#[macro_use] extern crate average; extern crate core; use core::iter::Iterator; use average::Histogram; define_histogram!(Histogram10, 10); #[test] fn with_const_width() { let mut h = Histogram10::with_const_width(0., 100.); for i in 0..100 { h.add(i as f64).unwrap(); } assert_eq!(h.bins(), &[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]); } #[test] fn from_ranges() { let mut h = Histogram10::from_ranges( [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 2.0].iter().cloned()).unwrap(); for &i in &[0.05, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } assert_eq!(h.bins(), &[1, 0, 0, 0, 0, 0, 1, 0, 0, 2]); } #[test] fn iter() { let mut h = Histogram10::from_ranges( [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 2.0].iter().cloned()).unwrap(); for &i in &[0.05, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } let iterated: Vec<((f64, f64), u64)> = h.iter().collect(); assert_eq!(&iterated, &[ ((0., 0.1), 1), ((0.1, 0.2), 0), ((0.2, 0.3), 0), ((0.3, 0.4), 0), ((0.4, 0.5), 0), ((0.5, 0.7), 0), ((0.7, 0.8), 1), ((0.8, 0.9), 0), ((0.9, 1.0), 0), ((1.0, 2.0), 2) ]); } #[test] fn normalized_bins() { let inf = std::f64::INFINITY; let mut h = Histogram10::from_ranges( [-inf, 0.1, 0.2, 0.3, 0.4, 0.4, 0.7, 0.8, 0.9, 1.0, inf].iter().cloned()).unwrap(); for &i in &[0.05, 0.1, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } let normalized: Vec = h.normalized_bins().collect(); let expected = [0., 10., 0., 0., 0., 0., 10., 0., 0., 0.]; for (a, b) in normalized.iter().zip(expected.iter()) { assert_almost_eq!(a, b, 1e-14); } } #[test] fn widths() { let inf = std::f64::INFINITY; let h = Histogram10::from_ranges( [-inf, 0.1, 0.2, 0.3, 0.4, 0.4, 0.7, 0.8, 0.9, 1.0, inf].iter().cloned()).unwrap(); let widths: Vec = h.widths().collect(); let expected = [inf, 0.1, 0.1, 0.1, 0., 0.3, 0.1, 0.1, 0.1, inf]; for (a, b) in widths.iter().zip(expected.iter()) { assert_almost_eq!(a, b, 1e-14); } } #[test] fn from_ranges_infinity() { let inf = std::f64::INFINITY; let mut h = Histogram10::from_ranges( [-inf, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, inf].iter().cloned()).unwrap(); for &i in &[-100., -0.45, 0., 0.25, 0.4, 100.] { h.add(i).unwrap(); } assert_eq!(h.bins(), &[2, 0, 0, 0, 0, 1, 0, 1, 0, 2]); } #[test] fn from_ranges_invalid() { assert!(Histogram10::from_ranges([].iter().cloned()).is_err()); let valid = vec![0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1.0, 2.0]; assert!(Histogram10::from_ranges(valid.iter().cloned()).is_ok()); let mut invalid_nan = valid.clone(); invalid_nan[3] = std::f64::NAN; assert!(Histogram10::from_ranges(invalid_nan.iter().cloned()).is_err()); let mut invalid_order = valid.clone(); invalid_order[10] = 0.9; assert!(Histogram10::from_ranges(invalid_order.iter().cloned()).is_err()); let mut valid_empty_ranges = valid.clone(); valid_empty_ranges[1] = 0.; valid_empty_ranges[10] = 1.; } #[test] fn from_ranges_empty() { let mut h = Histogram10::from_ranges( [0., 0., 0.2, 0.3, 0.4, 0.5, 0.5, 0.8, 0.9, 2.0, 2.0].iter().cloned()).unwrap(); for &i in &[0.05, 0.7, 1.0, 1.5] { h.add(i).unwrap(); } assert_eq!(h.bins(), &[0, 1, 0, 0, 0, 0, 1, 0, 2, 0]); } #[test] fn out_of_range() { let mut h = Histogram10::with_const_width(0., 100.); assert_eq!(h.add(-0.1), Err(())); assert_eq!(h.add(0.0), Ok(())); assert_eq!(h.add(1.0), Ok(())); assert_eq!(h.add(100.0), Err(())); assert_eq!(h.add(100.1), Err(())); }