#[macro_use] extern crate average; extern crate core; use core::iter::Iterator; use average::MeanWithError; #[test] fn trivial() { let mut a = MeanWithError::new(); assert_eq!(a.len(), 0); a.add(1.0); assert_eq!(a.mean(), 1.0); assert_eq!(a.len(), 1); assert_eq!(a.sample_variance(), 0.0); assert_eq!(a.population_variance(), 0.0); assert_eq!(a.error(), 0.0); a.add(1.0); assert_eq!(a.mean(), 1.0); assert_eq!(a.len(), 2); assert_eq!(a.sample_variance(), 0.0); assert_eq!(a.population_variance(), 0.0); assert_eq!(a.error(), 0.0); } #[test] fn simple() { let a: MeanWithError = (1..6).map(f64::from).collect(); assert_eq!(a.mean(), 3.0); assert_eq!(a.len(), 5); assert_eq!(a.sample_variance(), 2.5); assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16); } #[test] fn numerically_unstable() { // The naive algorithm fails for this example due to cancelation. let big = 1e9; let sample = &[big + 4., big + 7., big + 13., big + 16.]; let a: MeanWithError = sample.iter().map(|x| *x).collect(); assert_eq!(a.sample_variance(), 30.); } #[test] fn merge() { let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.]; for mid in 0..sequence.len() { let (left, right) = sequence.split_at(mid); let avg_total: MeanWithError = sequence.iter().map(|x| *x).collect(); let mut avg_left: MeanWithError = left.iter().map(|x| *x).collect(); let avg_right: MeanWithError = right.iter().map(|x| *x).collect(); avg_left.merge(&avg_right); assert_eq!(avg_total.len(), avg_left.len()); assert_eq!(avg_total.mean(), avg_left.mean()); assert_eq!(avg_total.sample_variance(), avg_left.sample_variance()); } }