/* This file is part of tl-parser tl-parser is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. tl-parser is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this tl-parser. If not, see . Copyright Vitaly Valtman 2014 It is derivative work of VK/KittenPHP-DB-Engine (https://github.com/vk-com/kphp-kdb/) Copyright 2012-2013 Vkontakte Ltd 2012-2013 Vitaliy Valtman */ #define _FILE_OFFSET_BITS 64 #include "config.h" #include #include #include #include #include #include #include #include #include #include "tl-parser-tree.h" #include "tl-parser.h" #include "crc32.h" #include "tl-tl.h" #include "config.h" extern int verbosity; extern int schema_version; extern int output_expressions; int total_types_num; int total_constructors_num; int total_functions_num; /*char *tstrdup (const char *s) { assert (s); char *r = talloc (strlen (s) + 1); memcpy (r, s, strlen (s) + 1); return r; }*/ #define talloc(a) malloc(a) #define tfree(a,b) free (a) #define talloc0(a) calloc(a,1) #define tstrdup(a) strdup(a) char curch; struct parse parse; struct tree *tree; struct tree *tree_alloc (void) { struct tree *T = talloc (sizeof (*T)); assert (T); memset (T, 0, sizeof (*T)); return T; } void tree_add_child (struct tree *P, struct tree *C) { if (P->nc == P->size) { void **t = talloc (sizeof (void *) * (++P->size)); memcpy (t, P->c, sizeof (void *) * (P->size - 1)); if (P->c) { tfree (P->c, sizeof (void *) * (P->size - 1)); } P->c = (void *)t; assert (P->c); } P->c[P->nc ++] = C; } void tree_delete (struct tree *T) { assert (T); int i; for (i = 0; i < T->nc; i++) { assert (T->c[i]); tree_delete (T->c[i]); } if (T->c) { tfree (T->c, sizeof (void *) * T->nc); } tfree (T, sizeof (*T)); } void tree_del_child (struct tree *P) { assert (P->nc); tree_delete (P->c[--P->nc]); } char nextch (void) { if (parse.pos < parse.len - 1) { curch = parse.text[++parse.pos]; } else { curch = 0; } if (curch == 10) { parse.line ++; parse.line_pos = 0; } else { if (curch) { parse.line_pos ++; } } return curch; } struct parse save_parse (void) { return parse; } void load_parse (struct parse _parse) { parse = _parse; curch = parse.pos > parse.len ? 0: parse.text[parse.pos] ; } int is_whitespace (char c) { return (c <= 32); } int is_uletter (char c) { return (c >= 'A' && c <= 'Z'); } int is_lletter (char c) { return (c >= 'a' && c <= 'z'); } int is_letter (char c) { return is_uletter (c) || is_lletter (c); } int is_digit (char c) { return (c >= '0' && c <= '9'); } int is_hexdigit (char c) { return is_digit (c) || (c >= 'a' && c <= 'f'); } int is_ident_char (char c) { return is_digit (c) || is_letter (c) || c == '_'; } int last_error_pos; int last_error_line; int last_error_line_pos; char *last_error; void parse_error (const char *e) { if (parse.pos > last_error_pos) { last_error_pos = parse.pos; last_error_line = parse.line; last_error_line_pos = parse.line_pos; if (last_error) { tfree (last_error, strlen (last_error) + 1); } last_error = tstrdup (e); } } void tl_print_parse_error (void) { fprintf (stderr, "Error near line %d pos %d: `%s`\n", last_error_line + 1, last_error_line_pos + 1, last_error); } char *parse_lex (void) { while (1) { while (curch && is_whitespace (curch)) { nextch (); } if (curch == '/' && nextch () == '/') { while (nextch () != 10); nextch (); } else { break; } } if (!curch) { parse.lex.len = 0; parse.lex.type = lex_eof; return (parse.lex.ptr = 0); } char *p = parse.text + parse.pos; parse.lex.flags = 0; switch (curch) { case '-': if (nextch () != '-' || nextch () != '-') { parse_error ("Can not parse triple minus"); parse.lex.type = lex_error; return (parse.lex.ptr = (void *)-1); } else { parse.lex.len = 3; parse.lex.type = lex_triple_minus; nextch (); return (parse.lex.ptr = p); } case ':': case ';': case '(': case ')': case '[': case ']': case '{': case '}': case '=': case '#': case '?': case '%': case '<': case '>': case '+': case ',': case '*': case '_': case '!': case '.': nextch (); parse.lex.len = 1; parse.lex.type = lex_char; return (parse.lex.ptr = p); case 'a'...'z': case 'A'...'Z': parse.lex.flags = 0; if (is_uletter (curch)) { while (is_ident_char (nextch ())); parse.lex.len = parse.text + parse.pos - p; parse.lex.ptr = p; if (parse.lex.len == 5 && !memcmp (parse.lex.ptr, "Final", 5)) { parse.lex.type = lex_final; } else if (parse.lex.len == 3 && !memcmp (parse.lex.ptr, "New", 3)) { parse.lex.type = lex_new; } else if (parse.lex.len == 5 && !memcmp (parse.lex.ptr, "Empty", 5)) { parse.lex.type = lex_empty; } else { parse.lex.type = lex_uc_ident; } return (parse.lex.ptr = p); } while (is_ident_char (nextch ())); if (curch == '.' && !is_letter (parse.text[parse.pos + 1])) { parse.lex.len = parse.text + parse.pos - p; parse.lex.type = lex_lc_ident; return (parse.lex.ptr = p); } if (curch == '.') { parse.lex.flags |= 1; nextch (); if (is_uletter (curch)) { while (is_ident_char (nextch ())); parse.lex.len = parse.text + parse.pos - p; parse.lex.type = lex_uc_ident; return (parse.lex.ptr = p); } if (is_lletter (curch)) { while (is_ident_char (nextch ())); } else { parse_error ("Expected letter"); parse.lex.type = lex_error; return (parse.lex.ptr = (void *)-1); } } if (curch == '#') { parse.lex.flags |= 2; int i; int ok = 1; for (i = 0; i < 8; i++) { if (!is_hexdigit (nextch())) { if (curch == ' ' && i >= 5) { ok = 2; break; } else { parse_error ("Hex digit expected"); parse.lex.type = lex_error; return (parse.lex.ptr = (void *)-1); } } } if (ok == 1) { nextch (); } } parse.lex.len = parse.text + parse.pos - p; parse.lex.type = lex_lc_ident; return (parse.lex.ptr = p); case '0'...'9': while (is_digit (nextch ())); parse.lex.len = parse.text + parse.pos - p; parse.lex.type = lex_num; return (parse.lex.ptr = p); default: parse_error ("Unknown lexem"); parse.lex.type = lex_error; return (parse.lex.ptr = (void *)-1); } } int expect (char *s) { if (!parse.lex.ptr || parse.lex.ptr == (void *)-1 || parse.lex.type == lex_error || parse.lex.type == lex_none || parse.lex.len != (int)strlen (s) || memcmp (s, parse.lex.ptr, parse.lex.len)) { static char buf[1000]; sprintf (buf, "Expected %s", s); parse_error (buf); return -1; } else { parse_lex (); } return 1; } struct parse *tl_init_parse_file (const char *fname) { int fd = open (fname, O_RDONLY); if (fd < 0) { fprintf (stderr, "Error %m\n"); assert (0); return 0; } long long size = lseek (fd, 0, SEEK_END); if (size <= 0) { fprintf (stderr, "size is %lld. Too small.\n", size); return 0; } static struct parse save; save.text = talloc (size); lseek (fd, 0, SEEK_SET); save.len = read (fd, save.text, size); assert (save.len == size); save.pos = 0; save.line = 0; save.line_pos = 0; save.lex.ptr = save.text; save.lex.len = 0; save.lex.type = lex_none; return &save; } #define PARSE_INIT(_type) struct parse save = save_parse (); struct tree *T = tree_alloc (); T->type = (_type); T->lex_line = parse.line; T->lex_line_pos = parse.line_pos; struct tree *S __attribute__ ((unused)); #define PARSE_FAIL load_parse (save); tree_delete (T); return 0; #define PARSE_OK return T; #define PARSE_TRY_PES(x) if (!(S = x ())) { PARSE_FAIL; } { tree_add_child (T, S); } #define PARSE_TRY_OPT(x) if ((S = x ())) { tree_add_child (T, S); PARSE_OK } #define PARSE_TRY(x) S = x (); #define PARSE_ADD(_type) S = tree_alloc (); S->type = _type; tree_add_child (T, S); #define EXPECT(s) if (expect (s) < 0) { PARSE_FAIL; } #define LEX_CHAR(c) (parse.lex.type == lex_char && *parse.lex.ptr == c) struct tree *parse_args (void); struct tree *parse_expr (void); struct tree *parse_boxed_type_ident (void) { PARSE_INIT (type_boxed_type_ident); if (parse.lex.type != lex_uc_ident) { parse_error ("Can not parse boxed type"); PARSE_FAIL; } else { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } } struct tree *parse_full_combinator_id (void) { PARSE_INIT (type_full_combinator_id); if (parse.lex.type == lex_lc_ident || LEX_CHAR('_')) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else { parse_error ("Can not parse full combinator id"); PARSE_FAIL; } } struct tree *parse_combinator_id (void) { PARSE_INIT (type_combinator_id); if (parse.lex.type == lex_lc_ident && !(parse.lex.flags & 2)) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else { parse_error ("Can not parse combinator id"); PARSE_FAIL; } } struct tree *parse_var_ident (void) { PARSE_INIT (type_var_ident); if ((parse.lex.type == lex_lc_ident || parse.lex.type == lex_uc_ident) && !(parse.lex.flags & 3)) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else { parse_error ("Can not parse var ident"); PARSE_FAIL; } } struct tree *parse_var_ident_opt (void) { PARSE_INIT (type_var_ident_opt); if ((parse.lex.type == lex_lc_ident || parse.lex.type == lex_uc_ident)&& !(parse.lex.flags & 3)) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else if (LEX_CHAR ('_')) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else { parse_error ("Can not parse var ident opt"); PARSE_FAIL; } } struct tree *parse_nat_const (void) { PARSE_INIT (type_nat_const); if (parse.lex.type == lex_num) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else { parse_error ("Can not parse nat const"); PARSE_FAIL; } } struct tree *parse_type_ident (void) { PARSE_INIT (type_type_ident); if (parse.lex.type == lex_uc_ident && !(parse.lex.flags & 2)) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else if (parse.lex.type == lex_lc_ident && !(parse.lex.flags & 2)) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else if (LEX_CHAR ('#')) { T->text = parse.lex.ptr; T->len = parse.lex.len; T->flags = parse.lex.flags; parse_lex (); PARSE_OK; } else { parse_error ("Can not parse type ident"); PARSE_FAIL; } } struct tree *parse_term (void) { PARSE_INIT (type_term); while (LEX_CHAR ('%')) { EXPECT ("%") PARSE_ADD (type_percent); } if (LEX_CHAR ('(')) { EXPECT ("("); PARSE_TRY_PES (parse_expr); EXPECT (")"); PARSE_OK; } PARSE_TRY (parse_type_ident); if (S) { tree_add_child (T, S); if (LEX_CHAR ('<')) { EXPECT ("<"); while (1) { PARSE_TRY_PES (parse_expr); if (LEX_CHAR ('>')) { break; } EXPECT (","); } EXPECT (">"); } PARSE_OK; } PARSE_TRY_OPT (parse_type_ident); PARSE_TRY_OPT (parse_var_ident); PARSE_TRY_OPT (parse_nat_const); PARSE_FAIL; } struct tree *parse_nat_term (void) { PARSE_INIT (type_nat_term); PARSE_TRY_PES (parse_term); PARSE_OK; } struct tree *parse_subexpr (void) { PARSE_INIT (type_subexpr); int was_term = 0; int cc = 0; while (1) { PARSE_TRY (parse_nat_const); if (S) { tree_add_child (T, S); } else if (!was_term) { was_term = 1; PARSE_TRY (parse_term); if (S) { tree_add_child (T, S); } else { break; } } cc ++; if (!LEX_CHAR ('+')) { break; } EXPECT ("+"); } if (!cc) { PARSE_FAIL; } else { PARSE_OK; } } struct tree *parse_expr (void) { PARSE_INIT (type_expr); int cc = 0; while (1) { PARSE_TRY (parse_subexpr); if (S) { tree_add_child (T, S); cc ++; } else { if (cc < 1) { PARSE_FAIL; } else { PARSE_OK; } } } } struct tree *parse_final_empty (void) { PARSE_INIT (type_final_empty); EXPECT ("Empty"); PARSE_TRY_PES (parse_boxed_type_ident); PARSE_OK; } struct tree *parse_final_new (void) { PARSE_INIT (type_final_new); EXPECT ("New"); PARSE_TRY_PES (parse_boxed_type_ident); PARSE_OK; } struct tree *parse_final_final (void) { PARSE_INIT (type_final_final); EXPECT ("Final"); PARSE_TRY_PES (parse_boxed_type_ident); PARSE_OK; } struct tree *parse_partial_comb_app_decl (void) { PARSE_INIT (type_partial_comb_app_decl); PARSE_TRY_PES (parse_combinator_id); while (1) { PARSE_TRY_PES (parse_subexpr); if (LEX_CHAR (';')) { break; } } PARSE_OK; } struct tree *parse_partial_type_app_decl (void) { PARSE_INIT (type_partial_type_app_decl); PARSE_TRY_PES (parse_boxed_type_ident); if (LEX_CHAR ('<')) { EXPECT ("<"); while (1) { PARSE_TRY_PES (parse_expr); if (LEX_CHAR ('>')) { break; } EXPECT (","); } EXPECT (">"); PARSE_OK; } else { while (1) { PARSE_TRY_PES (parse_subexpr); if (LEX_CHAR (';')) { break; } } PARSE_OK; } } struct tree *parse_multiplicity (void) { PARSE_INIT (type_multiplicity); PARSE_TRY_PES (parse_nat_term); PARSE_OK; } struct tree *parse_type_term (void) { PARSE_INIT (type_type_term); PARSE_TRY_PES (parse_term); PARSE_OK; } struct tree *parse_optional_arg_def (void) { PARSE_INIT (type_optional_arg_def); PARSE_TRY_PES (parse_var_ident); EXPECT ("."); PARSE_TRY_PES (parse_nat_const); EXPECT ("?"); PARSE_OK; } struct tree *parse_args4 (void) { PARSE_INIT (type_args4); struct parse so = save_parse (); PARSE_TRY (parse_optional_arg_def); if (S) { tree_add_child (T, S); } else { load_parse (so); } if (LEX_CHAR ('!')) { PARSE_ADD (type_exclam); EXPECT ("!"); } PARSE_TRY_PES (parse_type_term); PARSE_OK; } struct tree *parse_args3 (void) { PARSE_INIT (type_args3); PARSE_TRY_PES (parse_var_ident_opt); EXPECT (":"); struct parse so = save_parse (); PARSE_TRY (parse_optional_arg_def); if (S) { tree_add_child (T, S); } else { load_parse (so); } if (LEX_CHAR ('!')) { PARSE_ADD (type_exclam); EXPECT ("!"); } PARSE_TRY_PES (parse_type_term); PARSE_OK; } struct tree *parse_args2 (void) { PARSE_INIT (type_args2); PARSE_TRY (parse_var_ident_opt); if (S && LEX_CHAR (':')) { tree_add_child (T, S); EXPECT (":"); } else { load_parse (save); } struct parse so = save_parse (); PARSE_TRY (parse_optional_arg_def); if (S) { tree_add_child (T, S); } else { load_parse (so); } struct parse save2 = save_parse (); PARSE_TRY (parse_multiplicity); if (S && LEX_CHAR ('*')) { tree_add_child (T, S); EXPECT ("*"); } else { load_parse (save2); } EXPECT ("["); while (1) { if (LEX_CHAR (']')) { break; } PARSE_TRY_PES (parse_args); } EXPECT ("]"); PARSE_OK; } struct tree *parse_args1 (void) { PARSE_INIT (type_args1); EXPECT ("("); while (1) { PARSE_TRY_PES (parse_var_ident_opt); if (LEX_CHAR(':')) { break; } } EXPECT (":"); struct parse so = save_parse (); PARSE_TRY (parse_optional_arg_def); if (S) { tree_add_child (T, S); } else { load_parse (so); } if (LEX_CHAR ('!')) { PARSE_ADD (type_exclam); EXPECT ("!"); } PARSE_TRY_PES (parse_type_term); EXPECT (")"); PARSE_OK; } struct tree *parse_args (void) { PARSE_INIT (type_args); PARSE_TRY_OPT (parse_args1); PARSE_TRY_OPT (parse_args2); PARSE_TRY_OPT (parse_args3); PARSE_TRY_OPT (parse_args4); PARSE_FAIL; } struct tree *parse_opt_args (void) { PARSE_INIT (type_opt_args); while (1) { PARSE_TRY_PES (parse_var_ident); if (parse.lex.type == lex_char && *parse.lex.ptr == ':') { break;} } EXPECT (":"); PARSE_TRY_PES (parse_type_term); PARSE_OK; } struct tree *parse_final_decl (void) { PARSE_INIT (type_final_decl); PARSE_TRY_OPT (parse_final_new); PARSE_TRY_OPT (parse_final_final); PARSE_TRY_OPT (parse_final_empty); PARSE_FAIL; } struct tree *parse_partial_app_decl (void) { PARSE_INIT (type_partial_app_decl); PARSE_TRY_OPT (parse_partial_type_app_decl); PARSE_TRY_OPT (parse_partial_comb_app_decl); PARSE_FAIL; } struct tree *parse_result_type (void) { PARSE_INIT (type_result_type); PARSE_TRY_PES (parse_boxed_type_ident); if (LEX_CHAR ('<')) { EXPECT ("<"); while (1) { PARSE_TRY_PES (parse_expr); if (LEX_CHAR ('>')) { break; } EXPECT (","); } EXPECT (">"); PARSE_OK; } else { while (1) { if (LEX_CHAR (';')) { PARSE_OK; } PARSE_TRY_PES (parse_subexpr); } } } struct tree *parse_combinator_decl (void) { PARSE_INIT (type_combinator_decl); PARSE_TRY_PES (parse_full_combinator_id) while (1) { if (LEX_CHAR ('{')) { parse_lex (); PARSE_TRY_PES (parse_opt_args); EXPECT ("}"); } else { break; } } while (1) { if (LEX_CHAR ('=')) { break; } PARSE_TRY_PES (parse_args); } EXPECT ("="); PARSE_ADD (type_equals); PARSE_TRY_PES (parse_result_type); PARSE_OK; } struct tree *parse_builtin_combinator_decl (void) { PARSE_INIT (type_builtin_combinator_decl); PARSE_TRY_PES (parse_full_combinator_id) EXPECT ("?"); EXPECT ("="); PARSE_TRY_PES (parse_boxed_type_ident); PARSE_OK; } struct tree *parse_declaration (void) { PARSE_INIT (type_declaration); PARSE_TRY_OPT (parse_combinator_decl); PARSE_TRY_OPT (parse_partial_app_decl); PARSE_TRY_OPT (parse_final_decl); PARSE_TRY_OPT (parse_builtin_combinator_decl); PARSE_FAIL; } struct tree *parse_constr_declarations (void) { PARSE_INIT (type_constr_declarations); if (parse.lex.type == lex_triple_minus || parse.lex.type == lex_eof) { PARSE_OK; } while (1) { PARSE_TRY_PES (parse_declaration); EXPECT (";"); if (parse.lex.type == lex_eof || parse.lex.type == lex_triple_minus) { PARSE_OK; } } } struct tree *parse_fun_declarations (void) { PARSE_INIT (type_fun_declarations); if (parse.lex.type == lex_triple_minus || parse.lex.type == lex_eof) { PARSE_OK; } while (1) { PARSE_TRY_PES (parse_declaration); EXPECT (";"); if (parse.lex.type == lex_eof || parse.lex.type == lex_triple_minus) { PARSE_OK; } } } struct tree *parse_program (void) { PARSE_INIT (type_tl_program); while (1) { PARSE_TRY_PES (parse_constr_declarations); if (parse.lex.type == lex_eof) { PARSE_OK; } if (parse.lex.type == lex_error || expect ("---") < 0 || expect ("functions") < 0 || expect ("---") < 0) { PARSE_FAIL; } PARSE_TRY_PES (parse_fun_declarations); if (parse.lex.type == lex_eof) { PARSE_OK; } if (parse.lex.type == lex_error || expect ("---") < 0 || expect ("types") < 0 || expect ("---") < 0) { PARSE_FAIL; } } } struct tree *tl_parse_lex (struct parse *_parse) { assert (_parse); load_parse (*_parse); if (parse.lex.type == lex_none) { parse_lex (); } if (parse.lex.type == lex_error) { return 0; } return parse_program (); } int mystrcmp2 (const char *b, int len, const char *a) { int c = strncmp (b, a, len); return c ? a[len] ? -1 : 0 : c; } char *mystrdup (const char *a, int len) { char *z = talloc (len + 1); memcpy (z, a, len); z[len] = 0; return z; } struct tl_program *tl_program_cur; #define TL_TRY_PES(x) if (!(x)) { return 0; } #define tl_type_cmp(a,b) (strcmp (a->id, b->id)) DEFINE_TREE (tl_type,struct tl_type *,tl_type_cmp,0) struct tree_tl_type *tl_type_tree; DEFINE_TREE (tl_constructor,struct tl_constructor *,tl_type_cmp,0) struct tree_tl_constructor *tl_constructor_tree; struct tree_tl_constructor *tl_function_tree; DEFINE_TREE (tl_var,struct tl_var *,tl_type_cmp,0) struct tl_var_value { struct tl_combinator_tree *ptr; struct tl_combinator_tree *val; int num_val; }; #define tl_var_value_cmp(a,b) (((char *)a.ptr) - ((char *)b.ptr)) struct tl_var_value empty; DEFINE_TREE (var_value, struct tl_var_value, tl_var_value_cmp, empty) //tree_tl_var_t *tl_var_tree; DEFINE_TREE (tl_field,char *,strcmp, 0) //tree_tl_field_t *tl_field_tree; #define TL_FAIL return 0; #define TL_INIT(x) struct tl_combinator_tree *x = 0; #define TL_TRY(f,x) { struct tl_combinator_tree *_t = f; if (!_t) { TL_FAIL;} x = tl_union (x, _t); if (!x) { TL_FAIL; }} #define TL_ERROR(...) fprintf (stderr, __VA_ARGS__); #define TL_WARNING(...) fprintf (stderr, __VA_ARGS__); void tl_set_var_value (struct tree_var_value **T, struct tl_combinator_tree *var, struct tl_combinator_tree *value) { struct tl_var_value t = {.ptr = var, .val = value, .num_val = 0}; if (tree_lookup_var_value (*T, t).ptr) { *T = tree_delete_var_value (*T, t); } *T = tree_insert_var_value (*T, t, lrand48 ()); } void tl_set_var_value_num (struct tree_var_value **T, struct tl_combinator_tree *var, struct tl_combinator_tree *value, long long num_value) { struct tl_var_value t = {.ptr = var, .val = value, .num_val = num_value}; if (tree_lookup_var_value (*T, t).ptr) { *T = tree_delete_var_value (*T, t); } *T = tree_insert_var_value (*T, t, lrand48 ()); } struct tl_combinator_tree *tl_get_var_value (struct tree_var_value **T, struct tl_combinator_tree *var) { struct tl_var_value t = {.ptr = var, .val = 0, .num_val = 0}; struct tl_var_value r = tree_lookup_var_value (*T, t); return r.ptr ? r.val : 0; } int tl_get_var_value_num (struct tree_var_value **T, struct tl_combinator_tree *var) { struct tl_var_value t = {.ptr = var, .val = 0}; struct tl_var_value r = tree_lookup_var_value (*T, t); return r.ptr ? r.num_val : 0; } int namespace_level; struct tree_tl_var *vars[10]; struct tree_tl_field *fields[10]; struct tl_var *last_num_var[10]; int tl_is_type_name (const char *id, int len) { if (len == 1 && *id == '#') { return 1;} int ok = id[0] >= 'A' && id[0] <= 'Z'; int i; for (i = 0; i < len - 1; i++) if (id[i] == '.') { ok = id[i + 1] >= 'A' && id[i + 1] <= 'Z'; } return ok; } int tl_add_field (char *id) { assert (namespace_level < 10); assert (namespace_level >= 0); if (tree_lookup_tl_field (fields[namespace_level], id)) { return 0; } fields[namespace_level] = tree_insert_tl_field (fields[namespace_level], id, lrand48 ()); return 1; } void tl_clear_fields (void) { // tree_act_tl_field (fields[namespace_level], (void *)free); fields[namespace_level] = tree_clear_tl_field (fields[namespace_level]); } struct tl_var *tl_add_var (char *id, struct tl_combinator_tree *ptr, int type) { struct tl_var *v = talloc (sizeof (*v)); v->id = tstrdup (id); v->type = type; v->ptr = ptr; v->flags = 0; if (tree_lookup_tl_var (vars[namespace_level], v)) { return 0; } vars[namespace_level] = tree_insert_tl_var (vars[namespace_level], v, lrand48 ()); if (type) { last_num_var[namespace_level] = v; } return v; } void tl_del_var (struct tl_var *v) { // free (v->id); tfree (v, sizeof (*v)); } void tl_clear_vars (void) { tree_act_tl_var (vars[namespace_level], tl_del_var); vars[namespace_level] = tree_clear_tl_var (vars[namespace_level]); last_num_var[namespace_level] = 0; } struct tl_var *tl_get_last_num_var (void) { return last_num_var[namespace_level]; } struct tl_var *tl_get_var (char *_id, int len) { char *id = mystrdup (_id, len); struct tl_var v = {.id = id}; int i; for (i = namespace_level; i >= 0; i--) { struct tl_var *w = tree_lookup_tl_var (vars[i], &v); if (w) { tfree (id, len + 1); return w; } } tfree (id, len + 1); return 0; } void namespace_push (void) { namespace_level ++; assert (namespace_level < 10); tl_clear_vars (); tl_clear_fields (); } void namespace_pop (void) { namespace_level --; assert (namespace_level >= 0); } struct tl_type *tl_get_type (const char *_id, int len) { char *id = mystrdup (_id, len); struct tl_type _t = {.id = id}; struct tl_type *r = tree_lookup_tl_type (tl_type_tree, &_t); tfree (id, len + 1); return r; } struct tl_type *tl_add_type (const char *_id, int len, int params_num, long long params_types) { char *id = talloc (len + 1); memcpy (id, _id, len); id[len] = 0; struct tl_type _t = {.id = id}; struct tl_type *_r = 0; if ((_r = tree_lookup_tl_type (tl_type_tree, &_t))) { tfree (id, len + 1); if (params_num >= 0 && (_r->params_num != params_num || _r->params_types != params_types)) { TL_ERROR ("Wrong params_num or types for type %s\n", _r->id); return 0; } return _r; } struct tl_type *t = talloc (sizeof (*t)); t->id = id; t->print_id = tstrdup (t->id); int i; for (i = 0; i < len; i++) if (t->print_id[i] == '.' || t->print_id[i] == '#' || t->print_id[i] == ' ') { t->print_id[i] = '$'; } t->name = 0; t->constructors_num = 0; t->constructors = 0; t->flags = 0; t->real_id = 0; if (params_num >= 0) { assert (params_num <= 64); t->params_num = params_num; t->params_types = params_types; } else { t->flags |= 4; t->params_num = -1; } tl_type_tree = tree_insert_tl_type (tl_type_tree, t, lrand48 ()); total_types_num ++; return t; } void tl_add_type_param (struct tl_type *t, int x) { assert (t->flags & 4); assert (t->params_num <= 64); if (x) { t->params_types |= (1ull << (t->params_num ++)); } else { t->params_num ++; } } int tl_type_set_params (struct tl_type *t, int x, long long y) { if (t->flags & 4) { t->params_num = x; t->params_types = y; t->flags &= ~4; } else { if (t->params_num != x || t->params_types != y) { fprintf (stderr, "Wrong num of params (type %s)\n", t->id); return 0; } } return 1; } void tl_type_finalize (struct tl_type *t) { t->flags &= ~4; } struct tl_constructor *tl_get_constructor (const char *_id, int len) { char *id = mystrdup (_id, len); struct tl_constructor _t = {.id = id}; struct tl_constructor *r = tree_lookup_tl_constructor (tl_constructor_tree, &_t); tfree (id, len + 1); return r; } struct tl_constructor *tl_add_constructor (struct tl_type *a, const char *_id, int len, int force_magic) { assert (a); if (a->flags & 1) { TL_ERROR ("New constructor for type `%s` after final statement\n", a->id); return 0; } int x = 0; while (x < len && (_id[x] != '#' || force_magic)) { x++; } char *id = talloc (x + 1); memcpy (id, _id, x); id[x] = 0; unsigned magic = 0; if (x < len) { assert (len - x >= 6 && len - x <= 9); int i; for (i = 1; i < len - x; i++) { magic = (magic << 4) + (_id[x + i] <= '9' ? _id[x + i] - '0' : _id[x + i] - 'a' + 10); } assert (magic && magic != (unsigned)-1); } len = x; if (*id != '_') { struct tl_constructor _t = {.id = id}; if (tree_lookup_tl_constructor (tl_constructor_tree, &_t)) { TL_ERROR ("Duplicate constructor id `%s`\n", id); tfree (id, len + 1); return 0; } } else { assert (len == 1); } struct tl_constructor *t = talloc (sizeof (*t)); t->type = a; t->name = magic; t->id = id; t->print_id = tstrdup (id); t->real_id = 0; int i; for (i = 0; i < len; i++) if (t->print_id[i] == '.' || t->print_id[i] == '#' || t->print_id[i] == ' ') { t->print_id[i] = '$'; } t->left = t->right = 0; a->constructors = realloc (a->constructors, sizeof (void *) * (a->constructors_num + 1)); assert (a->constructors); a->constructors[a->constructors_num ++] = t; if (*id != '_') { tl_constructor_tree = tree_insert_tl_constructor (tl_constructor_tree, t, lrand48 ()); } else { a->flags |= FLAG_DEFAULT_CONSTRUCTOR; } total_constructors_num ++; return t; } struct tl_constructor *tl_get_function (const char *_id, int len) { char *id = mystrdup (_id, len); struct tl_constructor _t = {.id = id}; struct tl_constructor *r = tree_lookup_tl_constructor (tl_function_tree, &_t); tfree (id, len + 1); return r; } struct tl_constructor *tl_add_function (struct tl_type *a, const char *_id, int len, int force_magic) { // assert (a); int x = 0; while (x < len && ((_id[x] != '#') || force_magic)) { x++; } char *id = talloc (x + 1); memcpy (id, _id, x); id[x] = 0; unsigned magic = 0; if (x < len) { assert (len - x >= 6 && len - x <= 9); int i; for (i = 1; i < len - x; i++) { magic = (magic << 4) + (_id[x + i] <= '9' ? _id[x + i] - '0' : _id[x + i] - 'a' + 10); } assert (magic && magic != (unsigned)-1); } len = x; struct tl_constructor _t = {.id = id}; if (tree_lookup_tl_constructor (tl_function_tree, &_t)) { TL_ERROR ("Duplicate function id `%s`\n", id); tfree (id, len + 1); return 0; } struct tl_constructor *t = talloc (sizeof (*t)); t->type = a; t->name = magic; t->id = id; t->print_id = tstrdup (id); t->real_id = 0; int i; for (i = 0; i < len; i++) if (t->print_id[i] == '.' || t->print_id[i] == '#' || t->print_id[i] == ' ') { t->print_id[i] = '$'; } t->left = t->right = 0; tl_function_tree = tree_insert_tl_constructor (tl_function_tree, t, lrand48 ()); total_functions_num ++; return t; } static char buf[(1 << 20)]; int buf_pos; struct tl_combinator_tree *alloc_ctree_node (void) { struct tl_combinator_tree *T = talloc (sizeof (*T)); assert (T); memset (T, 0, sizeof (*T)); return T; } struct tl_combinator_tree *tl_tree_dup (struct tl_combinator_tree *T) { if (!T) { return 0; } struct tl_combinator_tree *S = talloc (sizeof (*S)); memcpy (S, T, sizeof (*S)); S->left = tl_tree_dup (T->left); S->right = tl_tree_dup (T->right); return S; } struct tl_type *tl_tree_get_type (struct tl_combinator_tree *T) { assert (T->type == type_type); if (T->act == act_array) { return 0;} while (T->left) { T = T->left; if (T->act == act_array) { return 0;} assert (T->type == type_type); } assert (T->act == act_type || T->act == act_var || T->act == act_array); return T->act == act_type ? T->data : 0; } void tl_tree_set_len (struct tl_combinator_tree *T) { TL_INIT (H); H = T; while (H->left) { H->left->type_len = H->type_len + 1; H = H->left; } assert (H->type == type_type); struct tl_type *t = H->data; assert (t); assert (H->type_len == t->params_num); } void tl_buf_reset (void) { buf_pos = 0; } void tl_buf_add_string (char *s, int len) { if (len < 0) { len = strlen (s); } buf[buf_pos ++] = ' '; memcpy (buf + buf_pos, s, len); buf_pos += len; buf[buf_pos] = 0; } void tl_buf_add_string_nospace (char *s, int len) { if (len < 0) { len = strlen (s); } // if (buf_pos) { buf[buf_pos ++] = ' '; } memcpy (buf + buf_pos, s, len); buf_pos += len; buf[buf_pos] = 0; } void tl_buf_add_string_q (char *s, int len, int x) { if (x) { tl_buf_add_string (s, len); } else { tl_buf_add_string_nospace (s, len); } } void tl_buf_add_tree (struct tl_combinator_tree *T, int x) { if (!T) { return; } assert (T != (void *)-1l && T != (void *)-2l); switch (T->act) { case act_question_mark: tl_buf_add_string_q ("?", -1, x); return; case act_type: if ((T->flags & 1) && !(T->flags & 4)) { tl_buf_add_string_q ("%", -1, x); x = 0; } if (T->flags & 2) { tl_buf_add_string_q ((char *)T->data, -1, x); } else { struct tl_type *t = T->data; if (T->flags & 4) { assert (t->constructors_num == 1); tl_buf_add_string_q (t->constructors[0]->real_id ? t->constructors[0]->real_id : t->constructors[0]->id, -1, x); } else { tl_buf_add_string_q (t->real_id ? t->real_id : t->id, -1, x); } } return; case act_field: if (T->data) { tl_buf_add_string_q ((char *)T->data, -1, x); x = 0; tl_buf_add_string_q (":", -1, 0); } tl_buf_add_tree (T->left, x); tl_buf_add_tree (T->right, 1); return; case act_union: tl_buf_add_tree (T->left, x); tl_buf_add_tree (T->right, 1); return; case act_var: { if (T->data == (void *)-1l) { return; } struct tl_combinator_tree *v = T->data; tl_buf_add_string_q ((char *)v->data, -1, x); if (T->type == type_num && T->type_flags) { static char _buf[30]; sprintf (_buf, "+%lld", T->type_flags); tl_buf_add_string_q (_buf, -1, 0); } } return; case act_arg: tl_buf_add_tree (T->left, x); tl_buf_add_tree (T->right, 1); return; case act_array: if (T->left && !(T->left->flags & 128)) { tl_buf_add_tree (T->left, x); x = 0; tl_buf_add_string_q ("*", -1, x); } tl_buf_add_string_q ("[", -1, x); tl_buf_add_tree (T->right, 1); tl_buf_add_string_q ("]", -1, 1); return; case act_plus: tl_buf_add_tree (T->left, x); tl_buf_add_string_q ("+", -1, 0); tl_buf_add_tree (T->right, 0); return; case act_nat_const: { static char _buf[30]; snprintf (_buf, 29, "%lld", T->type_flags); tl_buf_add_string_q (_buf, -1, x); return; } case act_opt_field: { struct tl_combinator_tree *v = T->left->data; tl_buf_add_string_q ((char *)v->data, -1, x); tl_buf_add_string_q (".", -1, 0); static char _buf[30]; sprintf (_buf, "%lld", T->left->type_flags); tl_buf_add_string_q (_buf, -1, 0); tl_buf_add_string_q ("?", -1, 0); tl_buf_add_tree (T->right, 0); return; } default: fprintf (stderr, "%s %s\n", TL_ACT (T->act), TL_TYPE (T->type)); assert (0); return; } } int tl_count_combinator_name (struct tl_constructor *c) { assert (c); tl_buf_reset (); tl_buf_add_string_nospace (c->real_id ? c->real_id : c->id, -1); tl_buf_add_tree (c->left, 1); tl_buf_add_string ("=", -1); tl_buf_add_tree (c->right, 1); //fprintf (stderr, "%.*s\n", buf_pos, buf); if (!c->name) { c->name = compute_crc32 (buf, buf_pos); } return c->name; } int tl_print_combinator (struct tl_constructor *c) { tl_buf_reset (); tl_buf_add_string_nospace (c->real_id ? c->real_id : c->id, -1); static char _buf[10]; sprintf (_buf, "#%08x", c->name); tl_buf_add_string_nospace (_buf, -1); tl_buf_add_tree (c->left, 1); tl_buf_add_string ("=", -1); tl_buf_add_tree (c->right, 1); if (output_expressions >= 1) { fprintf (stderr, "%.*s\n", buf_pos, buf); } /* if (!c->name) { c->name = compute_crc32 (buf, buf_pos); }*/ return c->name; } int _tl_finish_subtree (struct tl_combinator_tree *R, int x, long long y) { assert (R->type == type_type); assert (R->type_len < 0); assert (R->act == act_arg || R->act == act_type); R->type_len = x; R->type_flags = y; if (R->act == act_type) { struct tl_type *t = R->data; assert (t); return tl_type_set_params (t, x, y); } assert ((R->right->type == type_type && R->right->type_len == 0) || R->right->type == type_num || R->right->type == type_num_value); return _tl_finish_subtree (R->left, x + 1, y * 2 + (R->right->type == type_num || R->right->type == type_num_value)); } int tl_finish_subtree (struct tl_combinator_tree *R) { assert (R); if (R->type != type_type) { return 1; } if (R->type_len >= 0) { if (R->type_len > 0) { TL_ERROR ("Not enough params\n"); return 0; } return 1; } return _tl_finish_subtree (R, 0, 0); } struct tl_combinator_tree *tl_union (struct tl_combinator_tree *L, struct tl_combinator_tree *R) { if (!L) { return R; } if (!R) { return L; } TL_INIT (v); v = alloc_ctree_node (); v->left = L; v->right = R; switch (L->type) { case type_num: if (R->type != type_num_value) { TL_ERROR ("Union: type mistmatch\n"); return 0; } tfree (v, sizeof (*v)); L->type_flags += R->type_flags; return L; case type_num_value: if (R->type != type_num_value && R->type != type_num) { TL_ERROR ("Union: type mistmatch\n"); return 0; } tfree (v, sizeof (*v)); R->type_flags += L->type_flags; return R; case type_list_item: case type_list: if (R->type != type_list_item) { TL_ERROR ("Union: type mistmatch\n"); return 0; } v->type = type_list; v->act = act_union; return v; case type_type: if (L->type_len == 0) { TL_ERROR ("Arguments number exceeds type arity\n"); return 0; } if (R->type != type_num && R->type != type_type && R->type != type_num_value) { TL_ERROR ("Union: type mistmatch\n"); return 0; } if (R->type_len < 0) { if (!tl_finish_subtree (R)) { return 0; } } if (R->type_len > 0) { TL_ERROR ("Argument type must have full number of arguments\n"); return 0; } if (L->type_len > 0 && ((L->type_flags & 1) != (R->type == type_num || R->type == type_num_value))) { TL_ERROR ("Argument types mistmatch: L->type_flags = %lld, R->type = %s\n", L->flags, TL_TYPE (R->type)); return 0; } v->type = type_type; v->act = act_arg; v->type_len = L->type_len > 0 ? L->type_len - 1 : -1; v->type_flags = L->type_flags >> 1; return v; default: assert (0); return 0; } } struct tl_combinator_tree *tl_parse_any_term (struct tree *T, int s); struct tl_combinator_tree *tl_parse_term (struct tree *T, int s) { assert (T->type == type_term); int i = 0; while (i < T->nc && T->c[i]->type == type_percent) { i ++; s ++; } assert (i < T->nc); TL_INIT (L); while (i < T->nc) { TL_TRY (tl_parse_any_term (T->c[i], s), L); s = 0; i ++; } return L; } struct tl_combinator_tree *tl_parse_type_term (struct tree *T, int s) { assert (T->type == type_type_term); assert (T->nc == 1); struct tl_combinator_tree *Z = tl_parse_term (T->c[0], s); if (!Z || Z->type != type_type) { if (Z) { TL_ERROR ("type_term: found type %s\n", TL_TYPE (Z->type)); } TL_FAIL; } return Z; } struct tl_combinator_tree *tl_parse_nat_term (struct tree *T, int s) { assert (T->type == type_nat_term); assert (T->nc == 1); struct tl_combinator_tree *Z = tl_parse_term (T->c[0], s); if (!Z || (Z->type != type_num && Z->type != type_num_value)) { if (Z) { TL_ERROR ("nat_term: found type %s\n", TL_TYPE (Z->type)); }TL_FAIL; } return Z; } struct tl_combinator_tree *tl_parse_subexpr (struct tree *T, int s) { assert (T->type == type_subexpr); assert (T->nc >= 1); int i; TL_INIT (L); for (i = 0; i < T->nc; i++) { TL_TRY (tl_parse_any_term (T->c[i], s), L); s = 0; } return L; } struct tl_combinator_tree *tl_parse_expr (struct tree *T, int s) { assert (T->type == type_expr); assert (T->nc >= 1); int i; TL_INIT (L); for (i = 0; i < T->nc; i++) { TL_TRY (tl_parse_subexpr (T->c[i], s), L); s = 0; } return L; } struct tl_combinator_tree *tl_parse_nat_const (struct tree *T, int s) { assert (T->type == type_nat_const); assert (!T->nc); if (s > 0) { TL_ERROR ("Nat const can not preceed with %%\n"); TL_FAIL; } assert (T->type == type_nat_const); assert (!T->nc); TL_INIT (L); L = alloc_ctree_node (); L->act = act_nat_const; L->type = type_num_value; int i; long long x = 0; for (i = 0; i < T->len; i++) { x = x * 10 + T->text[i] - '0'; } L->type_flags = x; return L; } struct tl_combinator_tree *tl_parse_ident (struct tree *T, int s) { assert (T->type == type_type_ident || T->type == type_var_ident || T->type == type_boxed_type_ident); assert (!T->nc); struct tl_var *v = tl_get_var (T->text, T->len); TL_INIT (L); if (v) { L = alloc_ctree_node (); L->act = act_var; L->type = v->type ? type_num : type_type; if (L->type == type_num && s) { TL_ERROR ("Nat var can not preceed with %%\n"); TL_FAIL; } else { if (s) { L->flags |= 1; } } L->type_len = 0; L->type_flags = 0; L->data = v->ptr; return L; } /* if (!mystrcmp2 (T->text, T->len, "#") || !mystrcmp2 (T->text, T->len, "Type")) { L = alloc_ctree_node (); L->act = act_type; L->flags |= 2; L->data = tl_get_type (T->text, T->len); assert (L->data); L->type = type_type; L->type_len = 0; L->type_flags = 0; return L; }*/ struct tl_constructor *c = tl_get_constructor (T->text, T->len); if (c) { assert (c->type); if (c->type->constructors_num != 1) { TL_ERROR ("Constructor can be used only if it is the only constructor of the type\n"); return 0; } c->type->flags |= 1; L = alloc_ctree_node (); L->act = act_type; L->flags |= 5; L->data = c->type; L->type = type_type; L->type_len = c->type->params_num; L->type_flags = c->type->params_types; return L; } int x = tl_is_type_name (T->text, T->len); if (x) { struct tl_type *t = tl_add_type (T->text, T->len, -1, 0); L = alloc_ctree_node (); if (s) { L->flags |= 1; t->flags |= 8; } L->act = act_type; L->data = t; L->type = type_type; L->type_len = t->params_num; L->type_flags = t->params_types; return L; } else { TL_ERROR ("Not a type/var ident `%.*s`\n", T->len, T->text); return 0; } } struct tl_combinator_tree *tl_parse_any_term (struct tree *T, int s) { switch (T->type) { case type_type_term: return tl_parse_type_term (T, s); case type_nat_term: return tl_parse_nat_term (T, s); case type_term: return tl_parse_term (T, s); case type_expr: return tl_parse_expr (T, s); case type_subexpr: return tl_parse_subexpr (T, s); case type_nat_const: return tl_parse_nat_const (T, s); case type_type_ident: case type_var_ident: return tl_parse_ident (T, s); default: fprintf (stderr, "type = %d\n", T->type); assert (0); return 0; } } struct tl_combinator_tree *tl_parse_multiplicity (struct tree *T) { assert (T->type == type_multiplicity); assert (T->nc == 1); return tl_parse_nat_term (T->c[0], 0); } struct tl_combinator_tree *tl_parse_opt_args (struct tree *T) { assert (T); assert (T->type == type_opt_args); assert (T->nc >= 2); TL_INIT (R); TL_TRY (tl_parse_type_term (T->c[T->nc - 1], 0), R); assert (R->type == type_type && !R->type_len); assert (tl_finish_subtree (R)); struct tl_type *t = tl_tree_get_type (R); //assert (t); int tt = -1; if (t && !strcmp (t->id, "#")) { tt = 1; } else if (t && !strcmp (t->id, "Type")) { tt = 0; } if (tt < 0) { TL_ERROR ("Optargs can be only of type # or Type\n"); TL_FAIL; } int i; for (i = 0; i < T->nc - 1; i++) { if (T->c[i]->type != type_var_ident) { TL_ERROR ("Variable name expected\n"); TL_FAIL; } if (T->c[i]->len == 1 && *T->c[i]->text == '_') { TL_ERROR ("Variables can not be unnamed\n"); TL_FAIL; } } TL_INIT (H); // for (i = T->nc - 2; i >= (T->nc >= 2 ? 0 : -1); i--) { for (i = 0; i <= T->nc - 2; i++) { TL_INIT (S); S = alloc_ctree_node (); S->left = (i == T->nc - 2) ? R : tl_tree_dup (R) ; S->right = 0; S->type = type_list_item; S->type_len = 0; S->act = act_field; S->data = i >= 0 ? mystrdup (T->c[i]->text, T->c[i]->len) : 0; if (tt >= 0) { assert (S->data); tl_add_var (S->data, S, tt); } S->flags = 33; H = tl_union (H, S); } return H; } struct tl_combinator_tree *tl_parse_args (struct tree *T); struct tl_combinator_tree *tl_parse_args2 (struct tree *T) { assert (T); assert (T->type == type_args2); assert (T->nc >= 1); TL_INIT (R); TL_INIT (L); int x = 0; char *field_name = 0; if (T->c[x]->type == type_var_ident_opt || T->c[x]->type == type_var_ident) { field_name = mystrdup (T->c[x]->text, T->c[x]->len); if (!tl_add_field (field_name)) { TL_ERROR ("Duplicate field name %s\n", field_name); TL_FAIL; } x ++; } //fprintf (stderr, "%d %d\n", x, T->nc); if (T->c[x]->type == type_multiplicity) { L = tl_parse_multiplicity (T->c[x]); if (!L) { TL_FAIL;} x ++; } else { struct tl_var *v = tl_get_last_num_var (); if (!v) { TL_ERROR ("Expected multiplicity or nat var\n"); TL_FAIL; } L = alloc_ctree_node (); L->act = act_var; L->type = type_num; L->flags |= 128; L->type_len = 0; L->type_flags = 0; L->data = v->ptr; ((struct tl_combinator_tree *)(v->ptr))->flags |= 256; } namespace_push (); while (x < T->nc) { TL_TRY (tl_parse_args (T->c[x]), R); x ++; } namespace_pop (); struct tl_combinator_tree *S = alloc_ctree_node (); S->type = type_type; S->type_len = 0; S->act = act_array; S->left = L; S->right = R; //S->data = field_name; struct tl_combinator_tree *H = alloc_ctree_node (); H->type = type_list_item; H->act = act_field; H->left = S; H->right = 0; H->data = field_name; H->type_len = 0; return H; } void tl_mark_vars (struct tl_combinator_tree *T); struct tl_combinator_tree *tl_parse_args134 (struct tree *T) { assert (T); assert (T->type == type_args1 || T->type == type_args3 || T->type == type_args4); assert (T->nc >= 1); TL_INIT (R); TL_TRY (tl_parse_type_term (T->c[T->nc - 1], 0), R); assert (tl_finish_subtree (R)); assert (R->type == type_type && !R->type_len); struct tl_type *t = tl_tree_get_type (R); //assert (t); int tt = -1; if (t && !strcmp (t->id, "#")) { tt = 1; } else if (t && !strcmp (t->id, "Type")) { tt = 0; } /* if (tt >= 0 && T->nc == 1) { TL_ERROR ("Variables can not be unnamed (type %d)\n", tt); }*/ int last = T->nc - 2; int excl = 0; if (last >= 0 && T->c[last]->type == type_exclam) { excl ++; tl_mark_vars (R); last --; } if (last >= 0 && T->c[last]->type == type_optional_arg_def) { assert (T->c[last]->nc == 2); TL_INIT (E); E = alloc_ctree_node (); E->type = type_type; E->act = act_opt_field; E->left = tl_parse_ident (T->c[last]->c[0], 0); int i; long long x = 0; for (i = 0; i < T->c[last]->c[1]->len; i++) { x = x * 10 + T->c[last]->c[1]->text[i] - '0'; } E->left->type_flags = x; E->type_flags = R->type_flags; E->type_len = R->type_len; E->right = R; R = E; last --; } int i; for (i = 0; i < last; i++) { if (T->c[i]->type != type_var_ident && T->c[i]->type != type_var_ident_opt) { TL_ERROR ("Variable name expected\n"); TL_FAIL; } /* if (tt >= 0 && (T->nc == 1 || (T->c[i]->len == 1 && *T->c[i]->text == '_'))) { TL_ERROR ("Variables can not be unnamed\n"); TL_FAIL; }*/ } TL_INIT (H); // for (i = T->nc - 2; i >= (T->nc >= 2 ? 0 : -1); i--) { for (i = (last >= 0 ? 0 : -1); i <= last; i++) { TL_INIT (S); S = alloc_ctree_node (); S->left = (i == last) ? R : tl_tree_dup (R) ; S->right = 0; S->type = type_list_item; S->type_len = 0; S->act = act_field; S->data = i >= 0 ? mystrdup (T->c[i]->text, T->c[i]->len) : 0; if (excl) { S->flags |= FLAG_EXCL; } if (S->data && (T->c[i]->len >= 2 || *T->c[i]->text != '_')) { if (!tl_add_field (S->data)) { TL_ERROR ("Duplicate field name %s\n", (char *)S->data); TL_FAIL; } } if (tt >= 0) { //assert (S->data); char *name = S->data; if (!name) { static char s[20]; sprintf (s, "%lld", lrand48 () * (1ll << 32) + lrand48 ()); name = s; } struct tl_var *v = tl_add_var (name, S, tt); if (!v) {TL_FAIL;} v->flags |= 2; } H = tl_union (H, S); } return H; } struct tl_combinator_tree *tl_parse_args (struct tree *T) { assert (T->type == type_args); assert (T->nc == 1); switch (T->c[0]->type) { case type_args1: return tl_parse_args134 (T->c[0]); case type_args2: return tl_parse_args2 (T->c[0]); case type_args3: return tl_parse_args134 (T->c[0]); case type_args4: return tl_parse_args134 (T->c[0]); default: assert (0); return 0; } } void tl_mark_vars (struct tl_combinator_tree *T) { if (!T) { return; } if (T->act == act_var) { char *id = ((struct tl_combinator_tree *)(T->data))->data; struct tl_var *v = tl_get_var (id, strlen (id)); assert (v); v->flags |= 1; } tl_mark_vars (T->left); tl_mark_vars (T->right); } struct tl_combinator_tree *tl_parse_result_type (struct tree *T) { assert (T->type == type_result_type); assert (T->nc >= 1); assert (T->nc <= 64); TL_INIT (L); if (tl_get_var (T->c[0]->text, T->c[0]->len)) { if (T->nc != 1) { TL_ERROR ("Variable can not take params\n"); TL_FAIL; } L = alloc_ctree_node (); L->act = act_var; L->type = type_type; struct tl_var *v = tl_get_var (T->c[0]->text, T->c[0]->len); if (v->type) { TL_ERROR ("Type mistmatch\n"); TL_FAIL; } L->data = v->ptr; // assert (v->ptr); } else { L = alloc_ctree_node (); L->act = act_type; L->type = type_type; struct tl_type *t = tl_add_type (T->c[0]->text, T->c[0]->len, -1, 0); assert (t); L->type_len = t->params_num; L->type_flags = t->params_types; L->data = t; int i; for (i = 1; i < T->nc; i++) { TL_TRY (tl_parse_any_term (T->c[i], 0), L); assert (L->right); assert (L->right->type == type_num || L->right->type == type_num_value || (L->right->type == type_type && L->right->type_len == 0)); } } if (!tl_finish_subtree (L)) { TL_FAIL; } tl_mark_vars (L); return L; } int __ok; void tl_var_check_used (struct tl_var *v) { __ok = __ok && (v->flags & 3); } int tl_parse_combinator_decl (struct tree *T, int fun) { assert (T->type == type_combinator_decl); assert (T->nc >= 3); namespace_level = 0; tl_clear_vars (); tl_clear_fields (); TL_INIT (L); TL_INIT (R); int i = 1; while (i < T->nc - 2 && T->c[i]->type == type_opt_args) { TL_TRY (tl_parse_opt_args (T->c[i]), L); i++; } while (i < T->nc - 2 && T->c[i]->type == type_args) { TL_TRY (tl_parse_args (T->c[i]), L); i++; } assert (i == T->nc - 2 && T->c[i]->type == type_equals); i ++; R = tl_parse_result_type (T->c[i]); if (!R) { TL_FAIL; } struct tl_type *t = tl_tree_get_type (R); if (!fun && !t) { TL_ERROR ("Only functions can return variables\n"); } assert (t || fun); assert (namespace_level == 0); __ok = 1; tree_act_tl_var (vars[0], tl_var_check_used); if (!__ok) { TL_ERROR ("Not all variables are used in right side\n"); TL_FAIL; } if (tl_get_constructor (T->c[0]->text, T->c[0]->len) || tl_get_function (T->c[0]->text, T->c[0]->len)) { TL_ERROR ("Duplicate combinator id %.*s\n", T->c[0]->len, T->c[0]->text); return 0; } struct tl_constructor *c = !fun ? tl_add_constructor (t, T->c[0]->text, T->c[0]->len, 0) : tl_add_function (t, T->c[0]->text, T->c[0]->len, 0); if (!c) { TL_FAIL; } c->left = L; c->right = R; if (!c->name) { tl_count_combinator_name (c); } tl_print_combinator (c); return 1; } void change_var_ptrs (struct tl_combinator_tree *O, struct tl_combinator_tree *D, struct tree_var_value **V) { if (!O || !D) { assert (!O && !D); return; } if (O->act == act_field) { struct tl_type *t = tl_tree_get_type (O->left); if (t && (!strcmp (t->id, "#") || !strcmp (t->id, "Type"))) { tl_set_var_value (V, O, D); } } if (O->act == act_var) { assert (D->data == O->data); D->data = tl_get_var_value (V, O->data); assert (D->data); } change_var_ptrs (O->left, D->left, V); change_var_ptrs (O->right, D->right, V); } struct tl_combinator_tree *change_first_var (struct tl_combinator_tree *O, struct tl_combinator_tree **X, struct tl_combinator_tree *Y) { if (!O) { return (void *)-2l; }; if (O->act == act_field && !*X) { struct tl_type *t = tl_tree_get_type (O->left); if (t && !strcmp (t->id, "#")) { if (Y->type != type_num && Y->type != type_num_value) { TL_ERROR ("change_var: Type mistmatch\n"); return 0; } else { *X = O; return (void *)-1l; } } if (t && !strcmp (t->id, "Type")) { if (Y->type != type_type || Y->type_len != 0) { TL_ERROR ("change_var: Type mistmatch\n"); return 0; } else { *X = O; return (void *)-1l; } } } if (O->act == act_var) { if (O->data == *X) { struct tl_combinator_tree *R = tl_tree_dup (Y); if (O->type == type_num || O->type == type_num_value) { R->type_flags += O->type_flags; } return R; } } struct tl_combinator_tree *t; t = change_first_var (O->left, X, Y); if (!t) { return 0;} if (t == (void *)-1l) { t = change_first_var (O->right, X, Y); if (!t) { return 0;} if (t == (void *)-1l) { return (void *)-1l; } if (t != (void *)-2l) { return t;} return (void *)-1l; } if (t != (void *)-2l) { O->left = t; } t = change_first_var (O->right, X, Y); if (!t) { return 0;} if (t == (void *)-1l) { return O->left; } if (t != (void *)-2l) { O->right = t; } return O; } int uniformize (struct tl_combinator_tree *L, struct tl_combinator_tree *R, struct tree_var_value **T); struct tree_var_value **_T; int __tok; void check_nat_val (struct tl_var_value v) { if (!__tok) { return; } long long x = v.num_val; struct tl_combinator_tree *L = v.val; if (L->type == type_type) { return;} while (1) { if (L->type == type_num_value) { if (x + L->type_flags < 0) { __tok = 0; return; } else { return; } } assert (L->type == type_num); x += L->type_flags; x += tl_get_var_value_num (_T, L->data); L = tl_get_var_value (_T, L->data); if (!L) { return;} } } int check_constructors_equal (struct tl_combinator_tree *L, struct tl_combinator_tree *R, struct tree_var_value **T) { if (!uniformize (L, R, T)) { return 0; } __tok = 1; _T = T; tree_act_var_value (*T, check_nat_val); return __tok; } struct tl_combinator_tree *reduce_type (struct tl_combinator_tree *A, struct tl_type *t) { assert (A); if (A->type_len == t->params_num) { assert (A->type_flags == t->params_types); A->act = act_type; A->type = type_type; A->left = A->right = 0; A->data = t; return A; } A->left = reduce_type (A->left, t); return A; } struct tl_combinator_tree *change_value_var (struct tl_combinator_tree *O, struct tree_var_value **X) { if (!O) { return (void *)-2l; }; while (O->act == act_var) { assert (O->data); if (!tl_get_var_value (X, O->data)) { break; } if (O->type == type_type) { O = tl_tree_dup (tl_get_var_value (X, O->data)); } else { long long n = tl_get_var_value_num (X, O->data); struct tl_combinator_tree *T = tl_get_var_value (X, O->data); O->data = T->data; O->type = T->type; O->act = T->act; O->type_flags = O->type_flags + n + T->type_flags; } } if (O->act == act_field) { if (tl_get_var_value (X, O)) { return (void *)-1l; } } struct tl_combinator_tree *t; t = change_value_var (O->left, X); if (!t) { return 0;} if (t == (void *)-1l) { t = change_value_var (O->right, X); if (!t) { return 0;} if (t == (void *)-1l) { return (void *)-1l; } if (t != (void *)-2l) { return t;} return (void *)-1l; } if (t != (void *)-2l) { O->left = t; } t = change_value_var (O->right, X); if (!t) { return 0;} if (t == (void *)-1l) { return O->left; } if (t != (void *)-2l) { O->right = t; } return O; } int tl_parse_partial_type_app_decl (struct tree *T) { assert (T->type == type_partial_type_app_decl); assert (T->nc >= 1); assert (T->c[0]->type == type_boxed_type_ident); struct tl_type *t = tl_get_type (T->c[0]->text, T->c[0]->len); if (!t) { TL_ERROR ("Can not make partial app for unknown type\n"); return 0; } tl_type_finalize (t); struct tl_combinator_tree *L = tl_parse_ident (T->c[0], 0); assert (L); int i; tl_buf_reset (); int cc = T->nc - 1; for (i = 1; i < T->nc; i++) { TL_TRY (tl_parse_any_term (T->c[i], 0), L); tl_buf_add_tree (L->right, 1); } while (L->type_len) { struct tl_combinator_tree *C = alloc_ctree_node (); C->act = act_var; C->type = (L->type_flags & 1) ? type_num : type_type; C->type_len = 0; C->type_flags = 0; C->data = (void *)-1l; L = tl_union (L, C); if (!L) { return 0; } } static char _buf[100000]; snprintf (_buf, 100000, "%s%.*s", t->id, buf_pos, buf); struct tl_type *nt = tl_add_type (_buf, strlen (_buf), t->params_num - cc, t->params_types >> cc); assert (nt); //snprintf (_buf, 100000, "%s #", t->id); //nt->real_id = strdup (_buf); for (i = 0; i < t->constructors_num; i++) { struct tl_constructor *c = t->constructors[i]; struct tree_var_value *V = 0; TL_INIT (A); TL_INIT (B); A = tl_tree_dup (c->left); B = tl_tree_dup (c->right); struct tree_var_value *W = 0; change_var_ptrs (c->left, A, &W); change_var_ptrs (c->right, B, &W); if (!check_constructors_equal (B, L, &V)) { continue; } B = reduce_type (B, nt); A = change_value_var (A, &V); if (A == (void *)-1l) { A = 0;} B = change_value_var (B, &V); assert (B != (void *)-1l); snprintf (_buf, 100000, "%s%.*s", c->id, buf_pos, buf); struct tl_constructor *r = tl_add_constructor (nt, _buf, strlen (_buf), 1); snprintf (_buf, 100000, "%s", c->id); r->real_id = tstrdup (_buf); r->left = A; r->right = B; if (!r->name) { tl_count_combinator_name (r); } tl_print_combinator (r); } return 1; } int tl_parse_partial_comb_app_decl (struct tree *T, int fun) { assert (T->type == type_partial_comb_app_decl); struct tl_constructor *c = !fun ? tl_get_constructor (T->c[0]->text, T->c[0]->len) : tl_get_function (T->c[0]->text, T->c[0]->len); if (!c) { TL_ERROR ("Can not make partial app for undefined combinator\n"); return 0; } //TL_INIT (K); //static char buf[1000]; //int x = sprintf (buf, "%s", c->id); TL_INIT (L); TL_INIT (R); L = tl_tree_dup (c->left); R = tl_tree_dup (c->right); struct tree_var_value *V = 0; change_var_ptrs (c->left, L, &V); change_var_ptrs (c->right, R, &V); V = tree_clear_var_value (V); int i; tl_buf_reset (); for (i = 1; i < T->nc; i++) { TL_INIT (X); TL_INIT (Z); X = tl_parse_any_term (T->c[i], 0); struct tl_combinator_tree *K = 0; if (!(Z = change_first_var (L, &K, X))) { TL_FAIL; } L = Z; if (!K) { TL_ERROR ("Partial app: not enougth variables (i = %d)\n", i); TL_FAIL; } if (!(Z = change_first_var (R, &K, X))) { TL_FAIL; } assert (Z == R); tl_buf_add_tree (X, 1); } static char _buf[100000]; snprintf (_buf, 100000, "%s%.*s", c->id, buf_pos, buf); // fprintf (stderr, "Local id: %s\n", _buf); struct tl_constructor *r = !fun ? tl_add_constructor (c->type, _buf, strlen (_buf), 1) : tl_add_function (c->type, _buf, strlen (_buf), 1); r->left = L; r->right = R; snprintf (_buf, 100000, "%s", c->id); r->real_id = tstrdup (_buf); if (!r->name) { tl_count_combinator_name (r); } tl_print_combinator (r); return 1; } int tl_parse_partial_app_decl (struct tree *T, int fun) { assert (T->type == type_partial_app_decl); assert (T->nc == 1); if (T->c[0]->type == type_partial_comb_app_decl) { return tl_parse_partial_comb_app_decl (T->c[0], fun); } else { if (fun) { TL_ERROR ("Partial type app in functions block\n"); TL_FAIL; } return tl_parse_partial_type_app_decl (T->c[0]); } } int tl_parse_final_final (struct tree *T) { assert (T->type == type_final_final); assert (T->nc == 1); struct tl_type *R; if ((R = tl_get_type (T->c[0]->text, T->c[0]->len))) { R->flags |= 1; return 1; } else { TL_ERROR ("Final statement for type `%.*s` before declaration\n", T->c[0]->len, T->c[0]->text); TL_FAIL; } } int tl_parse_final_new (struct tree *T) { assert (T->type == type_final_new); assert (T->nc == 1); if (tl_get_type (T->c[0]->text, T->c[0]->len)) { TL_ERROR ("New statement: type `%.*s` already declared\n", T->c[0]->len, T->c[0]->text); TL_FAIL; } else { return 1; } } int tl_parse_final_empty (struct tree *T) { assert (T->type == type_final_empty); assert (T->nc == 1); if (tl_get_type (T->c[0]->text, T->c[0]->len)) { TL_ERROR ("New statement: type `%.*s` already declared\n", T->c[0]->len, T->c[0]->text); TL_FAIL; } struct tl_type *t = tl_add_type (T->c[0]->text, T->c[0]->len, 0, 0); assert (t); t->flags |= 1 | FLAG_EMPTY; return 1; } int tl_parse_final_decl (struct tree *T, int fun) { assert (T->type == type_final_decl); assert (!fun); assert (T->nc == 1); switch (T->c[0]->type) { case type_final_new: return tl_parse_final_new (T->c[0]); case type_final_final: return tl_parse_final_final (T->c[0]); case type_final_empty: return tl_parse_final_empty (T->c[0]); default: assert (0); return 0; } } int tl_parse_builtin_combinator_decl (struct tree *T, int fun) { if (fun) { TL_ERROR ("Builtin type can not be described in function block\n"); return -1; } assert (T->type == type_builtin_combinator_decl); assert (T->nc == 2); assert (T->c[0]->type == type_full_combinator_id); assert (T->c[1]->type == type_boxed_type_ident); if ((!mystrcmp2 (T->c[0]->text, T->c[0]->len, "int") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "Int")) || (!mystrcmp2 (T->c[0]->text, T->c[0]->len, "long") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "Long")) || (!mystrcmp2 (T->c[0]->text, T->c[0]->len, "double") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "Double")) || (!mystrcmp2 (T->c[0]->text, T->c[0]->len, "string") && !mystrcmp2 (T->c[1]->text, T->c[1]->len, "String"))) { struct tl_type *t = tl_add_type (T->c[1]->text, T->c[1]->len, 0, 0); if (!t) { return 0; } struct tl_constructor *c = tl_add_constructor (t, T->c[0]->text, T->c[0]->len, 0); if (!c) { return 0; } c->left = alloc_ctree_node (); c->left->act = act_question_mark; c->left->type = type_list_item; c->right = alloc_ctree_node (); c->right->act = act_type; c->right->data = t; c->right->type = type_type; if (!c->name) { tl_count_combinator_name (c); } tl_print_combinator (c); } else { TL_ERROR ("Unknown builting type `%.*s`\n", T->c[0]->len, T->c[0]->text); return 0; } return 1; } int tl_parse_declaration (struct tree *T, int fun) { assert (T->type == type_declaration); assert (T->nc == 1); switch (T->c[0]->type) { case type_combinator_decl: return tl_parse_combinator_decl (T->c[0], fun); case type_partial_app_decl: return tl_parse_partial_app_decl (T->c[0], fun); case type_final_decl: return tl_parse_final_decl (T->c[0], fun); case type_builtin_combinator_decl: return tl_parse_builtin_combinator_decl (T->c[0], fun); default: assert (0); return 0; } } int tl_parse_constr_declarations (struct tree *T) { assert (T->type == type_constr_declarations); int i; for (i = 0; i < T->nc; i++) { TL_TRY_PES (tl_parse_declaration (T->c[i], 0)); } return 1; } int tl_parse_fun_declarations (struct tree *T) { assert (T->type == type_fun_declarations); int i; for (i = 0; i < T->nc; i++) { TL_TRY_PES (tl_parse_declaration (T->c[i], 1)); } return 1; } int tl_tree_lookup_value (struct tl_combinator_tree *L, void *var, struct tree_var_value **T) { if (!L) { return -1; } if (L->act == act_var && L->data == var) { return 0; } if (L->act == act_var) { struct tl_combinator_tree *E = tl_get_var_value (T, L->data); if (!E) { return -1;} else { return tl_tree_lookup_value (E, var, T); } } if (tl_tree_lookup_value (L->left, var, T) >= 0) { return 1; } if (tl_tree_lookup_value (L->right, var, T) >= 0) { return 1; } return -1; } int tl_tree_lookup_value_nat (struct tl_combinator_tree *L, void *var, long long x, struct tree_var_value **T) { assert (L); if (L->type == type_num_value) { return -1; } assert (L->type == type_num); assert (L->act == act_var); if (L->data == var) { return x == L->type_flags ? 0 : 1; } else { if (!tl_get_var_value (T, L->data)) { return -1; } return tl_tree_lookup_value_nat (tl_get_var_value (T, L->data), var, x + tl_get_var_value_num (T, L->data), T); } } int uniformize (struct tl_combinator_tree *L, struct tl_combinator_tree *R, struct tree_var_value **T) { if (!L || !R) { assert (!L && !R); return 1; } if (R->act == act_var) { struct tl_combinator_tree *_ = R; R = L; L = _; } if (L->type == type_type) { if (R->type != type_type || L->type_len != R->type_len || L->type_flags != R->type_flags) { return 0; } if (R->data == (void *)-1l || L->data == (void *)-1l) { return 1;} if (L->act == act_var) { int x = tl_tree_lookup_value (R, L->data, T); if (x > 0) { // if (tl_tree_lookup_value (R, L->data, T) > 0) { return 0; } if (x == 0) { return 1; } struct tl_combinator_tree *E = tl_get_var_value (T, L->data); if (!E) { tl_set_var_value (T, L->data, R); return 1; } else { return uniformize (E, R, T); } } else { if (L->act != R->act || L->data != R->data) { return 0; } return uniformize (L->left, R->left, T) && uniformize (L->right, R->right, T); } } else { assert (L->type == type_num || L->type == type_num_value); if (R->type != type_num && R->type != type_num_value) { return 0; } assert (R->type == type_num || R->type == type_num_value); if (R->data == (void *)-1l || L->data == (void *)-1l) { return 1;} long long x = 0; struct tl_combinator_tree *K = L; while (1) { x += K->type_flags; if (K->type == type_num_value) { break; } if (!tl_get_var_value (T, K->data)) { int s = tl_tree_lookup_value_nat (R, K->data, K->type_flags, T); if (s > 0) { return 0; } if (s == 0) { return 1; } /*tl_set_var_value_num (T, K->data, R, -x); return 1;*/ break; } x += tl_get_var_value_num (T, K->data); K = tl_get_var_value (T, K->data); } long long y = 0; struct tl_combinator_tree *M = R; while (1) { y += M->type_flags; if (M->type == type_num_value) { break; } if (!tl_get_var_value (T, M->data)) { int s = tl_tree_lookup_value_nat (L, M->data, M->type_flags, T); if (s > 0) { return 0; } if (s == 0) { return 1; } /*tl_set_var_value_num (T, M->data, L, -y); return 1;*/ break; } y += tl_get_var_value_num (T, M->data); M = tl_get_var_value (T, M->data); } if (K->type == type_num_value && M->type == type_num_value) { return x == y; } if (M->type == type_num_value) { tl_set_var_value_num (T, K->data, M, -(x - y + M->type_flags)); return 1; } else if (K->type == type_num_value) { tl_set_var_value_num (T, M->data, K, -(y - x + K->type_flags)); return 1; } else { if (x >= y) { tl_set_var_value_num (T, K->data, M, -(x - y + M->type_flags)); } else { tl_set_var_value_num (T, M->data, K, -(y - x + K->type_flags)); } return 1; } } return 0; } void tl_type_check (struct tl_type *t) { if (!__ok) return; if (!strcmp (t->id, "#")) { t->name = 0x70659eff; return; } if (!strcmp (t->id, "Type")) { t->name = 0x2cecf817; return; } if (t->constructors_num <= 0 && !(t->flags & FLAG_EMPTY)) { TL_ERROR ("Type %s has no constructors\n", t->id); __ok = 0; return; } int i, j; t->name = 0; for (i = 0; i < t->constructors_num; i++) { t->name ^= t->constructors[i]->name; } for (i = 0; i < t->constructors_num; i++) { for (j = i + 1; j < t->constructors_num; j++) { struct tree_var_value *v = 0; if (check_constructors_equal (t->constructors[i]->right, t->constructors[j]->right, &v)) { t->flags |= 16; } } } if ((t->flags & 24) == 24) { TL_WARNING ("Warning: Type %s has overlapping costructors, but it is used with `%%`\n", t->id); } int z = 0; int sid = 0; for (i = 0; i < t->constructors_num; i++) if (*t->constructors[i]->id == '_') { z ++; sid = i; } if (z > 1) { TL_ERROR ("Type %s has %d default constructors\n", t->id, z); __ok = 0; return; } if (z == 1 && (t->flags & 8)) { TL_ERROR ("Type %s has default constructors and used bare\n", t->id); __ok = 0; return; } if (z) { struct tl_constructor *c; c = t->constructors[sid]; t->constructors[sid] = t->constructors[t->constructors_num - 1]; t->constructors[t->constructors_num - 1] = c; } } struct tl_program *tl_parse (struct tree *T) { assert (T); assert (T->type == type_tl_program); int i; tl_program_cur = talloc (sizeof (*tl_program_cur)); tl_add_type ("#", 1, 0, 0); tl_add_type ("Type", 4, 0, 0); for (i = 0; i < T->nc; i++) { if (T->c[i]->type == type_constr_declarations) { TL_TRY_PES (tl_parse_constr_declarations (T->c[i])); } else { TL_TRY_PES (tl_parse_fun_declarations (T->c[i])) } } __ok = 1; tree_act_tl_type (tl_type_tree, tl_type_check); if (!__ok) { return 0; } return tl_program_cur; } int __f; int num = 0; void wint (int a) { // printf ("%d ", a); assert (write (__f, &a, 4) == 4); } void wdata (const void *x, int len) { assert (write (__f, x, len) == len); } void wstr (const char *s) { if (s) { // printf ("\"%s\" ", s); if (schema_version < 1) { wint (strlen (s)); wdata (s, strlen (s)); } else { int x = strlen (s); if (x <= 254) { assert (write (__f, &x, 1) == 1); } else { fprintf (stderr, "String is too big...\n"); assert (0); } wdata (s, x); x ++; int t = 0; if (x & 3) { wdata (&t, 4 - (x & 3)); } } } else { // printf (" "); wint (0); } } void wll (long long a) { // printf ("%lld ", a); assert (write (__f, &a, 8) == 8); } int count_list_size (struct tl_combinator_tree *T) { assert (T->type == type_list || T->type == type_list_item); if (T->type == type_list_item) { return 1; } else { return count_list_size (T->left) + count_list_size (T->right); } } void write_type_flags (long long flags) { int new_flags = 0; if (flags & 1) { new_flags |= FLAG_BARE; } if (flags & FLAG_DEFAULT_CONSTRUCTOR) { new_flags |= FLAG_DEFAULT_CONSTRUCTOR; } wint (new_flags); } void write_field_flags (long long flags) { int new_flags = 0; //fprintf (stderr, "%lld\n", flags); if (flags & 1) { new_flags |= FLAG_BARE; } if (flags & 32) { new_flags |= FLAG_OPT_VAR; } if (flags & FLAG_EXCL) { new_flags |= FLAG_EXCL; } if (flags & FLAG_OPT_FIELD) { // new_flags |= FLAG_OPT_FIELD; new_flags |= 2; } if (flags & (1 << 21)) { new_flags |= 4; } wint (new_flags); } void write_var_type_flags (long long flags) { int new_flags = 0; if (flags & 1) { new_flags |= FLAG_BARE; } if (new_flags & FLAG_BARE) { TL_ERROR ("Sorry, bare vars are not (yet ?) supported.\n"); assert (!(new_flags & FLAG_BARE)); } wint (new_flags); } void write_tree (struct tl_combinator_tree *T, int extra, struct tree_var_value **v, int *last_var); void write_args (struct tl_combinator_tree *T, struct tree_var_value **v, int *last_var) { assert (T->type == type_list || T->type == type_list_item); if (T->type == type_list) { assert (T->act == act_union); assert (T->left); assert (T->right); write_args (T->left, v, last_var); write_args (T->right, v, last_var); return; } if (schema_version == 1) { wint (TLS_ARG); } if (schema_version == 2) { wint (TLS_ARG_V2); } else { wint (-3); } if (T->act == act_question_mark) { if (schema_version >= 1) { assert (0); } else { wint (-100); } return; } if (schema_version >= 1) { } else { wint (-99); } assert (T->act == act_field); assert (T->left); wstr (T->data && strcmp (T->data, "_") ? T->data : 0); long long f = T->flags; if (T->left->act == act_opt_field) { f |= (1 << 20); } if (T->left->act == act_type && T->left->data && (!strcmp (((struct tl_type *)T->left->data)->id, "#") || !strcmp (((struct tl_type *)T->left->data)->id, "Type"))) { write_field_flags (f | (1 << 21)); wint (*last_var); *last_var = (*last_var) + 1; tl_set_var_value_num (v, T, 0, (*last_var) - 1); } else { write_field_flags (f); if (schema_version <= 1) { wint (-1); } } write_tree (T->left, 0, v, last_var); } void write_array (struct tl_combinator_tree *T, struct tree_var_value **v, int *last_var) { if (schema_version == 1) { wint (TLS_TREE_ARRAY); } else if (schema_version == 2) { wint (TLS_ARRAY); } else { wint (-8); } write_tree (T->left, 0, v, last_var); write_tree (T->right, 0, v, last_var); } void write_type_rec (struct tl_combinator_tree *T, int cc, struct tree_var_value **v, int *last_var) { if (T->act == act_arg) { write_type_rec (T->left, cc + 1, v, last_var); if (schema_version >= 2) { if (T->right->type == type_num_value || T->right->type == type_num) { wint (TLS_EXPR_NAT); } else { wint (TLS_EXPR_TYPE); } } write_tree (T->right, 0, v, last_var); } else { assert (T->act == act_var || T->act == act_type); if (T->act == act_var) { assert (!cc); if (schema_version == 1) { wint (TLS_TREE_TYPE_VAR); } else if (schema_version == 2) { wint (TLS_TYPE_VAR); } else { wint (-6); } wint (tl_get_var_value_num (v, T->data)); write_var_type_flags (T->flags); //wint (T->flags); } else { if (schema_version == 1) { wint (TLS_TREE_TYPE); } else if (schema_version == 2) { wint (TLS_TYPE_EXPR); } else { wint (-7); } struct tl_type *t = T->data; wint (t->name); write_type_flags (T->flags); // wint (T->flags); wint (cc); // fprintf (stderr, "cc = %d\n", cc); } } } void write_opt_type (struct tl_combinator_tree *T, struct tree_var_value **v, int *last_var) { if (schema_version >= 1) { } else { wint (-20); } wint (tl_get_var_value_num (v, T->left->data)); wint (T->left->type_flags); // write_tree (T->right, 0, v, last_var); assert (T); T = T->right; switch (T->type) { case type_type: if (T->act == act_array) { write_array (T, v, last_var); } else if (T->act == act_type || T->act == act_var || T->act == act_arg) { write_type_rec (T, 0, v, last_var); } else { assert (0); } break; default: assert (0); } } void write_tree (struct tl_combinator_tree *T, int extra, struct tree_var_value **v, int *last_var) { assert (T); switch (T->type) { case type_list_item: case type_list: if (schema_version >= 1) { if (extra) { wint (schema_version >= 2 ? TLS_COMBINATOR_RIGHT_V2 : TLS_COMBINATOR_RIGHT); } } else { wint (extra ? -1 : -2); } wint (count_list_size (T)); write_args (T, v, last_var); break; case type_num_value: wint (schema_version >= 1 ? schema_version >= 2 ? (int)TLS_NAT_CONST : (int)TLS_TREE_NAT_CONST : -4); if (schema_version >= 2) { wint (T->type_flags); } else { wll (T->type_flags); } break; case type_num: wint (schema_version >= 1 ? schema_version >= 2 ? (int)TLS_NAT_VAR : (int)TLS_TREE_NAT_VAR : -5); if (schema_version >= 2) { wint (T->type_flags); } else { wll (T->type_flags); } wint (tl_get_var_value_num (v, T->data)); break; case type_type: if (T->act == act_array) { write_array (T, v, last_var); } else if (T->act == act_type || T->act == act_var || T->act == act_arg) { write_type_rec (T, 0, v, last_var); } else { assert (T->act == act_opt_field); write_opt_type (T, v, last_var); } break; default: assert (0); } } void write_type (struct tl_type *t) { wint (schema_version >= 1 ? TLS_TYPE : 1); wint (t->name); wstr (t->id); wint (t->constructors_num); wint (t->flags); wint (t->params_num); wll (t->params_types); } int is_builtin_type (const char *id) { return !strcmp (id, "int") || !strcmp (id, "long") || !strcmp (id, "double") || !strcmp (id, "string"); } void write_combinator (struct tl_constructor *c) { wint (c->name); wstr (c->id); wint (c->type ? c->type->name : 0); struct tree_var_value *T = 0; int x = 0; assert (c->right); if (c->left) { if (schema_version >= 1 && is_builtin_type (c->id)) { wint (TLS_COMBINATOR_LEFT_BUILTIN); } else { if (schema_version >= 1) { wint (TLS_COMBINATOR_LEFT); } // wint (count_list_size (c->left)); write_tree (c->left, 0, &T, &x); } } else { if (schema_version >= 1) { wint (TLS_COMBINATOR_LEFT); wint (0); } else { wint (-11); } } if (schema_version >= 1) { wint (schema_version >= 2 ? TLS_COMBINATOR_RIGHT_V2 : TLS_COMBINATOR_RIGHT); } write_tree (c->right, 1, &T, &x); } void write_constructor (struct tl_constructor *c) { wint (schema_version >= 1 ? TLS_COMBINATOR : 2); write_combinator (c); } void write_function (struct tl_constructor *c) { wint (schema_version >= 1 ? TLS_COMBINATOR : 3); write_combinator (c); } void write_type_constructors (struct tl_type *t) { int i; for (i = 0; i < t->constructors_num; i++) { write_constructor (t->constructors[i]); } } int MAGIC = 0x850230aa; void write_types (int f) { __f = f; if (schema_version == 1) { wint (TLS_SCHEMA); } else if (schema_version == 2) { wint (TLS_SCHEMA_V2); } else { wint (MAGIC); } if (schema_version >= 1) { wint (0); wint (time (0)); } num = 0; if (schema_version >= 1) { wint (total_types_num); } tree_act_tl_type (tl_type_tree, write_type); if (schema_version >= 1) { wint (total_constructors_num); } tree_act_tl_type (tl_type_tree, write_type_constructors); if (schema_version >= 1) { wint (total_functions_num); } tree_act_tl_constructor (tl_function_tree, write_function); }