#[macro_use] extern crate average; extern crate core; extern crate rand; use core::iter::Iterator; use rand::distributions::IndependentSample; use average::Histogram; define_histogram!(Histogram10, 10); #[test] fn with_const_width() { let mut h = Histogram10::with_const_width(-30., 70.); for i in -30..70 { h.add(f64::from(i)).unwrap(); } assert_eq!(h.bins(), &[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]); } #[test] fn from_ranges() { let mut h = Histogram10::from_ranges( [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 2.0].iter().cloned()).unwrap(); for &i in &[0.05, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } assert_eq!(h.bins(), &[1, 0, 0, 0, 0, 0, 1, 0, 0, 2]); } #[test] fn iter() { let mut h = Histogram10::from_ranges( [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 2.0].iter().cloned()).unwrap(); for &i in &[0.05, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } let iterated: Vec<((f64, f64), u64)> = h.iter().collect(); assert_eq!(&iterated, &[ ((0., 0.1), 1), ((0.1, 0.2), 0), ((0.2, 0.3), 0), ((0.3, 0.4), 0), ((0.4, 0.5), 0), ((0.5, 0.7), 0), ((0.7, 0.8), 1), ((0.8, 0.9), 0), ((0.9, 1.0), 0), ((1.0, 2.0), 2) ]); } #[test] fn normalized_bins() { let inf = std::f64::INFINITY; let mut h = Histogram10::from_ranges( [-inf, 0.1, 0.2, 0.3, 0.4, 0.4, 0.7, 0.8, 0.9, 1.0, inf].iter().cloned()).unwrap(); for &i in &[0.05, 0.1, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } let normalized: Vec = h.normalized_bins().collect(); let expected = [0., 10., 0., 0., 0., 0., 10., 0., 0., 0.]; for (a, b) in normalized.iter().zip(expected.iter()) { assert_almost_eq!(a, b, 1e-14); } } #[test] fn widths() { let inf = std::f64::INFINITY; let h = Histogram10::from_ranges( [-inf, 0.1, 0.2, 0.3, 0.4, 0.4, 0.7, 0.8, 0.9, 1.0, inf].iter().cloned()).unwrap(); let widths: Vec = h.widths().collect(); let expected = [inf, 0.1, 0.1, 0.1, 0., 0.3, 0.1, 0.1, 0.1, inf]; for (a, b) in widths.iter().zip(expected.iter()) { assert_almost_eq!(a, b, 1e-14); } } #[test] fn centers() { let inf = std::f64::INFINITY; let h = Histogram10::from_ranges( [-inf, 0.1, 0.2, 0.3, 0.4, 0.4, 0.7, 0.8, 0.9, 1.0, inf].iter().cloned()).unwrap(); let centers: Vec = h.centers().collect(); let expected = [-inf, 0.15, 0.25, 0.35, 0.4, 0.55, 0.75, 0.85, 0.95, inf]; for (a, b) in centers.iter().zip(expected.iter()) { assert_almost_eq!(a, b, 1e-14); } } #[test] fn from_ranges_infinity() { let inf = std::f64::INFINITY; let mut h = Histogram10::from_ranges( [-inf, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, inf].iter().cloned()).unwrap(); for &i in &[-100., -0.45, 0., 0.25, 0.4, 100.] { h.add(i).unwrap(); } assert_eq!(h.bins(), &[2, 0, 0, 0, 0, 1, 0, 1, 0, 2]); } #[test] fn from_ranges_invalid() { assert!(Histogram10::from_ranges([].iter().cloned()).is_err()); let valid = vec![0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 2.0]; assert!(Histogram10::from_ranges(valid.iter().cloned()).is_ok()); let mut invalid_nan = valid.clone(); invalid_nan[3] = std::f64::NAN; assert!(Histogram10::from_ranges(invalid_nan.iter().cloned()).is_err()); let mut invalid_order = valid.clone(); invalid_order[10] = 0.9; assert!(Histogram10::from_ranges(invalid_order.iter().cloned()).is_err()); let mut valid_empty_ranges = valid.clone(); valid_empty_ranges[1] = 0.; valid_empty_ranges[10] = 1.; } #[test] fn from_ranges_empty() { let mut h = Histogram10::from_ranges( [0., 0., 0.2, 0.3, 0.4, 0.5, 0.5, 0.8, 0.9, 2.0, 2.0].iter().cloned()).unwrap(); for &i in &[0.05, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } assert_eq!(h.bins(), &[0, 1, 0, 0, 0, 0, 1, 0, 2, 0]); } #[test] fn out_of_range() { let mut h = Histogram10::with_const_width(0., 100.); assert_eq!(h.add(-0.1), Err(())); assert_eq!(h.add(0.0), Ok(())); assert_eq!(h.add(1.0), Ok(())); assert_eq!(h.add(100.0), Err(())); assert_eq!(h.add(100.1), Err(())); } #[test] fn reset() { let mut h = Histogram10::with_const_width(0., 100.); for i in 0..100 { h.add(f64::from(i)).unwrap(); } assert_eq!(h.bins(), &[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]); h.reset(); assert_eq!(h.bins(), &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); } #[test] fn range_minmax() { let h = Histogram10::with_const_width(0., 100.); assert_eq!(h.range_min(), 0.); assert_eq!(h.range_max(), 100.); } #[test] fn add() { let mut h1 = Histogram10::with_const_width(0., 100.); let mut h2 = h1.clone(); let mut expected = h1.clone(); for i in 0..50 { h1.add(f64::from(i)).unwrap(); expected.add(f64::from(i)).unwrap(); } for i in 50..100 { h2.add(f64::from(i)).unwrap(); expected.add(f64::from(i)).unwrap(); } h1 += &h2; assert_eq!(h1.bins(), expected.bins()); } #[test] fn mul() { let mut h = Histogram10::with_const_width(0., 100.); let mut expected = h.clone(); for i in 0..100 { h.add(f64::from(i)).unwrap(); expected.add(f64::from(i)).unwrap(); expected.add(f64::from(i)).unwrap(); } h *= 2; assert_eq!(h.bins(), expected.bins()); } #[test] fn variance() { let mut h = Histogram10::with_const_width(-3., 3.); let normal = rand::distributions::Normal::new(0., 1.); let mut rng = rand::weak_rng(); for _ in 0..1000000 { let _ = h.add(normal.ind_sample(&mut rng)); } println!("{:?}", h); let sum: u64 = h.bins().iter().sum(); let sum = sum as f64; for (i, v) in h.variances().enumerate() { assert_almost_eq!(v, h.variance(i), 1e-14); let poissonian_variance = h.bins()[i] as f64; assert_almost_eq!(v.sqrt() / sum, poissonian_variance.sqrt() / sum, 1e-4); } }