#[macro_use] extern crate average; extern crate core; extern crate rand; use core::iter::Iterator; use average::Average; #[test] fn trivial() { let mut a = Average::new(); assert_eq!(a.len(), 0); a.add(1.0); assert_eq!(a.mean(), 1.0); assert_eq!(a.len(), 1); assert_eq!(a.sample_variance(), 0.0); assert_eq!(a.population_variance(), 0.0); assert_eq!(a.error(), 0.0); a.add(1.0); assert_eq!(a.mean(), 1.0); assert_eq!(a.len(), 2); assert_eq!(a.sample_variance(), 0.0); assert_eq!(a.population_variance(), 0.0); assert_eq!(a.error(), 0.0); } #[test] fn simple() { let a: Average = (1..6).map(f64::from).collect(); assert_eq!(a.mean(), 3.0); assert_eq!(a.len(), 5); assert_eq!(a.sample_variance(), 2.5); assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16); } #[test] fn numerically_unstable() { // The naive algorithm fails for this example due to cancelation. let big = 1e9; let sample = &[big + 4., big + 7., big + 13., big + 16.]; let a: Average = sample.iter().map(|x| *x).collect(); assert_eq!(a.sample_variance(), 30.); } #[test] fn normal_distribution() { use rand::distributions::{Normal, IndependentSample}; let normal = Normal::new(2.0, 3.0); let mut a = Average::new(); for _ in 0..1_000_000 { a.add(normal.ind_sample(&mut ::rand::thread_rng())); } assert_almost_eq!(a.mean(), 2.0, 1e-2); assert_almost_eq!(a.sample_variance().sqrt(), 3.0, 1e-2); }