Handle matrix computation overflow in RRTransformCompute

If the computation of the composite fixed-point transform for RandR
overflows at any point, take the resulting floating point transform and
scale that back to fit in a fixed point matrix. This ensures that a matrix
will always be available, although perhaps at reduced precision. Someday we
should add floating point matrices to Render.

Signed-off-by: Keith Packard <keithp@keithp.com>
This commit is contained in:
Keith Packard 2009-02-03 20:12:42 -08:00
parent 7a3ddef3bc
commit 62fc98cb88

View File

@ -120,6 +120,22 @@ RRTransformCopy (RRTransformPtr dst, RRTransformPtr src)
#define F(x) IntToxFixed(x)
static void
RRTransformRescale(struct pixman_f_transform *f_transform, double limit)
{
double max = 0, v, scale;
int i, j;
for (j = 0; j < 3; j++)
for (i = 0; i < 3; i++)
if ((v = abs (f_transform->m[j][i])) > max)
max = v;
scale = limit / max;
for (j = 0; j < 3; j++)
for (i = 0; i < 3; i++)
f_transform->m[j][i] *= scale;
}
/*
* Compute the complete transformation matrix including
* client-specified transform, rotation/reflection values and the crtc
@ -141,6 +157,7 @@ RRTransformCompute (int x,
{
PictTransform t_transform, inverse;
struct pixman_f_transform tf_transform, tf_inverse;
Bool overflow = FALSE;
if (!transform) transform = &t_transform;
if (!f_transform) f_transform = &tf_transform;
@ -234,7 +251,8 @@ RRTransformCompute (int x,
#ifdef RANDR_12_INTERFACE
if (rr_transform)
{
pixman_transform_multiply (transform, transform, &rr_transform->transform);
if (!pixman_transform_multiply (transform, transform, &rr_transform->transform))
overflow = TRUE;
pixman_f_transform_multiply (f_transform, f_transform, &rr_transform->f_transform);
pixman_f_transform_multiply (f_inverse, &rr_transform->f_inverse, f_inverse);
}
@ -242,19 +260,26 @@ RRTransformCompute (int x,
/*
* Compute the class of the resulting transform
*/
if (pixman_transform_is_identity (transform))
if (!overflow && pixman_transform_is_identity (transform))
{
pixman_transform_init_translate (transform, F ( x), F ( y));
pixman_f_transform_init_translate (f_transform, F( x), F( y));
pixman_f_transform_init_translate (f_inverse, F(-x), F(-y));
pixman_f_transform_init_translate (f_transform, x, y);
pixman_f_transform_init_translate (f_inverse, -x, -y);
return FALSE;
}
else
{
pixman_transform_translate (&inverse, transform, x, y);
pixman_f_transform_translate (f_inverse, f_transform, x, y);
pixman_f_transform_translate (f_inverse, f_transform, -x, -y);
if (!pixman_transform_translate (&inverse, transform, F(-x), F(-y)))
overflow = TRUE;
if (overflow)
{
struct pixman_f_transform f_scaled;
f_scaled = *f_transform;
RRTransformRescale(&f_scaled, 16384.0);
pixman_transform_from_pixman_f_transform(transform, &f_scaled);
}
return TRUE;
}
}