_self * self.unweighted_avg
|
||||
+ len_other * other.unweighted_avg)
|
||||
/ len_total;
|
||||
self.v += other.v + delta*delta * len_self * len_other / len_total;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl core::default::Default for WeightedAverage {
|
||||
fn default() -> WeightedAverage {
|
||||
WeightedAverage::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl core::iter::FromIterator<(f64, f64)> for WeightedAverage {
|
||||
fn from_iter<T>(iter: T) -> WeightedAverage
|
||||
where T: IntoIterator<Item=(f64, f64)>
|
||||
{
|
||||
let mut a = WeightedAverage::new();
|
||||
for (i, w) in iter {
|
||||
a.add(i, w);
|
||||
}
|
||||
a
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
use core::iter::Iterator;
|
||||
|
||||
#[test]
|
||||
fn trivial() {
|
||||
let mut a = WeightedAverage::new();
|
||||
assert_eq!(a.len(), 0);
|
||||
assert_eq!(a.sum_weights(), 0.);
|
||||
assert_eq!(a.sum_weights_sq(), 0.);
|
||||
a.add(1.0, 1.0);
|
||||
assert_eq!(a.len(), 1);
|
||||
assert_eq!(a.weighted_mean(), 1.0);
|
||||
assert_eq!(a.unweighted_mean(), 1.0);
|
||||
assert_eq!(a.sum_weights(), 1.0);
|
||||
assert_eq!(a.sum_weights_sq(), 1.0);
|
||||
assert_eq!(a.population_variance(), 0.0);
|
||||
assert_eq!(a.error(), 0.0);
|
||||
a.add(1.0, 1.0);
|
||||
assert_eq!(a.len(), 2);
|
||||
assert_eq!(a.weighted_mean(), 1.0);
|
||||
assert_eq!(a.unweighted_mean(), 1.0);
|
||||
assert_eq!(a.sum_weights(), 2.0);
|
||||
assert_eq!(a.sum_weights_sq(), 2.0);
|
||||
assert_eq!(a.population_variance(), 0.0);
|
||||
assert_eq!(a.error(), 0.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn simple() {
|
||||
let a: WeightedAverage = (1..6).map(|x| (f64::from(x), 1.0)).collect();
|
||||
assert_eq!(a.len(), 5);
|
||||
assert_eq!(a.weighted_mean(), 3.0);
|
||||
assert_eq!(a.unweighted_mean(), 3.0);
|
||||
assert_eq!(a.sum_weights(), 5.0);
|
||||
assert_eq!(a.sample_variance(), 2.5);
|
||||
assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn reference() {
|
||||
// Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf.
|
||||
let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.];
|
||||
let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73];
|
||||
let a: WeightedAverage = values.iter().zip(weights.iter())
|
||||
.map(|(x, w)| (*x, *w)).collect();
|
||||
assert_almost_eq!(a.weighted_mean(), 3.53486, 1e-5);
|
||||
assert_almost_eq!(a.sample_variance(), 1.7889, 1e-4);
|
||||
assert_eq!(a.sum_weights(), 10.47);
|
||||
assert_eq!(a.len(), 10);
|
||||
assert_almost_eq!(a.effective_len(), 8.2315, 1e-4);
|
||||
assert_almost_eq!(a.error(), f64::sqrt(0.2173), 1e-4);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn error_corner_case() {
|
||||
let values = &[1., 2.];
|
||||
let weights = &[0.5, 0.5];
|
||||
let a: WeightedAverage = values.iter().zip(weights.iter())
|
||||
.map(|(x, w)| (*x, *w)).collect();
|
||||
assert_eq!(a.error(), 0.5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn merge_unweighted() {
|
||||
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
|
||||
for mid in 0..sequence.len() {
|
||||
let (left, right) = sequence.split_at(mid);
|
||||
let avg_total: WeightedAverage = sequence.iter().map(|x| (*x, 1.)).collect();
|
||||
let mut avg_left: WeightedAverage = left.iter().map(|x| (*x, 1.)).collect();
|
||||
let avg_right: WeightedAverage = right.iter().map(|x| (*x, 1.)).collect();
|
||||
avg_left.merge(&avg_right);
|
||||
assert_eq!(avg_total.n, avg_left.n);
|
||||
assert_eq!(avg_total.weight_sum, avg_left.weight_sum);
|
||||
assert_eq!(avg_total.weight_sum_sq, avg_left.weight_sum_sq);
|
||||
assert_eq!(avg_total.weighted_avg, avg_left.weighted_avg);
|
||||
assert_eq!(avg_total.unweighted_avg, avg_left.unweighted_avg);
|
||||
assert_eq!(avg_total.v, avg_left.v);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn merge_weighted() {
|
||||
let sequence: &[(f64, f64)] = &[
|
||||
(1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
|
||||
(6., 0.6), (7., 0.7), (8., 0.8), (9., 0.)];
|
||||
for mid in 0..sequence.len() {
|
||||
let (left, right) = sequence.split_at(mid);
|
||||
let avg_total: WeightedAverage = sequence.iter().map(|&(x, w)| (x, w)).collect();
|
||||
let mut avg_left: WeightedAverage = left.iter().map(|&(x, w)| (x, w)).collect();
|
||||
let avg_right: WeightedAverage = right.iter().map(|&(x, w)| (x, w)).collect();
|
||||
avg_left.merge(&avg_right);
|
||||
assert_eq!(avg_total.n, avg_left.n);
|
||||
assert_almost_eq!(avg_total.weight_sum, avg_left.weight_sum, 1e-15);
|
||||
assert_eq!(avg_total.weight_sum_sq, avg_left.weight_sum_sq);
|
||||
assert_almost_eq!(avg_total.weighted_avg, avg_left.weighted_avg, 1e-15);
|
||||
assert_almost_eq!(avg_total.unweighted_avg, avg_left.unweighted_avg, 1e-15);
|
||||
assert_almost_eq!(avg_total.v, avg_left.v, 1e-14);
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user