GitOrigin-RevId: 1fd0b8e824620c90901168a2d12e97b92b76e37a
TDLib
TDLib (Telegram Database library) is a cross-platform library for building Telegram clients. It can be easily used from almost any programming language.
Table of Contents
- Features
- Examples and documentation
- Dependencies
- Building
- Installing dependencies
- Using in CMake C++ projects
- Using in Java projects
- Using in .NET projects
- Using with other programming languages
- License
Features
TDLib
has many advantages. Notably TDLib
is:
- Cross-platform:
TDLib
can be used on Android, iOS, Windows, macOS, Linux, FreeBSD, OpenBSD, NetBSD, Windows Phone, WebAssembly, watchOS, tvOS, Tizen, Cygwin. It should also work on other *nix systems with or without minimal effort. - Multilanguage:
TDLib
can be easily used with any programming language that is able to execute C functions. Additionally it already has native Java (usingJNI
) bindings and .NET (usingC++/CLI
andC++/CX
) bindings. - Easy to use:
TDLib
takes care of all network implementation details, encryption and local data storage. - High-performance: in the Telegram Bot API, each
TDLib
instance handles more than 24000 active bots simultaneously. - Well-documented: all
TDLib
API methods and public interfaces are fully documented. - Consistent:
TDLib
guarantees that all updates are delivered in the right order. - Reliable:
TDLib
remains stable on slow and unreliable Internet connections. - Secure: all local data is encrypted using a user-provided encryption key.
- Fully-asynchronous: requests to
TDLib
don't block each other or anything else, responses are sent when they are available.
Examples and documentation
Take a look at our examples.
See our Getting Started tutorial for a description of basic TDLib concepts.
See a TDLib build instructions generator for detailed instructions on how to build TDLib.
See description of our JSON, C++, Java and .NET interfaces.
See the td_api.tl scheme or the automatically generated HTML documentation
for a list of all available TDLib
methods and classes.
Dependencies
TDLib
depends on:
- C++14 compatible compiler (Clang 3.4+, GCC 4.9+, MSVC 19.0+ (Visual Studio 2015+), Intel C++ Compiler 17+)
- OpenSSL
- zlib
- gperf (build only)
- CMake (3.0.2+, build only)
- PHP (optional, for documentation generation)
- Doxygen (optional, for documentation generation)
Building
The simplest way to build TDLib
is to use our TDLib build instructions generator.
You need only to choose your programming language and target operating system to receive complete build instructions.
In general, you need to install all TDLib
dependencies as described in Installing dependencies.
Then enter directory containing TDLib
sources and compile them using CMake:
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build .
To build TDLib
on low memory devices you can run SplitSource.php script
before compiling main TDLib
source code and compile only needed targets:
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build . --target prepare_cross_compiling
cd ..
php SplitSource.php
cd build
cmake --build . --target tdjson
cmake --build . --target tdjson_static
cd ..
php SplitSource.php --undo
In our tests clang 6.0 with libc++ required less than 500 MB of RAM per file and GCC 4.9/6.3 used less than 1 GB of RAM per file.
Installing dependencies
macOS
- Install the latest Xcode command line tools, for example, via
xcode-select --install
. - Install other dependencies, for example, using Homebrew:
brew install gperf cmake openssl
- Build
TDLib
with CMake as explained in building. You will likely need to manually specify path to the installed OpenSSL to CMake, e.g.,
cmake -DCMAKE_BUILD_TYPE=Release -DOPENSSL_ROOT_DIR=/usr/local/opt/openssl/ ..
Windows
- Download and install Microsoft Visual Studio 2015 or later.
- Download and install gperf. Add the path to gperf.exe to the PATH environment variable.
- Install vcpkg.
- Run the following commands to install
TDLib
dependencies using vcpkg:
cd <path to vcpkg>
.\vcpkg.exe install openssl:x64-windows openssl:x86-windows zlib:x64-windows zlib:x86-windows
- Download and install CMake; choose "Add CMake to the system PATH" option while installing.
- Build
TDLib
with CMake as explained in building, but instead ofcmake -DCMAKE_BUILD_TYPE=Release ..
use
cmake -DCMAKE_TOOLCHAIN_FILE=<path to vcpkg>\scripts\buildsystems\vcpkg.cmake ..
To build 64-bit TDLib
using MSVC, you will need to additionally specify parameter -A x64
to CMake.
To build TDLib
in Release mode using MSVC, you will need to additionally specify parameter --config Release
to the cmake --build .
command.
Linux
- Install all dependencies using your package manager.
Using in CMake C++ projects
For C++ projects that use CMake, the best approach is to build TDLib
as part of your project or to use a prebuilt installation.
There are several libraries that you could use in your CMake project:
- Td::TdJson, Td::TdJsonStatic — dynamic and static version of a JSON interface. This has a simple C interface, so it can be easily used with any programming language that is able to execute C functions. See td_json_client and td_log documentation for more information.
- Td::TdStatic — static library with C++ interface for general usage. See Client and Log documentation for more information.
- Td::TdCoreStatic — static library with low-level C++ interface intended mostly for internal usage. See ClientActor and Log documentation for more information.
For example, part of your CMakeLists.txt may look like this:
add_subdirectory(td)
target_link_libraries(YourTarget PRIVATE Td::TdStatic)
Or you could install TDLib
and then reference it in your CMakeLists.txt like this:
find_package(Td 1.4.1 REQUIRED)
target_link_libraries(YourTarget PRIVATE Td::TdStatic)
See example/cpp/CMakeLists.txt.
Using in Java projects
TDLib
provides native Java interface through JNI. To enable it, specify option -DTD_ENABLE_JNI=ON
to CMake.
See example/java for example of using TDLib
from Java and detailed build and usage instructions.
Using in .NET projects
TDLib
provides native .NET interface through C++/CLI
and C++/CX
. To enable it, specify option -DTD_ENABLE_DOTNET=ON
to CMake.
.NET Core doesn't support C++/CLI
, so if .NET Core is used, then TDLib
JSON interface should be used through P/Invoke instead.
See example/csharp for example of using TDLib
from C# and detailed build and usage instructions.
See example/uwp for example of using TDLib
from C# UWP application and detailed build and usage instructions for Visual Studio Extension "TDLib for Universal Windows Platform".
When TDLib
is built with TD_ENABLE_DOTNET
option enabled, C++
documentation is removed from some files. You need to checkout these files to return C++
documentation back:
git checkout td/telegram/Client.h td/telegram/Log.h td/tl/TlObject.h
Using from other programming languages
TDLib
provides efficient native C++, Java, and .NET interfaces.
But for most use cases we suggest to use the JSON interface, which can be easily used with any programming language that is able to execute C functions.
See td_json_client and td_log documentation for detailed JSON interface description,
the td_api.tl scheme or the automatically generated HTML documentation for a list of
all available TDLib
methods and classes.
TDLib
JSON interface adheres to semantic versioning and versions with the same major version number are binary and backward compatible, but the underlying TDLib
API can be different for different minor and even patch versions.
If you need to support different TDLib
versions then you can use a value of the version
option to find exact TDLib
version and to use appropriate API then.
See example/python/tdjson_example.py for an example of such usage.
License
TDLib
is licensed under the terms of the Boost Software License. See LICENSE_1_0.txt for more information.