#![cfg_attr(feature = "cargo-clippy", allow(float_cmp, map_clone))] #[macro_use] extern crate average; extern crate core; use core::iter::Iterator; use average::WeightedMeanWithError; #[test] fn trivial() { let mut a = WeightedMeanWithError::new(); assert_eq!(a.len(), 0); assert_eq!(a.sum_weights(), 0.); assert_eq!(a.sum_weights_sq(), 0.); a.add(1.0, 1.0); assert_eq!(a.len(), 1); assert_eq!(a.weighted_mean(), 1.0); assert_eq!(a.unweighted_mean(), 1.0); assert_eq!(a.sum_weights(), 1.0); assert_eq!(a.sum_weights_sq(), 1.0); assert_eq!(a.population_variance(), 0.0); assert_eq!(a.error(), 0.0); a.add(1.0, 1.0); assert_eq!(a.len(), 2); assert_eq!(a.weighted_mean(), 1.0); assert_eq!(a.unweighted_mean(), 1.0); assert_eq!(a.sum_weights(), 2.0); assert_eq!(a.sum_weights_sq(), 2.0); assert_eq!(a.population_variance(), 0.0); assert_eq!(a.error(), 0.0); } #[test] fn simple() { let a: WeightedMeanWithError = (1..6).map(|x| (f64::from(x), 1.0)).collect(); assert_eq!(a.len(), 5); assert_eq!(a.weighted_mean(), 3.0); assert_eq!(a.unweighted_mean(), 3.0); assert_eq!(a.sum_weights(), 5.0); assert_eq!(a.sample_variance(), 2.5); assert_almost_eq!(a.error(), f64::sqrt(0.5), 1e-16); } #[test] fn reference() { // Example from http://www.analyticalgroup.com/download/WEIGHTED_MEAN.pdf. let values = &[5., 5., 4., 4., 3., 4., 3., 2., 2., 1.]; let weights = &[1.23, 2.12, 1.23, 0.32, 1.53, 0.59, 0.94, 0.94, 0.84, 0.73]; let a: WeightedMeanWithError = values.iter().zip(weights.iter()) .map(|(x, w)| (*x, *w)).collect(); assert_almost_eq!(a.weighted_mean(), 3.53486, 1e-5); assert_almost_eq!(a.sample_variance(), 1.7889, 1e-4); assert_eq!(a.sum_weights(), 10.47); assert_eq!(a.len(), 10); assert_almost_eq!(a.effective_len(), 8.2315, 1e-4); assert_almost_eq!(a.error(), f64::sqrt(0.2173), 1e-4); } #[test] fn error_corner_case() { let values = &[1., 2.]; let weights = &[0.5, 0.5]; let a: WeightedMeanWithError = values.iter().zip(weights.iter()) .map(|(x, w)| (*x, *w)).collect(); assert_eq!(a.error(), 0.5); } #[test] fn merge_unweighted() { let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.]; for mid in 0..sequence.len() { let (left, right) = sequence.split_at(mid); let avg_total: WeightedMeanWithError = sequence.iter().map(|x| (*x, 1.)).collect(); let mut avg_left: WeightedMeanWithError = left.iter().map(|x| (*x, 1.)).collect(); let avg_right: WeightedMeanWithError = right.iter().map(|x| (*x, 1.)).collect(); avg_left.merge(&avg_right); assert_eq!(avg_total.sum_weights(), avg_left.sum_weights()); assert_eq!(avg_total.sum_weights_sq(), avg_left.sum_weights_sq()); assert_eq!(avg_total.len(), avg_left.len()); assert_eq!(avg_total.unweighted_mean(), avg_left.unweighted_mean()); assert_eq!(avg_total.weighted_mean(), avg_left.weighted_mean()); assert_eq!(avg_total.sample_variance(), avg_left.sample_variance()); } } #[test] fn merge_weighted() { let sequence: &[(f64, f64)] = &[ (1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5), (6., 0.6), (7., 0.7), (8., 0.8), (9., 0.)]; for mid in 0..sequence.len() { let (left, right) = sequence.split_at(mid); let avg_total: WeightedMeanWithError = sequence.iter().map(|&(x, w)| (x, w)).collect(); let mut avg_left: WeightedMeanWithError = left.iter().map(|&(x, w)| (x, w)).collect(); let avg_right: WeightedMeanWithError = right.iter().map(|&(x, w)| (x, w)).collect(); avg_left.merge(&avg_right); assert_eq!(avg_total.len(), avg_left.len()); assert_almost_eq!(avg_total.sum_weights(), avg_left.sum_weights(), 1e-15); assert_eq!(avg_total.sum_weights_sq(), avg_left.sum_weights_sq()); assert_almost_eq!(avg_total.weighted_mean(), avg_left.weighted_mean(), 1e-15); assert_almost_eq!(avg_total.unweighted_mean(), avg_left.unweighted_mean(), 1e-15); assert_almost_eq!(avg_total.sample_variance(), avg_left.sample_variance(), 1e-14); } }