mi: Fold mifpolycon.c into miarc.c

Also put mifpoly.h on a diet, and stop including it from places that
don't need it.

Reviewed-by: Keith Packard <keithp@keithp.com>
Signed-off-by: Adam Jackson <ajax@redhat.com>
This commit is contained in:
Adam Jackson 2014-09-26 12:01:37 -04:00
parent f307ef10f4
commit 7679afd4da
7 changed files with 205 additions and 294 deletions

View File

@ -217,7 +217,6 @@ cat > sdksyms.c << EOF
#include "micoord.h"
#include "mifillarc.h"
#include "mistruct.h"
#include "mifpoly.h"
#include "mioverlay.h"

View File

@ -24,7 +24,6 @@ libmi_la_SOURCES = \
mifillarc.c \
mifillarc.h \
mifillrct.c \
mifpolycon.c \
mifpoly.h \
migc.c \
migc.h \

View File

@ -63,6 +63,22 @@ SOFTWARE.
#include "mifillarc.h"
#include <X11/Xfuncproto.h>
#define EPSILON 0.000001
#define ISEQUAL(a,b) (fabs((a) - (b)) <= EPSILON)
#define UNEQUAL(a,b) (fabs((a) - (b)) > EPSILON)
#define PTISEQUAL(a,b) (ISEQUAL(a.x,b.x) && ISEQUAL(a.y,b.y))
#define SQSECANT 108.856472512142 /* 1/sin^2(11/2) - for 11o miter cutoff */
/* Point with sub-pixel positioning. */
typedef struct _SppPoint {
double x, y;
} SppPointRec, *SppPointPtr;
typedef struct _SppArc {
double x, y, width, height;
double angle1, angle2;
} SppArcRec, *SppArcPtr;
static double miDsin(double a);
static double miDcos(double a);
static double miDasin(double v);
@ -1110,6 +1126,195 @@ miWideArc(DrawablePtr pDraw, GCPtr pGC, int narcs, xArc * parcs)
}
}
/* Find the index of the point with the smallest y.also return the
* smallest and largest y */
static int
GetFPolyYBounds(SppPointPtr pts, int n, double yFtrans, int *by, int *ty)
{
SppPointPtr ptMin;
double ymin, ymax;
SppPointPtr ptsStart = pts;
ptMin = pts;
ymin = ymax = (pts++)->y;
while (--n > 0) {
if (pts->y < ymin) {
ptMin = pts;
ymin = pts->y;
}
if (pts->y > ymax)
ymax = pts->y;
pts++;
}
*by = ICEIL(ymin + yFtrans);
*ty = ICEIL(ymax + yFtrans - 1);
return ptMin - ptsStart;
}
/*
* miFillSppPoly written by Todd Newman; April. 1987.
*
* Fill a convex polygon. If the given polygon
* is not convex, then the result is undefined.
* The algorithm is to order the edges from smallest
* y to largest by partitioning the array into a left
* edge list and a right edge list. The algorithm used
* to traverse each edge is digital differencing analyzer
* line algorithm with y as the major axis. There's some funny linear
* interpolation involved because of the subpixel postioning.
*/
static void
miFillSppPoly(DrawablePtr dst, GCPtr pgc, int count, /* number of points */
SppPointPtr ptsIn, /* the points */
int xTrans, int yTrans, /* Translate each point by this */
double xFtrans, double yFtrans /* translate before conversion
by this amount. This provides
a mechanism to match rounding
errors with any shape that must
meet the polygon exactly.
*/
)
{
double xl = 0.0, xr = 0.0, /* x vals of left and right edges */
ml = 0.0, /* left edge slope */
mr = 0.0, /* right edge slope */
dy, /* delta y */
i; /* loop counter */
int y, /* current scanline */
j, imin, /* index of vertex with smallest y */
ymin, /* y-extents of polygon */
ymax, *width, *FirstWidth, /* output buffer */
*Marked; /* set if this vertex has been used */
int left, right, /* indices to first endpoints */
nextleft, nextright; /* indices to second endpoints */
DDXPointPtr ptsOut, FirstPoint; /* output buffer */
if (pgc->miTranslate) {
xTrans += dst->x;
yTrans += dst->y;
}
imin = GetFPolyYBounds(ptsIn, count, yFtrans, &ymin, &ymax);
y = ymax - ymin + 1;
if ((count < 3) || (y <= 0))
return;
ptsOut = FirstPoint = malloc(sizeof(DDXPointRec) * y);
width = FirstWidth = malloc(sizeof(int) * y);
Marked = malloc(sizeof(int) * count);
if (!ptsOut || !width || !Marked) {
free(Marked);
free(width);
free(ptsOut);
return;
}
for (j = 0; j < count; j++)
Marked[j] = 0;
nextleft = nextright = imin;
Marked[imin] = -1;
y = ICEIL(ptsIn[nextleft].y + yFtrans);
/*
* loop through all edges of the polygon
*/
do {
/* add a left edge if we need to */
if ((y > (ptsIn[nextleft].y + yFtrans) ||
ISEQUAL(y, ptsIn[nextleft].y + yFtrans)) &&
Marked[nextleft] != 1) {
Marked[nextleft]++;
left = nextleft++;
/* find the next edge, considering the end conditions */
if (nextleft >= count)
nextleft = 0;
/* now compute the starting point and slope */
dy = ptsIn[nextleft].y - ptsIn[left].y;
if (dy != 0.0) {
ml = (ptsIn[nextleft].x - ptsIn[left].x) / dy;
dy = y - (ptsIn[left].y + yFtrans);
xl = (ptsIn[left].x + xFtrans) + ml * max(dy, 0);
}
}
/* add a right edge if we need to */
if ((y > ptsIn[nextright].y + yFtrans) ||
(ISEQUAL(y, ptsIn[nextright].y + yFtrans)
&& Marked[nextright] != 1)) {
Marked[nextright]++;
right = nextright--;
/* find the next edge, considering the end conditions */
if (nextright < 0)
nextright = count - 1;
/* now compute the starting point and slope */
dy = ptsIn[nextright].y - ptsIn[right].y;
if (dy != 0.0) {
mr = (ptsIn[nextright].x - ptsIn[right].x) / dy;
dy = y - (ptsIn[right].y + yFtrans);
xr = (ptsIn[right].x + xFtrans) + mr * max(dy, 0);
}
}
/*
* generate scans to fill while we still have
* a right edge as well as a left edge.
*/
i = (min(ptsIn[nextleft].y, ptsIn[nextright].y) + yFtrans) - y;
if (i < EPSILON) {
if (Marked[nextleft] && Marked[nextright]) {
/* Arrgh, we're trapped! (no more points)
* Out, we've got to get out of here before this decadence saps
* our will completely! */
break;
}
continue;
}
else {
j = (int) i;
if (!j)
j++;
}
while (j > 0) {
int cxl, cxr;
ptsOut->y = (y) + yTrans;
cxl = ICEIL(xl);
cxr = ICEIL(xr);
/* reverse the edges if necessary */
if (xl < xr) {
*(width++) = cxr - cxl;
(ptsOut++)->x = cxl + xTrans;
}
else {
*(width++) = cxl - cxr;
(ptsOut++)->x = cxr + xTrans;
}
y++;
/* increment down the edges */
xl += ml;
xr += mr;
j--;
}
} while (y <= ymax);
/* Finally, fill the spans we've collected */
(*pgc->ops->FillSpans) (dst, pgc,
ptsOut - FirstPoint, FirstPoint, FirstWidth, 1);
free(Marked);
free(FirstWidth);
free(FirstPoint);
}
static double
angleBetween(SppPointRec center, SppPointRec point1, SppPointRec point2)
{

View File

@ -49,7 +49,6 @@ SOFTWARE.
#include "regionstr.h"
#include "mistruct.h"
#include "mifpoly.h"
void
miStepDash(int dist, /* distance to step */

View File

@ -36,7 +36,6 @@ Author: Bob Scheifler, MIT X Consortium
#include "regionstr.h"
#include "gcstruct.h"
#include "pixmapstr.h"
#include "mifpoly.h"
#include "mi.h"
#include "mifillarc.h"

View File

@ -49,24 +49,6 @@ SOFTWARE.
#include <X11/Xfuncproto.h>
#define EPSILON 0.000001
#define ISEQUAL(a,b) (fabs((a) - (b)) <= EPSILON)
#define UNEQUAL(a,b) (fabs((a) - (b)) > EPSILON)
#define WITHINHALF(a, b) (((a) - (b) > 0.0) ? (a) - (b) < 0.5 : \
(b) - (a) <= 0.5)
#define ROUNDTOINT(x) ((int) (((x) > 0.0) ? ((x) + 0.5) : ((x) - 0.5)))
#define ISZERO(x) (fabs((x)) <= EPSILON)
#define PTISEQUAL(a,b) (ISEQUAL(a.x,b.x) && ISEQUAL(a.y,b.y))
#define PTUNEQUAL(a,b) (UNEQUAL(a.x,b.x) || UNEQUAL(a.y,b.y))
#define PtEqual(a, b) (((a).x == (b).x) && ((a).y == (b).y))
#define NotEnd 0
#define FirstEnd 1
#define SecondEnd 2
#define SQSECANT 108.856472512142 /* 1/sin^2(11/2) - for 11o miter cutoff */
#define D2SECANT 5.21671526231167 /* 1/2*sin(11/2) - max extension per width */
static _X_INLINE int
ICEIL(double x)
{
@ -75,27 +57,4 @@ ICEIL(double x)
return ((x == _cTmp) || (x < 0.0)) ? _cTmp : _cTmp + 1;
}
/* Point with sub-pixel positioning. In this case we use doubles, but
* see mifpolycon.c for other suggestions
*/
typedef struct _SppPoint {
double x, y;
} SppPointRec, *SppPointPtr;
typedef struct _SppArc {
double x, y, width, height;
double angle1, angle2;
} SppArcRec, *SppArcPtr;
/* mifpolycon.c */
extern void miFillSppPoly(DrawablePtr /*dst */ ,
GCPtr /*pgc */ ,
int /*count */ ,
SppPointPtr /*ptsIn */ ,
int /*xTrans */ ,
int /*yTrans */ ,
double /*xFtrans */ ,
double /*yFtrans */);
#endif /* __MIFPOLY_H__ */

View File

@ -1,249 +0,0 @@
/***********************************************************
Copyright 1987, 1998 The Open Group
Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that
the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation.
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of The Open Group shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from The Open Group.
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Digital not be
used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.
******************************************************************/
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#endif
#include <math.h>
#include <X11/X.h>
#include "gcstruct.h"
#include "windowstr.h"
#include "pixmapstr.h"
#include "mifpoly.h"
static int GetFPolyYBounds(SppPointPtr pts, int n, double yFtrans,
int *by, int *ty);
/*
* Written by Todd Newman; April. 1987.
*
* Fill a convex polygon. If the given polygon
* is not convex, then the result is undefined.
* The algorithm is to order the edges from smallest
* y to largest by partitioning the array into a left
* edge list and a right edge list. The algorithm used
* to traverse each edge is digital differencing analyzer
* line algorithm with y as the major axis. There's some funny linear
* interpolation involved because of the subpixel postioning.
*/
void
miFillSppPoly(DrawablePtr dst, GCPtr pgc, int count, /* number of points */
SppPointPtr ptsIn, /* the points */
int xTrans, int yTrans, /* Translate each point by this */
double xFtrans, double yFtrans /* translate before conversion
by this amount. This provides
a mechanism to match rounding
errors with any shape that must
meet the polygon exactly.
*/
)
{
double xl = 0.0, xr = 0.0, /* x vals of left and right edges */
ml = 0.0, /* left edge slope */
mr = 0.0, /* right edge slope */
dy, /* delta y */
i; /* loop counter */
int y, /* current scanline */
j, imin, /* index of vertex with smallest y */
ymin, /* y-extents of polygon */
ymax, *width, *FirstWidth, /* output buffer */
*Marked; /* set if this vertex has been used */
int left, right, /* indices to first endpoints */
nextleft, nextright; /* indices to second endpoints */
DDXPointPtr ptsOut, FirstPoint; /* output buffer */
if (pgc->miTranslate) {
xTrans += dst->x;
yTrans += dst->y;
}
imin = GetFPolyYBounds(ptsIn, count, yFtrans, &ymin, &ymax);
y = ymax - ymin + 1;
if ((count < 3) || (y <= 0))
return;
ptsOut = FirstPoint = malloc(sizeof(DDXPointRec) * y);
width = FirstWidth = malloc(sizeof(int) * y);
Marked = malloc(sizeof(int) * count);
if (!ptsOut || !width || !Marked) {
free(Marked);
free(width);
free(ptsOut);
return;
}
for (j = 0; j < count; j++)
Marked[j] = 0;
nextleft = nextright = imin;
Marked[imin] = -1;
y = ICEIL(ptsIn[nextleft].y + yFtrans);
/*
* loop through all edges of the polygon
*/
do {
/* add a left edge if we need to */
if ((y > (ptsIn[nextleft].y + yFtrans) ||
ISEQUAL(y, ptsIn[nextleft].y + yFtrans)) &&
Marked[nextleft] != 1) {
Marked[nextleft]++;
left = nextleft++;
/* find the next edge, considering the end conditions */
if (nextleft >= count)
nextleft = 0;
/* now compute the starting point and slope */
dy = ptsIn[nextleft].y - ptsIn[left].y;
if (dy != 0.0) {
ml = (ptsIn[nextleft].x - ptsIn[left].x) / dy;
dy = y - (ptsIn[left].y + yFtrans);
xl = (ptsIn[left].x + xFtrans) + ml * max(dy, 0);
}
}
/* add a right edge if we need to */
if ((y > ptsIn[nextright].y + yFtrans) ||
(ISEQUAL(y, ptsIn[nextright].y + yFtrans)
&& Marked[nextright] != 1)) {
Marked[nextright]++;
right = nextright--;
/* find the next edge, considering the end conditions */
if (nextright < 0)
nextright = count - 1;
/* now compute the starting point and slope */
dy = ptsIn[nextright].y - ptsIn[right].y;
if (dy != 0.0) {
mr = (ptsIn[nextright].x - ptsIn[right].x) / dy;
dy = y - (ptsIn[right].y + yFtrans);
xr = (ptsIn[right].x + xFtrans) + mr * max(dy, 0);
}
}
/*
* generate scans to fill while we still have
* a right edge as well as a left edge.
*/
i = (min(ptsIn[nextleft].y, ptsIn[nextright].y) + yFtrans) - y;
if (i < EPSILON) {
if (Marked[nextleft] && Marked[nextright]) {
/* Arrgh, we're trapped! (no more points)
* Out, we've got to get out of here before this decadence saps
* our will completely! */
break;
}
continue;
}
else {
j = (int) i;
if (!j)
j++;
}
while (j > 0) {
int cxl, cxr;
ptsOut->y = (y) + yTrans;
cxl = ICEIL(xl);
cxr = ICEIL(xr);
/* reverse the edges if necessary */
if (xl < xr) {
*(width++) = cxr - cxl;
(ptsOut++)->x = cxl + xTrans;
}
else {
*(width++) = cxl - cxr;
(ptsOut++)->x = cxr + xTrans;
}
y++;
/* increment down the edges */
xl += ml;
xr += mr;
j--;
}
} while (y <= ymax);
/* Finally, fill the spans we've collected */
(*pgc->ops->FillSpans) (dst, pgc,
ptsOut - FirstPoint, FirstPoint, FirstWidth, 1);
free(Marked);
free(FirstWidth);
free(FirstPoint);
}
/* Find the index of the point with the smallest y.also return the
* smallest and largest y */
static
int
GetFPolyYBounds(SppPointPtr pts, int n, double yFtrans, int *by, int *ty)
{
SppPointPtr ptMin;
double ymin, ymax;
SppPointPtr ptsStart = pts;
ptMin = pts;
ymin = ymax = (pts++)->y;
while (--n > 0) {
if (pts->y < ymin) {
ptMin = pts;
ymin = pts->y;
}
if (pts->y > ymax)
ymax = pts->y;
pts++;
}
*by = ICEIL(ymin + yFtrans);
*ty = ICEIL(ymax + yFtrans - 1);
return ptMin - ptsStart;
}