xserver-multidpi/mi/mifillarc.c
Paulo Cesar Pereira de Andrade 49f77fff14 Rework symbol visibility for easier maintenance
Save in a few special cases, _X_EXPORT should not be used in C source
files. Instead, it should be used in headers, and the proper C source
include that header. Some special cases are symbols that need to be
shared between modules, but not expected to be used by external drivers,
and symbols that are accessible via LoaderSymbol/dlopen.

  This patch also adds conditionally some new sdk header files, depending
on extensions enabled. These files were added to match pattern for
other extensions/modules, that is, have the headers "deciding" symbol
visibility in the sdk. These headers are:
o Xext/panoramiXsrv.h, Xext/panoramiX.h
o fbpict.h (unconditionally)
o vidmodeproc.h
o mioverlay.h (unconditionally, used only by xaa)
o xfixes.h (unconditionally, symbols required by dri2)

  LoaderSymbol and similar functions now don't have different prototypes,
in loaderProcs.h and xf86Module.h, so that both headers can be included,
without the need of defining IN_LOADER.

  xf86NewInputDevice() device prototype readded to xf86Xinput.h, but
not exported (and with a comment about it).
2008-12-03 05:43:34 -02:00

799 lines
16 KiB
C

/************************************************************
Copyright 1989, 1998 The Open Group
Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that
the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting
documentation.
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of The Open Group shall not be
used in advertising or otherwise to promote the sale, use or other dealings
in this Software without prior written authorization from The Open Group.
Author: Bob Scheifler, MIT X Consortium
********************************************************/
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#endif
#include <math.h>
#include <X11/X.h>
#include <X11/Xprotostr.h>
#include "regionstr.h"
#include "gcstruct.h"
#include "pixmapstr.h"
#include "mifpoly.h"
#include "mi.h"
#include "mifillarc.h"
#define QUADRANT (90 * 64)
#define HALFCIRCLE (180 * 64)
#define QUADRANT3 (270 * 64)
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define Dsin(d) sin((double)d*(M_PI/11520.0))
#define Dcos(d) cos((double)d*(M_PI/11520.0))
void
miFillArcSetup(xArc *arc, miFillArcRec *info)
{
info->y = arc->height >> 1;
info->dy = arc->height & 1;
info->yorg = arc->y + info->y;
info->dx = arc->width & 1;
info->xorg = arc->x + (arc->width >> 1) + info->dx;
info->dx = 1 - info->dx;
if (arc->width == arc->height)
{
/* (2x - 2xorg)^2 = d^2 - (2y - 2yorg)^2 */
/* even: xorg = yorg = 0 odd: xorg = .5, yorg = -.5 */
info->ym = 8;
info->xm = 8;
info->yk = info->y << 3;
if (!info->dx)
{
info->xk = 0;
info->e = -1;
}
else
{
info->y++;
info->yk += 4;
info->xk = -4;
info->e = - (info->y << 3);
}
}
else
{
/* h^2 * (2x - 2xorg)^2 = w^2 * h^2 - w^2 * (2y - 2yorg)^2 */
/* even: xorg = yorg = 0 odd: xorg = .5, yorg = -.5 */
info->ym = (arc->width * arc->width) << 3;
info->xm = (arc->height * arc->height) << 3;
info->yk = info->y * info->ym;
if (!info->dy)
info->yk -= info->ym >> 1;
if (!info->dx)
{
info->xk = 0;
info->e = - (info->xm >> 3);
}
else
{
info->y++;
info->yk += info->ym;
info->xk = -(info->xm >> 1);
info->e = info->xk - info->yk;
}
}
}
static void
miFillArcDSetup(xArc *arc, miFillArcDRec *info)
{
/* h^2 * (2x - 2xorg)^2 = w^2 * h^2 - w^2 * (2y - 2yorg)^2 */
/* even: xorg = yorg = 0 odd: xorg = .5, yorg = -.5 */
info->y = arc->height >> 1;
info->dy = arc->height & 1;
info->yorg = arc->y + info->y;
info->dx = arc->width & 1;
info->xorg = arc->x + (arc->width >> 1) + info->dx;
info->dx = 1 - info->dx;
info->ym = ((double)arc->width) * (arc->width * 8);
info->xm = ((double)arc->height) * (arc->height * 8);
info->yk = info->y * info->ym;
if (!info->dy)
info->yk -= info->ym / 2.0;
if (!info->dx)
{
info->xk = 0;
info->e = - (info->xm / 8.0);
}
else
{
info->y++;
info->yk += info->ym;
info->xk = -info->xm / 2.0;
info->e = info->xk - info->yk;
}
}
static void
miGetArcEdge(
xArc *arc,
miSliceEdgePtr edge,
int k,
Bool top,
Bool left )
{
int xady, y;
y = arc->height >> 1;
if (!(arc->width & 1))
y++;
if (!top)
{
y = -y;
if (arc->height & 1)
y--;
}
xady = k + y * edge->dx;
if (xady <= 0)
edge->x = - ((-xady) / edge->dy + 1);
else
edge->x = (xady - 1) / edge->dy;
edge->e = xady - edge->x * edge->dy;
if ((top && (edge->dx < 0)) || (!top && (edge->dx > 0)))
edge->e = edge->dy - edge->e + 1;
if (left)
edge->x++;
edge->x += arc->x + (arc->width >> 1);
if (edge->dx > 0)
{
edge->deltax = 1;
edge->stepx = edge->dx / edge->dy;
edge->dx = edge->dx % edge->dy;
}
else
{
edge->deltax = -1;
edge->stepx = - ((-edge->dx) / edge->dy);
edge->dx = (-edge->dx) % edge->dy;
}
if (!top)
{
edge->deltax = -edge->deltax;
edge->stepx = -edge->stepx;
}
}
static void
miEllipseAngleToSlope (int angle, int width, int height, int *dxp, int *dyp,
double *d_dxp, double *d_dyp)
{
int dx, dy;
double d_dx, d_dy, scale;
Bool negative_dx, negative_dy;
switch (angle) {
case 0:
*dxp = -1;
*dyp = 0;
if (d_dxp) {
*d_dxp = width / 2.0;
*d_dyp = 0;
}
break;
case QUADRANT:
*dxp = 0;
*dyp = 1;
if (d_dxp) {
*d_dxp = 0;
*d_dyp = - height / 2.0;
}
break;
case HALFCIRCLE:
*dxp = 1;
*dyp = 0;
if (d_dxp) {
*d_dxp = - width / 2.0;
*d_dyp = 0;
}
break;
case QUADRANT3:
*dxp = 0;
*dyp = -1;
if (d_dxp) {
*d_dxp = 0;
*d_dyp = height / 2.0;
}
break;
default:
d_dx = Dcos(angle) * width;
d_dy = Dsin(angle) * height;
if (d_dxp) {
*d_dxp = d_dx / 2.0;
*d_dyp = - d_dy / 2.0;
}
negative_dx = FALSE;
if (d_dx < 0.0)
{
d_dx = -d_dx;
negative_dx = TRUE;
}
negative_dy = FALSE;
if (d_dy < 0.0)
{
d_dy = -d_dy;
negative_dy = TRUE;
}
scale = d_dx;
if (d_dy > d_dx)
scale = d_dy;
dx = floor ((d_dx * 32768) / scale + 0.5);
if (negative_dx)
dx = -dx;
*dxp = dx;
dy = floor ((d_dy * 32768) / scale + 0.5);
if (negative_dy)
dy = -dy;
*dyp = dy;
break;
}
}
static void
miGetPieEdge(
xArc *arc,
int angle,
miSliceEdgePtr edge,
Bool top,
Bool left )
{
int k;
int dx, dy;
miEllipseAngleToSlope (angle, arc->width, arc->height, &dx, &dy, 0, 0);
if (dy == 0)
{
edge->x = left ? -65536 : 65536;
edge->stepx = 0;
edge->e = 0;
edge->dx = -1;
return;
}
if (dx == 0)
{
edge->x = arc->x + (arc->width >> 1);
if (left && (arc->width & 1))
edge->x++;
else if (!left && !(arc->width & 1))
edge->x--;
edge->stepx = 0;
edge->e = 0;
edge->dx = -1;
return;
}
if (dy < 0) {
dx = -dx;
dy = -dy;
}
k = (arc->height & 1) ? dx : 0;
if (arc->width & 1)
k += dy;
edge->dx = dx << 1;
edge->dy = dy << 1;
miGetArcEdge(arc, edge, k, top, left);
}
void
miFillArcSliceSetup(xArc *arc, miArcSliceRec *slice, GCPtr pGC)
{
int angle1, angle2;
angle1 = arc->angle1;
if (arc->angle2 < 0)
{
angle2 = angle1;
angle1 += arc->angle2;
}
else
angle2 = angle1 + arc->angle2;
while (angle1 < 0)
angle1 += FULLCIRCLE;
while (angle1 >= FULLCIRCLE)
angle1 -= FULLCIRCLE;
while (angle2 < 0)
angle2 += FULLCIRCLE;
while (angle2 >= FULLCIRCLE)
angle2 -= FULLCIRCLE;
slice->min_top_y = 0;
slice->max_top_y = arc->height >> 1;
slice->min_bot_y = 1 - (arc->height & 1);
slice->max_bot_y = slice->max_top_y - 1;
slice->flip_top = FALSE;
slice->flip_bot = FALSE;
if (pGC->arcMode == ArcPieSlice)
{
slice->edge1_top = (angle1 < HALFCIRCLE);
slice->edge2_top = (angle2 <= HALFCIRCLE);
if ((angle2 == 0) || (angle1 == HALFCIRCLE))
{
if (angle2 ? slice->edge2_top : slice->edge1_top)
slice->min_top_y = slice->min_bot_y;
else
slice->min_top_y = arc->height;
slice->min_bot_y = 0;
}
else if ((angle1 == 0) || (angle2 == HALFCIRCLE))
{
slice->min_top_y = slice->min_bot_y;
if (angle1 ? slice->edge1_top : slice->edge2_top)
slice->min_bot_y = arc->height;
else
slice->min_bot_y = 0;
}
else if (slice->edge1_top == slice->edge2_top)
{
if (angle2 < angle1)
{
slice->flip_top = slice->edge1_top;
slice->flip_bot = !slice->edge1_top;
}
else if (slice->edge1_top)
{
slice->min_top_y = 1;
slice->min_bot_y = arc->height;
}
else
{
slice->min_bot_y = 0;
slice->min_top_y = arc->height;
}
}
miGetPieEdge(arc, angle1, &slice->edge1,
slice->edge1_top, !slice->edge1_top);
miGetPieEdge(arc, angle2, &slice->edge2,
slice->edge2_top, slice->edge2_top);
}
else
{
double w2, h2, x1, y1, x2, y2, dx, dy, scale;
int signdx, signdy, y, k;
Bool isInt1 = TRUE, isInt2 = TRUE;
w2 = (double)arc->width / 2.0;
h2 = (double)arc->height / 2.0;
if ((angle1 == 0) || (angle1 == HALFCIRCLE))
{
x1 = angle1 ? -w2 : w2;
y1 = 0.0;
}
else if ((angle1 == QUADRANT) || (angle1 == QUADRANT3))
{
x1 = 0.0;
y1 = (angle1 == QUADRANT) ? h2 : -h2;
}
else
{
isInt1 = FALSE;
x1 = Dcos(angle1) * w2;
y1 = Dsin(angle1) * h2;
}
if ((angle2 == 0) || (angle2 == HALFCIRCLE))
{
x2 = angle2 ? -w2 : w2;
y2 = 0.0;
}
else if ((angle2 == QUADRANT) || (angle2 == QUADRANT3))
{
x2 = 0.0;
y2 = (angle2 == QUADRANT) ? h2 : -h2;
}
else
{
isInt2 = FALSE;
x2 = Dcos(angle2) * w2;
y2 = Dsin(angle2) * h2;
}
dx = x2 - x1;
dy = y2 - y1;
if (arc->height & 1)
{
y1 -= 0.5;
y2 -= 0.5;
}
if (arc->width & 1)
{
x1 += 0.5;
x2 += 0.5;
}
if (dy < 0.0)
{
dy = -dy;
signdy = -1;
}
else
signdy = 1;
if (dx < 0.0)
{
dx = -dx;
signdx = -1;
}
else
signdx = 1;
if (isInt1 && isInt2)
{
slice->edge1.dx = dx * 2;
slice->edge1.dy = dy * 2;
}
else
{
scale = (dx > dy) ? dx : dy;
slice->edge1.dx = floor((dx * 32768) / scale + .5);
slice->edge1.dy = floor((dy * 32768) / scale + .5);
}
if (!slice->edge1.dy)
{
if (signdx < 0)
{
y = floor(y1 + 1.0);
if (y >= 0)
{
slice->min_top_y = y;
slice->min_bot_y = arc->height;
}
else
{
slice->max_bot_y = -y - (arc->height & 1);
}
}
else
{
y = floor(y1);
if (y >= 0)
slice->max_top_y = y;
else
{
slice->min_top_y = arc->height;
slice->min_bot_y = -y - (arc->height & 1);
}
}
slice->edge1_top = TRUE;
slice->edge1.x = 65536;
slice->edge1.stepx = 0;
slice->edge1.e = 0;
slice->edge1.dx = -1;
slice->edge2 = slice->edge1;
slice->edge2_top = FALSE;
}
else if (!slice->edge1.dx)
{
if (signdy < 0)
x1 -= 1.0;
slice->edge1.x = ceil(x1);
slice->edge1_top = signdy < 0;
slice->edge1.x += arc->x + (arc->width >> 1);
slice->edge1.stepx = 0;
slice->edge1.e = 0;
slice->edge1.dx = -1;
slice->edge2_top = !slice->edge1_top;
slice->edge2 = slice->edge1;
}
else
{
if (signdx < 0)
slice->edge1.dx = -slice->edge1.dx;
if (signdy < 0)
slice->edge1.dx = -slice->edge1.dx;
k = ceil(((x1 + x2) * slice->edge1.dy - (y1 + y2) * slice->edge1.dx) / 2.0);
slice->edge2.dx = slice->edge1.dx;
slice->edge2.dy = slice->edge1.dy;
slice->edge1_top = signdy < 0;
slice->edge2_top = !slice->edge1_top;
miGetArcEdge(arc, &slice->edge1, k,
slice->edge1_top, !slice->edge1_top);
miGetArcEdge(arc, &slice->edge2, k,
slice->edge2_top, slice->edge2_top);
}
}
}
#define ADDSPANS() \
pts->x = xorg - x; \
pts->y = yorg - y; \
*wids = slw; \
pts++; \
wids++; \
if (miFillArcLower(slw)) \
{ \
pts->x = xorg - x; \
pts->y = yorg + y + dy; \
pts++; \
*wids++ = slw; \
}
static void
miFillEllipseI(
DrawablePtr pDraw,
GCPtr pGC,
xArc *arc )
{
int x, y, e;
int yk, xk, ym, xm, dx, dy, xorg, yorg;
int slw;
miFillArcRec info;
DDXPointPtr points;
DDXPointPtr pts;
int *widths;
int *wids;
points = (DDXPointPtr)xalloc(sizeof(DDXPointRec) * arc->height);
if (!points)
return;
widths = (int *)xalloc(sizeof(int) * arc->height);
if (!widths)
{
xfree(points);
return;
}
miFillArcSetup(arc, &info);
MIFILLARCSETUP();
if (pGC->miTranslate)
{
xorg += pDraw->x;
yorg += pDraw->y;
}
pts = points;
wids = widths;
while (y > 0)
{
MIFILLARCSTEP(slw);
ADDSPANS();
}
(*pGC->ops->FillSpans)(pDraw, pGC, pts - points, points, widths, FALSE);
xfree(widths);
xfree(points);
}
static void
miFillEllipseD(
DrawablePtr pDraw,
GCPtr pGC,
xArc *arc )
{
int x, y;
int xorg, yorg, dx, dy, slw;
double e, yk, xk, ym, xm;
miFillArcDRec info;
DDXPointPtr points;
DDXPointPtr pts;
int *widths;
int *wids;
points = (DDXPointPtr)xalloc(sizeof(DDXPointRec) * arc->height);
if (!points)
return;
widths = (int *)xalloc(sizeof(int) * arc->height);
if (!widths)
{
xfree(points);
return;
}
miFillArcDSetup(arc, &info);
MIFILLARCSETUP();
if (pGC->miTranslate)
{
xorg += pDraw->x;
yorg += pDraw->y;
}
pts = points;
wids = widths;
while (y > 0)
{
MIFILLARCSTEP(slw);
ADDSPANS();
}
(*pGC->ops->FillSpans)(pDraw, pGC, pts - points, points, widths, FALSE);
xfree(widths);
xfree(points);
}
#define ADDSPAN(l,r) \
if (r >= l) \
{ \
pts->x = l; \
pts->y = ya; \
pts++; \
*wids++ = r - l + 1; \
}
#define ADDSLICESPANS(flip) \
if (!flip) \
{ \
ADDSPAN(xl, xr); \
} \
else \
{ \
xc = xorg - x; \
ADDSPAN(xc, xr); \
xc += slw - 1; \
ADDSPAN(xl, xc); \
}
static void
miFillArcSliceI(
DrawablePtr pDraw,
GCPtr pGC,
xArc *arc )
{
int yk, xk, ym, xm, dx, dy, xorg, yorg, slw;
int x, y, e;
miFillArcRec info;
miArcSliceRec slice;
int ya, xl, xr, xc;
DDXPointPtr points;
DDXPointPtr pts;
int *widths;
int *wids;
miFillArcSetup(arc, &info);
miFillArcSliceSetup(arc, &slice, pGC);
MIFILLARCSETUP();
slw = arc->height;
if (slice.flip_top || slice.flip_bot)
slw += (arc->height >> 1) + 1;
points = (DDXPointPtr)xalloc(sizeof(DDXPointRec) * slw);
if (!points)
return;
widths = (int *)xalloc(sizeof(int) * slw);
if (!widths)
{
xfree(points);
return;
}
if (pGC->miTranslate)
{
xorg += pDraw->x;
yorg += pDraw->y;
slice.edge1.x += pDraw->x;
slice.edge2.x += pDraw->x;
}
pts = points;
wids = widths;
while (y > 0)
{
MIFILLARCSTEP(slw);
MIARCSLICESTEP(slice.edge1);
MIARCSLICESTEP(slice.edge2);
if (miFillSliceUpper(slice))
{
ya = yorg - y;
MIARCSLICEUPPER(xl, xr, slice, slw);
ADDSLICESPANS(slice.flip_top);
}
if (miFillSliceLower(slice))
{
ya = yorg + y + dy;
MIARCSLICELOWER(xl, xr, slice, slw);
ADDSLICESPANS(slice.flip_bot);
}
}
(*pGC->ops->FillSpans)(pDraw, pGC, pts - points, points, widths, FALSE);
xfree(widths);
xfree(points);
}
static void
miFillArcSliceD(
DrawablePtr pDraw,
GCPtr pGC,
xArc *arc )
{
int x, y;
int dx, dy, xorg, yorg, slw;
double e, yk, xk, ym, xm;
miFillArcDRec info;
miArcSliceRec slice;
int ya, xl, xr, xc;
DDXPointPtr points;
DDXPointPtr pts;
int *widths;
int *wids;
miFillArcDSetup(arc, &info);
miFillArcSliceSetup(arc, &slice, pGC);
MIFILLARCSETUP();
slw = arc->height;
if (slice.flip_top || slice.flip_bot)
slw += (arc->height >> 1) + 1;
points = (DDXPointPtr)xalloc(sizeof(DDXPointRec) * slw);
if (!points)
return;
widths = (int *)xalloc(sizeof(int) * slw);
if (!widths)
{
xfree(points);
return;
}
if (pGC->miTranslate)
{
xorg += pDraw->x;
yorg += pDraw->y;
slice.edge1.x += pDraw->x;
slice.edge2.x += pDraw->x;
}
pts = points;
wids = widths;
while (y > 0)
{
MIFILLARCSTEP(slw);
MIARCSLICESTEP(slice.edge1);
MIARCSLICESTEP(slice.edge2);
if (miFillSliceUpper(slice))
{
ya = yorg - y;
MIARCSLICEUPPER(xl, xr, slice, slw);
ADDSLICESPANS(slice.flip_top);
}
if (miFillSliceLower(slice))
{
ya = yorg + y + dy;
MIARCSLICELOWER(xl, xr, slice, slw);
ADDSLICESPANS(slice.flip_bot);
}
}
(*pGC->ops->FillSpans)(pDraw, pGC, pts - points, points, widths, FALSE);
xfree(widths);
xfree(points);
}
/* MIPOLYFILLARC -- The public entry for the PolyFillArc request.
* Since we don't have to worry about overlapping segments, we can just
* fill each arc as it comes.
*/
void
miPolyFillArc(DrawablePtr pDraw, GCPtr pGC, int narcs, xArc *parcs)
{
int i;
xArc *arc;
for(i = narcs, arc = parcs; --i >= 0; arc++)
{
if (miFillArcEmpty(arc))
continue;
if ((arc->angle2 >= FULLCIRCLE) || (arc->angle2 <= -FULLCIRCLE))
{
if (miCanFillArc(arc))
miFillEllipseI(pDraw, pGC, arc);
else
miFillEllipseD(pDraw, pGC, arc);
}
else
{
if (miCanFillArc(arc))
miFillArcSliceI(pDraw, pGC, arc);
else
miFillArcSliceD(pDraw, pGC, arc);
}
}
}