// // Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2020 // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #include "td/utils/port/Stat.h" #include "td/utils/port/detail/PollableFd.h" #include "td/utils/port/FileFd.h" #if TD_PORT_POSIX #include "td/utils/format.h" #include "td/utils/logging.h" #include "td/utils/misc.h" #include "td/utils/port/Clocks.h" #include "td/utils/ScopeGuard.h" #include #if TD_DARWIN #include #include #endif // We don't want warnings from system headers #if TD_GCC #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wconversion" #endif #include #if TD_GCC #pragma GCC diagnostic pop #endif #if TD_ANDROID || TD_TIZEN #include #endif namespace td { namespace detail { template struct voider { using type = void; }; template using void_t = typename voider::type; template struct TimeNsec { static std::pair get(const T &) { T().warning("Platform lacks support of precise access/modification file times, comment this line to continue"); return {0, 0}; } }; // remove libc compatibility hacks if any: we have our own hacks #ifdef st_atimespec #undef st_atimespec #endif #ifdef st_atimensec #undef st_atimensec #endif #ifdef st_atime_nsec #undef st_atime_nsec #endif template struct TimeNsec> { static std::pair get( const T &s) { return {s.st_atimespec.tv_nsec, s.st_mtimespec.tv_nsec}; } }; template struct TimeNsec> { static std::pair get(const T &s) { return {s.st_atimensec, s.st_mtimensec}; } }; template struct TimeNsec> { static std::pair get(const T &s) { return {s.st_atim.tv_nsec, s.st_mtim.tv_nsec}; } }; template struct TimeNsec> { static std::pair get(const T &s) { return {s.st_atime_nsec, s.st_mtime_nsec}; } }; Stat from_native_stat(const struct ::stat &buf) { auto time_nsec = TimeNsec::get(buf); Stat res; res.atime_nsec_ = static_cast(buf.st_atime) * 1000000000 + time_nsec.first; res.mtime_nsec_ = static_cast(buf.st_mtime) * 1000000000 + time_nsec.second / 1000 * 1000; res.size_ = buf.st_size; res.real_size_ = buf.st_blocks * 512; res.is_dir_ = (buf.st_mode & S_IFMT) == S_IFDIR; res.is_reg_ = (buf.st_mode & S_IFMT) == S_IFREG; return res; } Result fstat(int native_fd) { struct ::stat buf; if (detail::skip_eintr([&] { return ::fstat(native_fd, &buf); }) < 0) { return OS_ERROR(PSLICE() << "Stat for fd " << native_fd << " failed"); } return detail::from_native_stat(buf); } Status update_atime(int native_fd) { #if TD_LINUX timespec times[2]; // access time times[0].tv_nsec = UTIME_NOW; times[0].tv_sec = 0; // modify time times[1].tv_nsec = UTIME_OMIT; times[1].tv_sec = 0; if (futimens(native_fd, times) < 0) { auto status = OS_ERROR(PSLICE() << "futimens " << tag("fd", native_fd)); LOG(WARNING) << status; return status; } return Status::OK(); #elif TD_DARWIN TRY_RESULT(info, fstat(native_fd)); timeval upd[2]; auto now = Clocks::system(); // access time upd[0].tv_sec = static_cast(now); upd[0].tv_usec = static_cast((now - static_cast(upd[0].tv_sec)) * 1000000); // modify time upd[1].tv_sec = static_cast(info.mtime_nsec_ / 1000000000ll); upd[1].tv_usec = static_cast(info.mtime_nsec_ % 1000000000ll / 1000); if (futimes(native_fd, upd) < 0) { auto status = OS_ERROR(PSLICE() << "futimes " << tag("fd", native_fd)); LOG(WARNING) << status; return status; } return Status::OK(); #else return Status::Error("Not supported"); // timespec times[2]; //// access time // times[0].tv_nsec = UTIME_NOW; //// modify time // times[1].tv_nsec = UTIME_OMIT; //// int err = syscall(__NR_utimensat, native_fd, nullptr, times, 0); // if (futimens(native_fd, times) < 0) { // auto status = OS_ERROR(PSLICE() << "futimens " << tag("fd", native_fd)); // LOG(WARNING) << status; // return status; // } // return Status::OK(); #endif } } // namespace detail Status update_atime(CSlice path) { TRY_RESULT(file, FileFd::open(path, FileFd::Flags::Read)); SCOPE_EXIT { file.close(); }; return detail::update_atime(file.get_native_fd().fd()); } Result stat(CSlice path) { struct ::stat buf; int err = detail::skip_eintr([&] { return ::stat(path.c_str(), &buf); }); if (err < 0) { return OS_ERROR(PSLICE() << "Stat for file \"" << path << "\" failed"); } return detail::from_native_stat(buf); } Result mem_stat() { #if TD_DARWIN task_basic_info t_info; mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT; if (KERN_SUCCESS != task_info(mach_task_self(), TASK_BASIC_INFO, reinterpret_cast(&t_info), &t_info_count)) { return Status::Error("Call to task_info failed"); } MemStat res; res.resident_size_ = t_info.resident_size; res.virtual_size_ = t_info.virtual_size; res.resident_size_peak_ = 0; res.virtual_size_peak_ = 0; return res; #elif TD_LINUX || TD_ANDROID || TD_TIZEN TRY_RESULT(fd, FileFd::open("/proc/self/status", FileFd::Read)); SCOPE_EXIT { fd.close(); }; constexpr int TMEM_SIZE = 10000; char mem[TMEM_SIZE]; TRY_RESULT(size, fd.read(MutableSlice(mem, TMEM_SIZE - 1))); CHECK(size < TMEM_SIZE - 1); mem[size] = 0; const char *s = mem; MemStat res; while (*s) { const char *name_begin = s; while (*s != 0 && *s != '\n') { s++; } auto name_end = name_begin; while (is_alpha(*name_end)) { name_end++; } Slice name(name_begin, name_end); uint64 *x = nullptr; if (name == "VmPeak") { x = &res.virtual_size_peak_; } if (name == "VmSize") { x = &res.virtual_size_; } if (name == "VmHWM") { x = &res.resident_size_peak_; } if (name == "VmRSS") { x = &res.resident_size_; } if (x != nullptr) { Slice value(name_end, s); if (!value.empty() && value[0] == ':') { value.remove_prefix(1); } value = trim(value); value = split(value).first; auto r_mem = to_integer_safe(value); if (r_mem.is_error()) { LOG(ERROR) << "Failed to parse memory stats " << tag("name", name) << tag("value", value); *x = static_cast(-1); } else { *x = r_mem.ok() * 1024; // memory is in KB } } if (*s == 0) { break; } s++; } return res; #else return Status::Error("Not supported"); #endif } #if TD_LINUX Status cpu_stat_self(CpuStat &stat) { TRY_RESULT(fd, FileFd::open("/proc/self/stat", FileFd::Read)); SCOPE_EXIT { fd.close(); }; constexpr int TMEM_SIZE = 10000; char mem[TMEM_SIZE]; TRY_RESULT(size, fd.read(MutableSlice(mem, TMEM_SIZE - 1))); CHECK(size < TMEM_SIZE - 1); mem[size] = 0; char *s = mem; char *t = mem + size; int pass_cnt = 0; while (pass_cnt < 15) { if (pass_cnt == 13) { stat.process_user_ticks = to_integer(Slice(s, t)); } if (pass_cnt == 14) { stat.process_system_ticks = to_integer(Slice(s, t)); } while (*s && *s != ' ') { s++; } if (*s == ' ') { s++; pass_cnt++; } else { return Status::Error("Unexpected end of proc file"); } } return Status::OK(); } Status cpu_stat_total(CpuStat &stat) { TRY_RESULT(fd, FileFd::open("/proc/stat", FileFd::Read)); SCOPE_EXIT { fd.close(); }; constexpr int TMEM_SIZE = 10000; char mem[TMEM_SIZE]; TRY_RESULT(size, fd.read(MutableSlice(mem, TMEM_SIZE - 1))); CHECK(size < TMEM_SIZE - 1); mem[size] = 0; uint64 sum = 0, cur = 0; for (size_t i = 0; i < size; i++) { int c = mem[i]; if (c >= '0' && c <= '9') { cur = cur * 10 + (uint64)c - '0'; } else { sum += cur; cur = 0; if (c == '\n') { break; } } } stat.total_ticks = sum; return Status::OK(); } #endif Result cpu_stat() { #if TD_LINUX CpuStat stat; TRY_STATUS(cpu_stat_self(stat)); TRY_STATUS(cpu_stat_total(stat)); return stat; #else return Status::Error("Not supported"); #endif } } // namespace td #endif #if TD_PORT_WINDOWS namespace td { Result stat(CSlice path) { TRY_RESULT(fd, FileFd::open(path, FileFd::Flags::Read | FileFd::PrivateFlags::WinStat)); return fd.stat(); } Result cpu_stat() { return Status::Error("Not supported"); } } // namespace td #endif