This repository has been archived on 2020-05-25. You can view files and clone it, but cannot push or open issues or pull requests.
tdlib-fork/td/mtproto/crypto.cpp

442 lines
13 KiB
C++
Raw Normal View History

//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2018
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/mtproto/crypto.h"
#include "td/mtproto/mtproto_api.h"
#include "td/utils/crypto.h"
#include "td/utils/int_types.h" // for UInt256, UInt128, etc
#include "td/utils/logging.h"
#include "td/utils/misc.h"
#include "td/utils/Random.h"
#include "td/utils/ScopeGuard.h"
#include "td/utils/Slice.h"
#include "td/utils/Status.h"
#include "td/utils/tl_storers.h"
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include <cstring>
namespace td {
/*** RSA ***/
RSA::RSA(BigNum n, BigNum e) : n_(std::move(n)), e_(std::move(e)) {
e_.ensure_const_time();
}
RSA RSA::clone() const {
return RSA(n_.clone(), e_.clone());
}
Result<RSA> RSA::from_pem(Slice pem) {
init_crypto();
auto *bio =
BIO_new_mem_buf(const_cast<void *>(static_cast<const void *>(pem.ubegin())), narrow_cast<int32>(pem.size()));
if (bio == nullptr) {
return Status::Error("Cannot create BIO");
}
SCOPE_EXIT {
BIO_free(bio);
};
auto *rsa = RSA_new();
if (rsa == nullptr) {
return Status::Error("Cannot create RSA");
}
SCOPE_EXIT {
RSA_free(rsa);
};
if (!PEM_read_bio_RSAPublicKey(bio, &rsa, nullptr, nullptr)) {
return Status::Error("Error while reading rsa pubkey");
}
if (RSA_size(rsa) != 256) {
return Status::Error("RSA_size != 256");
}
const BIGNUM *n_num;
const BIGNUM *e_num;
#if OPENSSL_VERSION_NUMBER < 0x10100000L
n_num = rsa->n;
e_num = rsa->e;
#else
RSA_get0_key(rsa, &n_num, &e_num, nullptr);
#endif
auto n = static_cast<void *>(BN_dup(n_num));
auto e = static_cast<void *>(BN_dup(e_num));
if (n == nullptr || e == nullptr) {
return Status::Error("Cannot dup BIGNUM");
}
return RSA(BigNum::from_raw(n), BigNum::from_raw(e));
}
int64 RSA::get_fingerprint() const {
mtproto_api::rsa_public_key public_key;
// string objects are necessary, because mtproto_api::rsa_public_key contains Slice inside
string n_str = n_.to_binary();
string e_str = e_.to_binary();
public_key.n_ = n_str;
public_key.e_ = e_str;
size_t size = tl_calc_length(public_key);
std::vector<unsigned char> tmp(size);
size = tl_store_unsafe(public_key, tmp.data());
CHECK(size == tmp.size());
unsigned char key_sha1[20];
sha1(Slice(tmp.data(), tmp.size()), key_sha1);
return as<int64>(key_sha1 + 12);
}
size_t RSA::size() const {
// Checked in RSA::from_pem step
return 256;
}
size_t RSA::encrypt(unsigned char *from, size_t from_len, unsigned char *to) const {
CHECK(from_len > 0 && from_len <= 2550);
size_t pad = (25500 - from_len - 32) % 255 + 32;
size_t chunks = (from_len + pad) / 255;
int bits = n_.get_num_bits();
CHECK(bits >= 2041 && bits <= 2048);
CHECK(chunks * 255 == from_len + pad);
Random::secure_bytes(from + from_len, pad);
BigNumContext ctx;
BigNum y;
while (chunks-- > 0) {
BigNum x = BigNum::from_binary(Slice(from, 255));
BigNum::mod_exp(y, x, e_, n_, ctx);
string result = y.to_binary(256);
std::memcpy(to, result.c_str(), 256);
to += 256;
}
return chunks * 256;
}
void RSA::decrypt(Slice from, MutableSlice to) const {
CHECK(from.size() == 256);
BigNumContext ctx;
BigNum x = BigNum::from_binary(from);
BigNum y;
BigNum::mod_exp(y, x, e_, n_, ctx);
string result = y.to_binary(256);
std::memcpy(to.data(), result.c_str(), 256);
}
/*** DH ***/
Status DhHandshake::dh_check(Slice prime_str, const BigNum &prime, int32 g_int, const BigNum &g_a, const BigNum &g_b,
BigNumContext &ctx, DhCallback *callback) {
// 2. g generates a cyclic subgroup of prime order (p - 1) / 2, i.e. is a quadratic residue mod p.
// Since g is always equal to 2, 3, 4, 5, 6 or 7, this is easily done using quadratic reciprocity law,
// yielding a simple condition on
// * p mod 4g - namely, p mod 8 = 7 for g = 2; p mod 3 = 2 for g = 3;
// * no extra condition for g = 4;
// * p mod 5 = 1 or 4 for g = 5;
// * p mod 24 = 19 or 23 for g = 6;
// * p mod 7 = 3, 5 or 6 for g = 7.
bool mod_ok;
uint32 mod_r;
switch (g_int) {
case 2:
mod_ok = prime % 8 == 7u;
break;
case 3:
mod_ok = prime % 3 == 2u;
break;
case 4:
mod_ok = true;
break;
case 5:
mod_ok = (mod_r = prime % 5) == 1u || mod_r == 4u;
break;
case 6:
mod_ok = (mod_r = prime % 24) == 19u || mod_r == 23u;
break;
case 7:
mod_ok = (mod_r = prime % 7) == 3u || mod_r == 5u || mod_r == 6u;
break;
default:
mod_ok = false;
}
if (!mod_ok) {
return Status::Error("Bad prime mod 4g");
}
// IMPORTANT: Apart from the conditions on the Diffie-Hellman prime dh_prime and generator g, both sides are
// to check that g, g_a and g_b are greater than 1 and less than dh_prime - 1.
// We recommend checking that g_a and g_b are between 2^{2048-64} and dh_prime - 2^{2048-64} as well.
// check that 2^2047 <= p < 2^2048
if (prime.get_num_bits() != 2048) {
return Status::Error("p is not 2048-bit number");
}
BigNum left;
left.set_value(0);
left.set_bit(2048 - 64);
BigNum right;
BigNum::sub(right, prime, left);
if (BigNum::compare(left, g_a) > 0 || BigNum::compare(g_a, right) > 0 || BigNum::compare(left, g_b) > 0 ||
BigNum::compare(g_b, right) > 0) {
std::string x(2048, '0');
std::string y(2048, '0');
for (int i = 0; i < 2048; i++) {
if (g_a.is_bit_set(i)) {
x[i] = '1';
}
if (g_b.is_bit_set(i)) {
y[i] = '1';
}
}
LOG(ERROR) << x;
LOG(ERROR) << y;
return Status::Error("g^a or g^b is not between 2^{2048-64} and dh_prime - 2^{2048-64}");
}
// check whether p = dh_prime is a safe 2048-bit prime (meaning that both p and (p - 1) / 2 are prime)
int is_good_prime = -1;
if (callback) {
is_good_prime = callback->is_good_prime(prime_str);
}
if (is_good_prime != -1) {
return is_good_prime ? Status::OK() : Status::Error("p or (p - 1) / 2 is not a prime number");
}
if (!prime.is_prime(ctx)) {
if (callback) {
callback->add_bad_prime(prime_str);
}
return Status::Error("p is not a prime number");
}
BigNum half_prime = prime;
half_prime -= 1;
half_prime /= 2;
if (!half_prime.is_prime(ctx)) {
if (callback) {
callback->add_bad_prime(prime_str);
}
return Status::Error("(p - 1) / 2 is not a prime number");
}
if (callback) {
callback->add_good_prime(prime_str);
}
// TODO(perf):
// Checks:
// After g and p have been checked by the client, it makes sense to cache the result,
// so as not to repeat lengthy computations in future.
// If the verification takes too long time (which is the case for older mobile devices),
// one might initially run only 15 Miller-Rabin iterations for verifying primeness of p and (p - 1)/2
// with error probability not exceeding one billionth, and do more iterations later in the background.
// Another optimization is to embed into the client application code a small table with some known "good"
// couples (g,p) (or just known safe primes p, since the condition on g is easily verified during execution),
// checked during code generation phase, so as to avoid doing such verification during runtime altogether.
// Server changes these values rarely, thus one usually has to put the current value of server's dh_prime
// into such a table. For example, current value of dh_prime equals (in big-endian byte order) ...
return Status::OK();
}
int64 dh_auth_key_id(const string &auth_key) {
UInt<160> auth_key_sha1;
sha1(auth_key, auth_key_sha1.raw);
return as<int64>(auth_key_sha1.raw + 12);
}
void DhHandshake::set_config(int32 g_int, Slice prime_str) {
has_config_ = true;
prime_ = BigNum::from_binary(prime_str);
prime_str_ = prime_str.str();
b_ = BigNum();
g_b_ = BigNum();
BigNum::random(b_, 2048, -1, 0);
// g^b
g_int_ = g_int;
g_.set_value(g_int_);
BigNum::mod_exp(g_b_, g_, b_, prime_, ctx_);
}
void DhHandshake::set_g_a_hash(Slice g_a_hash) {
has_g_a_hash_ = true;
ok_g_a_hash_ = false;
CHECK(!has_g_a_);
g_a_hash_ = g_a_hash.str();
}
void DhHandshake::set_g_a(Slice g_a_str) {
has_g_a_ = true;
if (has_g_a_hash_) {
string g_a_hash(32, ' ');
sha256(g_a_str, g_a_hash);
ok_g_a_hash_ = g_a_hash == g_a_hash_;
}
g_a_ = BigNum::from_binary(g_a_str);
}
string DhHandshake::get_g_a() const {
CHECK(has_g_a_);
return g_a_.to_binary();
}
string DhHandshake::get_g_b() const {
CHECK(has_config_);
return g_b_.to_binary();
}
string DhHandshake::get_g_b_hash() const {
string g_b_hash(32, ' ');
sha256(get_g_b(), g_b_hash);
return g_b_hash;
}
Status DhHandshake::run_checks(DhCallback *callback) {
CHECK(has_g_a_ && has_config_);
if (has_g_a_hash_ && !ok_g_a_hash_) {
return Status::Error("g_a_hash mismatch");
}
return dh_check(prime_str_, prime_, g_int_, g_a_, g_b_, ctx_, callback);
}
std::pair<int64, string> DhHandshake::gen_key() {
CHECK(has_g_a_ && has_config_);
BigNum g_ab;
BigNum::mod_exp(g_ab, g_a_, b_, prime_, ctx_);
string key = g_ab.to_binary(2048 / 8);
auto key_id = calc_key_id(key);
return std::pair<int64, string>(key_id, std::move(key));
}
int64 DhHandshake::calc_key_id(const string &auth_key) {
UInt<160> auth_key_sha1;
sha1(auth_key, auth_key_sha1.raw);
return as<int64>(auth_key_sha1.raw + 12);
}
Status dh_handshake(int g_int, Slice prime_str, Slice g_a_str, string *g_b_str, string *g_ab_str,
DhCallback *callback) {
DhHandshake handshake;
handshake.set_config(g_int, prime_str);
handshake.set_g_a(g_a_str);
TRY_STATUS(handshake.run_checks(callback));
*g_b_str = handshake.get_g_b();
*g_ab_str = handshake.gen_key().second;
return Status::OK();
}
/*** KDF ***/
void KDF(const string &auth_key, const UInt128 &msg_key, int X, UInt256 *aes_key, UInt256 *aes_iv) {
CHECK(auth_key.size() == 2048 / 8);
const char *auth_key_raw = auth_key.c_str();
uint8 buf[48];
as<UInt128>(buf) = msg_key;
as<UInt256>(buf + 16) = as<UInt256>(auth_key_raw + X);
uint8 sha1_a[20];
sha1(Slice(buf, 48), sha1_a);
as<UInt128>(buf) = as<UInt128>(auth_key_raw + X + 32);
as<UInt128>(buf + 16) = msg_key;
as<UInt128>(buf + 32) = as<UInt128>(auth_key_raw + X + 48);
uint8 sha1_b[20];
sha1(Slice(buf, 48), sha1_b);
as<UInt256>(buf) = as<UInt256>(auth_key_raw + 64 + X);
as<UInt128>(buf + 32) = msg_key;
uint8 sha1_c[20];
sha1(Slice(buf, 48), sha1_c);
as<UInt128>(buf) = msg_key;
as<UInt256>(buf + 16) = as<UInt256>(auth_key_raw + 96 + X);
uint8 sha1_d[20];
sha1(Slice(buf, 48), sha1_d);
as<uint64>(aes_key->raw) = as<uint64>(sha1_a);
as<UInt<96>>(aes_key->raw + 8) = as<UInt<96>>(sha1_b + 8);
as<UInt<96>>(aes_key->raw + 20) = as<UInt<96>>(sha1_c + 4);
as<UInt<96>>(aes_iv->raw) = as<UInt<96>>(sha1_a + 8);
as<uint64>(aes_iv->raw + 12) = as<uint64>(sha1_b);
as<uint32>(aes_iv->raw + 20) = as<uint32>(sha1_c + 16);
as<uint64>(aes_iv->raw + 24) = as<uint64>(sha1_d);
}
void tmp_KDF(const UInt128 &server_nonce, const UInt256 &new_nonce, UInt256 *tmp_aes_key, UInt256 *tmp_aes_iv) {
// tmp_aes_key := SHA1(new_nonce + server_nonce) + substr (SHA1(server_nonce + new_nonce), 0, 12);
uint8 buf[512 / 8];
as<UInt256>(buf) = new_nonce;
as<UInt128>(buf + 32) = server_nonce;
sha1(Slice(buf, 48), tmp_aes_key->raw);
as<UInt128>(buf) = server_nonce;
as<UInt256>(buf + 16) = new_nonce;
uint8 sha1_server_new[20];
sha1(Slice(buf, 48), sha1_server_new);
as<UInt<96>>(tmp_aes_key->raw + 20) = as<UInt<96>>(sha1_server_new);
// tmp_aes_iv := substr (SHA1(server_nonce + new_nonce), 12, 8) + SHA1(new_nonce + new_nonce) + substr (new_nonce,
// 0,
// 4);
as<uint64>(tmp_aes_iv->raw) = as<uint64>(sha1_server_new + 12);
as<UInt256>(buf) = new_nonce;
as<UInt256>(buf + 32) = new_nonce;
sha1(Slice(buf, 64), tmp_aes_iv->raw + 8);
as<uint32>(tmp_aes_iv->raw + 28) = as<uint32>(new_nonce.raw);
}
// msg_key_large = SHA256 (substr (auth_key, 88+x, 32) + plaintext + random_padding);
// msg_key = substr (msg_key_large, 8, 16);
void KDF2(Slice auth_key, const UInt128 &msg_key, int X, UInt256 *aes_key, UInt256 *aes_iv) {
uint8 buf_raw[36 + 16];
MutableSlice buf(buf_raw, 36 + 16);
Slice msg_key_slice(msg_key.raw, sizeof(msg_key.raw));
// sha256_a = SHA256 (msg_key + substr (auth_key, x, 36));
buf.copy_from(msg_key_slice);
buf.substr(16, 36).copy_from(auth_key.substr(X, 36));
uint8 sha256_a_raw[32];
MutableSlice sha256_a(sha256_a_raw, 32);
sha256(buf, sha256_a);
// sha256_b = SHA256 (substr (auth_key, 40+x, 36) + msg_key);
buf.copy_from(auth_key.substr(40 + X, 36));
buf.substr(36).copy_from(msg_key_slice);
uint8 sha256_b_raw[32];
MutableSlice sha256_b(sha256_b_raw, 32);
sha256(buf, sha256_b);
// aes_key = substr (sha256_a, 0, 8) + substr (sha256_b, 8, 16) + substr (sha256_a, 24, 8);
MutableSlice aes_key_slice(aes_key->raw, sizeof(aes_key->raw));
aes_key_slice.copy_from(sha256_a.substr(0, 8));
aes_key_slice.substr(8).copy_from(sha256_b.substr(8, 16));
aes_key_slice.substr(24).copy_from(sha256_a.substr(24, 8));
// aes_iv = substr (sha256_b, 0, 8) + substr (sha256_a, 8, 16) + substr (sha256_b, 24, 8);
MutableSlice aes_iv_slice(aes_iv->raw, sizeof(aes_iv->raw));
aes_iv_slice.copy_from(sha256_b.substr(0, 8));
aes_iv_slice.substr(8).copy_from(sha256_a.substr(8, 16));
aes_iv_slice.substr(24).copy_from(sha256_b.substr(24, 8));
}
} // namespace td