// // Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2018 // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #pragma once #include "td/utils/common.h" #include "td/utils/logging.h" #include "td/utils/Slice.h" #include "td/utils/Status.h" #include "td/utils/StringBuilder.h" #include #include #include #include #include #include #include #include namespace td { char *str_dup(Slice str); template std::pair split(T s, char delimiter = ' ') { auto delimiter_pos = s.find(delimiter); if (delimiter_pos == string::npos) { return {std::move(s), T()}; } else { return {s.substr(0, delimiter_pos), s.substr(delimiter_pos + 1)}; } } template vector full_split(T s, char delimiter = ' ') { T next; vector result; while (!s.empty()) { std::tie(next, s) = split(s, delimiter); result.push_back(next); } return result; } string implode(vector v, char delimiter = ' '); namespace detail { template struct transform_helper { template auto transform(const T &v, const Func &f) { vector result; result.reserve(v.size()); for (auto &x : v) { result.push_back(f(x)); } return result; } template auto transform(T &&v, const Func &f) { vector result; result.reserve(v.size()); for (auto &x : v) { result.push_back(f(std::move(x))); } return result; } }; } // namespace detail template auto transform(T &&v, const Func &f) { return detail::transform_helper>().transform(std::forward(v), f); } template void reset_to_empty(T &value) { using std::swap; std::decay_t tmp; swap(tmp, value); } template auto append(vector &destination, const vector &source) { destination.insert(destination.end(), source.begin(), source.end()); } template auto append(vector &destination, vector &&source) { if (destination.empty()) { destination.swap(source); return; } destination.reserve(destination.size() + source.size()); std::move(source.begin(), source.end(), std::back_inserter(destination)); reset_to_empty(source); } inline bool begins_with(Slice str, Slice prefix) { return prefix.size() <= str.size() && prefix == Slice(str.data(), prefix.size()); } inline bool ends_with(Slice str, Slice suffix) { return suffix.size() <= str.size() && suffix == Slice(str.data() + str.size() - suffix.size(), suffix.size()); } inline char to_lower(char c) { if ('A' <= c && c <= 'Z') { return static_cast(c - 'A' + 'a'); } return c; } inline void to_lower_inplace(MutableSlice slice) { for (auto &c : slice) { c = to_lower(c); } } inline string to_lower(Slice slice) { auto result = slice.str(); to_lower_inplace(result); return result; } inline char to_upper(char c) { if ('a' <= c && c <= 'z') { return static_cast(c - 'a' + 'A'); } return c; } inline void to_upper_inplace(MutableSlice slice) { for (auto &c : slice) { c = to_upper(c); } } inline string to_upper(Slice slice) { auto result = slice.str(); to_upper_inplace(result); return result; } inline bool is_space(char c) { return c == ' ' || c == '\t' || c == '\r' || c == '\n' || c == '\0' || c == '\v'; } inline bool is_alpha(char c) { c |= 0x20; return 'a' <= c && c <= 'z'; } inline bool is_digit(char c) { return '0' <= c && c <= '9'; } inline bool is_alnum(char c) { return is_alpha(c) || is_digit(c); } inline bool is_hex_digit(char c) { if (is_digit(c)) { return true; } c |= 0x20; return 'a' <= c && c <= 'f'; } template T trim(T str) { auto begin = str.data(); auto end = begin + str.size(); while (begin < end && is_space(*begin)) { begin++; } while (begin < end && is_space(end[-1])) { end--; } if (static_cast(end - begin) == str.size()) { return std::move(str); } return T(begin, end); } string oneline(Slice str); template std::enable_if_t::value, T> to_integer(Slice str) { using unsigned_T = typename std::make_unsigned::type; unsigned_T integer_value = 0; auto begin = str.begin(); auto end = str.end(); bool is_negative = false; if (begin != end && *begin == '-') { is_negative = true; begin++; } while (begin != end && is_digit(*begin)) { integer_value = static_cast(integer_value * 10 + (*begin++ - '0')); } if (integer_value > static_cast(std::numeric_limits::max())) { static_assert(~0 + 1 == 0, "Two's complement"); // Use ~x + 1 instead of -x to suppress Visual Studio warning. integer_value = static_cast(~integer_value + 1); is_negative = !is_negative; if (integer_value > static_cast(std::numeric_limits::max())) { return std::numeric_limits::min(); } } return is_negative ? static_cast(-static_cast(integer_value)) : static_cast(integer_value); } template std::enable_if_t::value, T> to_integer(Slice str) { T integer_value = 0; auto begin = str.begin(); auto end = str.end(); while (begin != end && is_digit(*begin)) { integer_value = static_cast(integer_value * 10 + (*begin++ - '0')); } return integer_value; } template Result to_integer_safe(Slice str) { auto res = to_integer(str); if (to_string(res) != str) { return Status::Error(PSLICE() << "Can't parse \"" << str << "\" as number"); } return res; } inline int hex_to_int(char c) { if (is_digit(c)) { return c - '0'; } c |= 0x20; if ('a' <= c && c <= 'f') { return c - 'a' + 10; } return 16; } template typename std::enable_if::value, T>::type hex_to_integer(Slice str) { T integer_value = 0; auto begin = str.begin(); auto end = str.end(); while (begin != end && is_hex_digit(*begin)) { integer_value = static_cast(integer_value * 16 + hex_to_int(*begin++)); } return integer_value; } double to_double(Slice str); template T clamp(T value, T min_value, T max_value) { if (value < min_value) { return min_value; } if (value > max_value) { return max_value; } return value; } // run-time checked narrowing cast (type conversion): namespace detail { template struct is_same_signedness : public std::integral_constant::value == std::is_signed::value> {}; template struct safe_undeflying_type { using type = T; }; template struct safe_undeflying_type::value>> { using type = std::underlying_type_t; }; } // namespace detail template R narrow_cast(const A &a) { using RT = typename detail::safe_undeflying_type::type; using AT = typename detail::safe_undeflying_type::type; static_assert(std::is_integral::value, "expected integral type to cast to"); static_assert(std::is_integral::value, "expected integral type to cast from"); auto r = R(a); CHECK(A(r) == a); CHECK((detail::is_same_signedness::value) || ((static_cast(r) < RT{}) == (static_cast(a) < AT{}))); return r; } template Result narrow_cast_safe(const A &a) { using RT = typename detail::safe_undeflying_type::type; using AT = typename detail::safe_undeflying_type::type; static_assert(std::is_integral::value, "expected integral type to cast to"); static_assert(std::is_integral::value, "expected integral type to cast from"); auto r = R(a); if (!(A(r) == a)) { return Status::Error("Narrow cast failed"); } if (!((detail::is_same_signedness::value) || ((static_cast(r) < RT{}) == (static_cast(a) < AT{})))) { return Status::Error("Narrow cast failed"); } return r; } template bool is_aligned_pointer(const T *pointer) { static_assert(Alignment > 0 && (Alignment & (Alignment - 1)) == 0, "Wrong alignment"); return (reinterpret_cast(static_cast(pointer)) & (Alignment - 1)) == 0; } } // namespace td