xserver-multidpi/hw/xfree86/os-support/bus/Pci.c
Daniel Stone 8444bb77c9 When we can, bound the maximum number of PCI devices to attempt to scan, by
the number found on the system. Only implemented for Linux right now.
2006-06-05 20:22:06 +00:00

1403 lines
40 KiB
C

/* $XFree86: xc/programs/Xserver/hw/xfree86/os-support/bus/Pci.c,v 1.82 2004/01/16 15:39:04 tsi Exp $ */
/*
* Pci.c - New server PCI access functions
*
* The XFree86 server PCI access functions have been reimplemented as a
* framework that allows each supported platform/OS to have their own
* platform/OS specific pci driver.
*
* All of the public PCI access functions exported to the other parts of
* the server are declared in Pci.h and defined herein. These include:
* pciInit() - Initialize PCI access functions
* pciFindFirst() - Find a PCI device by dev/vend id
* pciFindNext() - Find another PCI device by dev/vend id
* pciReadLong() - Read a 32 bit value from a device's cfg space
* pciReadWord() - Read a 16 bit value from a device's cfg space
* pciReadByte() - Read an 8 bit value from a device's cfg space
* pciWriteLong() - Write a 32 bit value to a device's cfg space
* pciWriteWord() - Write a 16 bit value to a device's cfg space
* pciWriteByte() - Write an 8 bit value to a device's cfg space
* pciSetBitsLong() - Write a 32 bit value against a mask
* pciSetBitsByte() - Write an 8 bit value against a mask
* pciTag() - Return tag for a given PCI bus, device, &
* function
* pciBusAddrToHostAddr() - Convert a PCI address to a host address
* pciHostAddrToBusAddr() - Convert a host address to a PCI address
* pciGetBaseSize() - Returns the number of bits in a PCI base
* addr mapping
* xf86MapPciMem() - Like xf86MapVidMem() except function expects
* a PCI address and a PCITAG that identifies
* a PCI device
* xf86ReadPciBIOS() - Like xf86ReadBIOS() but can handle PCI/host
* address translation and BIOS decode enabling
* xf86scanpci() - Return info about all PCI devices
* xf86GetPciDomain() - Return domain number from a PCITAG
* xf86MapDomainMemory() - Like xf86MapPciMem() but can handle
* domain/host address translation
* xf86MapDomainIO() - Maps PCI I/O spaces
* xf86ReadDomainMemory() - Like xf86ReadPciBIOS() but can handle
* domain/host address translation
*
* The actual PCI backend driver is selected by the pciInit() function
* (see below) using either compile time definitions, run-time checks,
* or both.
*
* Certain generic functions are provided that make the implementation
* of certain well behaved platforms (e.g. those supporting PCI config
* mechanism 1 or some thing close to it) very easy.
*
* Less well behaved platforms/OS's can roll their own functions.
*
* To add support for another platform/OS, add a call to fooPciInit() within
* pciInit() below under the correct compile time definition or run-time
* conditional.
*
* The fooPciInit() procedure must do three things:
* 1) Initialize the pciBusTable[] for all primary PCI buses including
* the per domain PCI access functions (readLong, writeLong,
* addrBusToHost, and addrHostToBus).
*
* 2) Add entries to pciBusTable[] for configured secondary buses. This
* step may be skipped if a platform is using the generic findFirst/
* findNext functions because these procedures will automatically
* discover and add secondary buses dynamically.
*
* 3) Overide default settings for global PCI access functions if
* required. These include pciFindFirstFP, pciFindNextFP,
* Of course, if you choose not to use one of the generic
* functions, you will need to provide a platform specifc replacement.
*
* Gary Barton
* Concurrent Computer Corporation
* garyb@gate.net
*
*/
/*
* Copyright 1998 by Concurrent Computer Corporation
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of Concurrent Computer
* Corporation not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. Concurrent Computer Corporation makes no representations
* about the suitability of this software for any purpose. It is
* provided "as is" without express or implied warranty.
*
* CONCURRENT COMPUTER CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL CONCURRENT COMPUTER CORPORATION BE
* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*
* Copyright 1998 by Metro Link Incorporated
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of Metro Link
* Incorporated not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. Metro Link Incorporated makes no representations
* about the suitability of this software for any purpose. It is
* provided "as is" without express or implied warranty.
*
* METRO LINK INCORPORATED DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL METRO LINK INCORPORATED BE
* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*
* This software is derived from the original XFree86 PCI code
* which includes the following copyright notices as well:
*
* Copyright 1995 by Robin Cutshaw <robin@XFree86.Org>
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the names of the above listed copyright holder(s)
* not be used in advertising or publicity pertaining to distribution of
* the software without specific, written prior permission. The above listed
* copyright holder(s) make(s) no representations about the suitability of this
* software for any purpose. It is provided "as is" without express or
* implied warranty.
*
* THE ABOVE LISTED COPYRIGHT HOLDER(S) DISCLAIM(S) ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS, IN NO EVENT SHALL THE ABOVE LISTED COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* This code is also based heavily on the code in FreeBSD-current, which was
* written by Wolfgang Stanglmeier, and contains the following copyright:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Copyright (c) 1999-2003 by The XFree86 Project, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of the copyright holder(s)
* and author(s) shall not be used in advertising or otherwise to promote
* the sale, use or other dealings in this Software without prior written
* authorization from the copyright holder(s) and author(s).
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include <errno.h>
#include <signal.h>
#include <X11/Xarch.h>
#include "compiler.h"
#include "xf86.h"
#include "xf86Priv.h"
#define XF86_OS_PRIVS
#include "xf86_OSproc.h"
#include "Pci.h"
#define PCI_MFDEV_SUPPORT 1 /* Include PCI multifunction device support */
#define PCI_BRIDGE_SUPPORT 1 /* Include support for PCI-to-PCI bridges */
/*
* Global data
*/
static int pciInitialized = 0;
CARD32 pciDevid; /* Requested device/vendor ID (after mask) */
CARD32 pciDevidMask; /* Bit mask applied (AND) before comparison */
/* of real devid's with requested */
int pciBusNum; /* Bus Number of current device */
int pciDevNum; /* Device number of current device */
int pciFuncNum; /* Function number of current device */
PCITAG pciDeviceTag; /* Tag for current device */
pciBusInfo_t *pciBusInfo[MAX_PCI_BUSES] = { NULL, };
_X_EXPORT int pciNumBuses = 0; /* Actual number of PCI buses */
int pciMaxBusNum = MAX_PCI_BUSES;
static Bool inProbe = FALSE;
static pciConfigPtr pci_devp[MAX_PCI_DEVICES + 1] = {NULL, };
static int readPciBios( PCITAG Tag, CARD8* tmp, ADDRESS hostbase,
unsigned char * buf, int len, PciBiosType BiosType );
static int (*pciOSHandleBIOS)(PCITAG Tag, int basereg, unsigned char *buf, int len);
int xf86MaxPciDevs = MAX_PCI_DEVICES;
/*
* Platform specific PCI function pointers.
*
* NOTE: A platform/OS specific pci init procedure can override these defaults
* by setting them to the appropriate platform dependent functions.
*/
PCITAG (*pciFindFirstFP)(void) = pciGenFindFirst;
PCITAG (*pciFindNextFP)(void) = pciGenFindNext;
/*
* pciInit - choose correct platform/OS specific PCI init routine
*/
void
pciInit()
{
if (pciInitialized)
return;
pciInitialized = 1;
/* XXX */
#if defined(DEBUGPCI)
if (DEBUGPCI >= xf86Verbose)
xf86Verbose = DEBUGPCI;
#endif
ARCH_PCI_INIT();
#if defined(ARCH_PCI_OS_INIT)
if (pciNumBuses <= 0)
ARCH_PCI_OS_INIT();
#endif
}
void pciSetOSBIOSPtr(int (*bios_fn)(PCITAG Tag, int basereg, unsigned char * buf, int len))
{
pciOSHandleBIOS = bios_fn;
}
_X_EXPORT PCITAG
pciFindFirst(CARD32 id, CARD32 mask)
{
#ifdef DEBUGPCI
ErrorF("pciFindFirst(0x%lx, 0x%lx), pciInit = %d\n", id, mask, pciInitialized);
#endif
pciInit();
pciDevid = id & mask;
pciDevidMask = mask;
return((*pciFindFirstFP)());
}
_X_EXPORT PCITAG
pciFindNext(void)
{
#ifdef DEBUGPCI
ErrorF("pciFindNext(), pciInit = %d\n", pciInitialized);
#endif
pciInit();
return((*pciFindNextFP)());
}
_X_EXPORT CARD32
pciReadLong(PCITAG tag, int offset)
{
int bus = PCI_BUS_FROM_TAG(tag);
#ifdef DEBUGPCI
ErrorF("pciReadLong(0x%lx, %d)\n", tag, offset);
#endif
pciInit();
if ((bus >= 0) && ((bus < pciNumBuses) || inProbe) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciReadLong) {
CARD32 rv = (*pciBusInfo[bus]->funcs->pciReadLong)(tag, offset);
PCITRACE(1, ("pciReadLong: tag=0x%x [b=%d,d=%d,f=%d] returns 0x%08x\n",
tag, bus, PCI_DEV_FROM_TAG(tag), PCI_FUNC_FROM_TAG(tag), rv));
return(rv);
}
return(PCI_NOT_FOUND);
}
_X_EXPORT CARD16
pciReadWord(PCITAG tag, int offset)
{
CARD32 tmp;
int shift = (offset & 3) * 8;
int aligned_offset = offset & ~3;
int bus = PCI_BUS_FROM_TAG(tag);
if (shift != 0 && shift != 16)
FatalError("pciReadWord: Alignment error: Cannot read 16 bits "
"at offset %d\n", offset);
pciInit();
if ((bus >= 0) && ((bus < pciNumBuses) || inProbe) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciReadWord) {
CARD32 rv = (*pciBusInfo[bus]->funcs->pciReadWord)(tag, offset);
return(rv);
} else {
tmp = pciReadLong(tag, aligned_offset);
return((CARD16)((tmp >> shift) & 0xffff));
}
}
_X_EXPORT CARD8
pciReadByte(PCITAG tag, int offset)
{
CARD32 tmp;
int shift = (offset & 3) * 8;
int aligned_offset = offset & ~3;
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && ((bus < pciNumBuses) || inProbe) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciReadByte) {
CARD8 rv = (*pciBusInfo[bus]->funcs->pciReadByte)(tag, offset);
return(rv);
} else {
tmp = pciReadLong(tag, aligned_offset);
return((CARD8)((tmp >> shift) & 0xff));
}
}
_X_EXPORT void
pciWriteLong(PCITAG tag, int offset, CARD32 val)
{
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciWriteLong)
(*pciBusInfo[bus]->funcs->pciWriteLong)(tag, offset, val);
}
_X_EXPORT void
pciWriteWord(PCITAG tag, int offset, CARD16 val)
{
CARD32 tmp;
int aligned_offset = offset & ~3;
int shift = (offset & 3) * 8;
int bus = PCI_BUS_FROM_TAG(tag);
if (shift != 0 && shift != 16)
FatalError("pciWriteWord: Alignment Error: Cannot read 16 bits "
"from offset %d\n", offset);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciWriteWord) {
(*pciBusInfo[bus]->funcs->pciWriteWord)(tag, offset, val);
} else {
tmp = pciReadLong(tag, aligned_offset);
tmp &= ~(0xffffL << shift);
tmp |= (((CARD32)val) << shift);
pciWriteLong(tag, aligned_offset, tmp);
}
}
_X_EXPORT void
pciWriteByte(PCITAG tag, int offset, CARD8 val)
{
CARD32 tmp;
int aligned_offset = offset & ~3;
int shift = (offset & 3) *8 ;
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciWriteByte) {
(*pciBusInfo[bus]->funcs->pciWriteByte)(tag, offset, val);
} else {
tmp = pciReadLong(tag, aligned_offset);
tmp &= ~(0xffL << shift);
tmp |= (((CARD32)val) << shift);
pciWriteLong(tag, aligned_offset, tmp);
}
}
_X_EXPORT void
pciSetBitsLong(PCITAG tag, int offset, CARD32 mask, CARD32 val)
{
int bus = PCI_BUS_FROM_TAG(tag);
#ifdef DEBUGPCI
ErrorF("pciReadLong(0x%lx, %d)\n", tag, offset);
#endif
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciSetBitsLong) {
(*pciBusInfo[bus]->funcs->pciSetBitsLong)(tag, offset, mask, val);
}
}
void
pciSetBitsByte(PCITAG tag, int offset, CARD8 mask, CARD8 val)
{
CARD32 tmp_mask, tmp_val;
int aligned_offset = offset & ~3;
int shift = (offset & 3) *8 ;
tmp_mask = mask << shift;
tmp_val = val << shift;
pciSetBitsLong(tag, aligned_offset, tmp_mask, tmp_val);
}
_X_EXPORT ADDRESS
pciBusAddrToHostAddr(PCITAG tag, PciAddrType type, ADDRESS addr)
{
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciAddrBusToHost)
return (*pciBusInfo[bus]->funcs->pciAddrBusToHost)(tag, type, addr);
else
return(addr);
}
_X_EXPORT ADDRESS
pciHostAddrToBusAddr(PCITAG tag, PciAddrType type, ADDRESS addr)
{
int bus = PCI_BUS_FROM_TAG(tag);
pciInit();
if ((bus >= 0) && (bus < pciNumBuses) && pciBusInfo[bus] &&
pciBusInfo[bus]->funcs->pciAddrHostToBus)
return (*pciBusInfo[bus]->funcs->pciAddrHostToBus)(tag, type, addr);
else
return(addr);
}
/*
* pciGetBaseSize() returns the size of a PCI base address mapping in bits.
* The index identifies the base register: 0-5 are the six standard registers,
* and 6 is the ROM base register. If destructive is TRUE, it will write
* to the base address register to get an accurate result. Otherwise it
* makes a conservative guess based on the alignment of the already allocated
* address. If the result is accurate (ie, not an over-estimate), this is
* indicated by setting *min to TRUE (when min is non-NULL). This happens
* when either the destructive flag is set, the information is supplied by
* the OS if the OS supports this.
*/
int
pciGetBaseSize(PCITAG tag, int index, Bool destructive, Bool *min)
{
int offset;
CARD32 addr1;
CARD32 addr2;
CARD32 mask1;
CARD32 mask2;
int bits = 0;
/*
* Eventually a function for this should be added to pciBusFuncs_t, but for
* now we'll just use a simple method based on the alignment of the already
* allocated address.
*/
/*
* silently ignore bogus index values. Valid values are 0-6. 0-5 are
* the 6 base address registers, and 6 is the ROM base address register.
*/
if (index < 0 || index > 6)
return 0;
pciInit();
if (xf86GetPciSizeFromOS(tag, index, &bits)) {
if (min)
*min = TRUE;
return bits;
}
if (min)
*min = destructive;
/* Get the PCI offset */
if (index == 6)
offset = PCI_MAP_ROM_REG;
else
offset = PCI_MAP_REG_START + (index << 2);
addr1 = pciReadLong(tag, offset);
/*
* Check if this is the second part of a 64 bit address.
* XXX need to check how endianness affects 64 bit addresses.
*/
if (index > 0 && index < 6) {
addr2 = pciReadLong(tag, offset - 4);
if (PCI_MAP_IS_MEM(addr2) && PCI_MAP_IS64BITMEM(addr2))
return 0;
}
if (destructive) {
pciWriteLong(tag, offset, 0xffffffff);
mask1 = pciReadLong(tag, offset);
pciWriteLong(tag, offset, addr1);
} else {
mask1 = addr1;
}
/* Check if this is the first part of a 64 bit address. */
if (index < 5 && PCI_MAP_IS_MEM(mask1) && PCI_MAP_IS64BITMEM(mask1)) {
if (PCIGETMEMORY(mask1) == 0) {
addr2 = pciReadLong(tag, offset + 4);
if (destructive) {
pciWriteLong(tag, offset + 4, 0xffffffff);
mask2 = pciReadLong(tag, offset + 4);
pciWriteLong(tag, offset + 4, addr2);
} else {
mask2 = addr2;
}
if (mask2 == 0)
return 0;
bits = 32;
while ((mask2 & 1) == 0) {
bits++;
mask2 >>= 1;
}
if (bits > 32)
return bits;
}
}
if (index < 6)
if (PCI_MAP_IS_MEM(mask1))
mask1 = PCIGETMEMORY(mask1);
else
mask1 = PCIGETIO(mask1);
else
mask1 = PCIGETROM(mask1);
if (mask1 == 0)
return 0;
bits = 0;
while ((mask1 & 1) == 0) {
bits++;
mask1 >>= 1;
}
/* I/O maps can be no larger than 8 bits */
if ((index < 6) && PCI_MAP_IS_IO(addr1) && bits > 8)
bits = 8;
/* ROM maps can be no larger than 24 bits */
if (index == 6 && bits > 24)
bits = 24;
return bits;
}
_X_EXPORT PCITAG
pciTag(int busnum, int devnum, int funcnum)
{
return(PCI_MAKE_TAG(busnum,devnum,funcnum));
}
#if defined(PCI_MFDEV_SUPPORT)
Bool
pciMfDev(int busnum, int devnum)
{
PCITAG tag0, tag1;
CARD32 id0, id1, val;
/* Detect a multi-function device that complies to the PCI 2.0 spec */
tag0 = PCI_MAKE_TAG(busnum, devnum, 0);
id0 = pciReadLong(tag0, PCI_ID_REG);
if ((CARD16)(id0 + 1) <= (CARD16)1UL)
return FALSE;
val = pciReadLong(tag0, PCI_HEADER_MISC) & 0x00ff0000;
if ((val != 0x00ff0000) && (val & PCI_HEADER_MULTIFUNCTION))
return TRUE;
/*
* Now, to find non-compliant devices...
* If there is a valid ID for function 1 and the ID for func 0 and 1
* are different, or the base0 values of func 0 and 1 are differend,
* then assume there is a multi-function device.
*/
tag1 = PCI_MAKE_TAG(busnum, devnum, 1);
id1 = pciReadLong(tag1, PCI_ID_REG);
if ((CARD16)(id1 + 1) <= (CARD16)1UL)
return FALSE;
/* Vendor IDs should match */
if ((id0 ^ id1) & 0x0000ffff)
return FALSE;
if ((id0 != id1) ||
/* Note the following test is valid for header types 0, 1 and 2 */
(pciReadLong(tag0, PCI_MAP_REG_START) !=
pciReadLong(tag1, PCI_MAP_REG_START)))
return TRUE;
return FALSE;
}
#endif
/*
* Generic find/read/write functions
*/
PCITAG
pciGenFindNext(void)
{
CARD32 devid, tmp;
int sec_bus, pri_bus;
static int previousBus = 0;
Bool speculativeProbe = FALSE;
unsigned char base_class, sub_class;
#ifdef DEBUGPCI
ErrorF("pciGenFindNext\n");
#endif
for (;;) {
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciBusNum %d\n", pciBusNum);
#endif
if (pciBusNum == -1) {
/*
* Start at top of the order
*/
if (pciNumBuses <= 0)
return(PCI_NOT_FOUND);
/* Skip ahead to the first bus defined by pciInit() */
for (pciBusNum = 0; !pciBusInfo[pciBusNum]; ++pciBusNum);
pciFuncNum = 0;
pciDevNum = 0;
previousBus = pciBusNum; /* make sure previousBus exists */
} else {
#ifdef PCI_MFDEV_SUPPORT
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciFuncNum %d\n", pciFuncNum);
#endif
/*
* Somewhere in middle of order. Determine who's
* next up
*/
if (pciFuncNum == 0) {
/*
* Is current dev a multifunction device?
*/
if (!speculativeProbe && pciMfDev(pciBusNum, pciDevNum))
/* Probe for other functions */
pciFuncNum = 1;
else
/*
* No more functions this device. Next
* device please
*/
pciDevNum ++;
} else if (++pciFuncNum >= 8) {
/* No more functions for this device. Next device please */
pciFuncNum = 0;
pciDevNum ++;
}
#else
pciDevNum ++;
#endif
if (pciDevNum >= 32 ||
!pciBusInfo[pciBusNum] ||
pciDevNum >= pciBusInfo[pciBusNum]->numDevices) {
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: next bus\n");
#endif
/*
* No more devices for this bus. Next bus please
*/
if (speculativeProbe) {
NextSpeculativeBus:
xfree(pciBusInfo[pciBusNum]);
pciBusInfo[pciBusNum] = NULL;
speculativeProbe = FALSE;
}
if (++pciBusNum >= pciMaxBusNum) {
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: out of buses\n");
#endif
/* No more buses. All done for now */
return(PCI_NOT_FOUND);
}
pciDevNum = 0;
}
}
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciBusInfo[%d] = 0x%lx\n", pciBusNum, pciBusInfo[pciBusNum]);
#endif
if (!pciBusInfo[pciBusNum]) {
pciBusInfo[pciBusNum] = xnfalloc(sizeof(pciBusInfo_t));
*pciBusInfo[pciBusNum] = *pciBusInfo[previousBus];
speculativeProbe = TRUE;
}
/*
* At this point, pciBusNum, pciDevNum, and pciFuncNum have been
* advanced to the next device. Compute the tag, and read the
* device/vendor ID field.
*/
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: [%d, %d, %d]\n", pciBusNum, pciDevNum, pciFuncNum);
#endif
pciDeviceTag = PCI_MAKE_TAG(pciBusNum, pciDevNum, pciFuncNum);
inProbe = TRUE;
devid = pciReadLong(pciDeviceTag, PCI_ID_REG);
inProbe = FALSE;
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciDeviceTag = 0x%lx, devid = 0x%lx\n", pciDeviceTag, devid);
#endif
if ((CARD16)(devid + 1U) <= (CARD16)1UL)
continue; /* Nobody home. Next device please */
/*
* Some devices mis-decode configuration cycles in such a way as to
* create phantom buses.
*/
if (speculativeProbe && (pciDevNum == 0) && (pciFuncNum == 0) &&
(PCI_BUS_NO_DOMAIN(pciBusNum) > 0)) {
for (;;) {
if (++pciDevNum >= pciBusInfo[pciBusNum]->numDevices)
goto NextSpeculativeBus;
if (devid !=
pciReadLong(PCI_MAKE_TAG(pciBusNum, pciDevNum, 0),
PCI_ID_REG))
break;
}
pciDevNum = 0;
}
if (pciNumBuses <= pciBusNum)
pciNumBuses = pciBusNum + 1;
speculativeProbe = FALSE;
previousBus = pciBusNum;
#ifdef PCI_BRIDGE_SUPPORT
/*
* Before checking for a specific devid, look for enabled
* PCI to PCI bridge devices. If one is found, create and
* initialize a bus info record (if one does not already exist).
*/
tmp = pciReadLong(pciDeviceTag, PCI_CLASS_REG);
base_class = PCI_CLASS_EXTRACT(tmp);
sub_class = PCI_SUBCLASS_EXTRACT(tmp);
if ((base_class == PCI_CLASS_BRIDGE) &&
((sub_class == PCI_SUBCLASS_BRIDGE_PCI) ||
(sub_class == PCI_SUBCLASS_BRIDGE_CARDBUS))) {
tmp = pciReadLong(pciDeviceTag, PCI_PCI_BRIDGE_BUS_REG);
sec_bus = PCI_SECONDARY_BUS_EXTRACT(tmp, pciDeviceTag);
pri_bus = PCI_PRIMARY_BUS_EXTRACT(tmp, pciDeviceTag);
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pri_bus %d sec_bus %d\n",
pri_bus, sec_bus);
#endif
if (pciBusNum != pri_bus) {
/* Some bridges do not implement the primary bus register */
if ((PCI_BUS_NO_DOMAIN(pri_bus) != 0) ||
(sub_class != PCI_SUBCLASS_BRIDGE_CARDBUS))
xf86Msg(X_WARNING,
"pciGenFindNext: primary bus mismatch on PCI"
" bridge 0x%08lx (0x%02x, 0x%02x)\n",
pciDeviceTag, pciBusNum, pri_bus);
pri_bus = pciBusNum;
}
if ((pri_bus < sec_bus) && (sec_bus < pciMaxBusNum) &&
pciBusInfo[pri_bus]) {
/*
* Found a secondary PCI bus
*/
if (!pciBusInfo[sec_bus]) {
pciBusInfo[sec_bus] = xnfalloc(sizeof(pciBusInfo_t));
/* Copy parents settings... */
*pciBusInfo[sec_bus] = *pciBusInfo[pri_bus];
}
/* ...but not everything same as parent */
pciBusInfo[sec_bus]->primary_bus = pri_bus;
pciBusInfo[sec_bus]->secondary = TRUE;
pciBusInfo[sec_bus]->numDevices = 32;
if (pciNumBuses <= sec_bus)
pciNumBuses = sec_bus + 1;
}
}
#endif
/*
* Does this device match the requested devid after
* applying mask?
*/
#ifdef DEBUGPCI
ErrorF("pciGenFindNext: pciDevidMask = 0x%lx, pciDevid = 0x%lx\n", pciDevidMask, pciDevid);
#endif
if ((devid & pciDevidMask) == pciDevid)
/* Yes - Return it. Otherwise, next device */
return(pciDeviceTag); /* got a match */
} /* for */
/*NOTREACHED*/
}
PCITAG
pciGenFindFirst(void)
{
/* Reset PCI bus number to start from top */
pciBusNum = -1;
return pciGenFindNext();
}
CARD32
pciByteSwap(CARD32 u)
{
#if X_BYTE_ORDER == X_BIG_ENDIAN
return lswapl(u);
#else /* !BIG_ENDIAN */
return(u);
#endif
}
ADDRESS
pciAddrNOOP(PCITAG tag, PciAddrType type, ADDRESS addr)
{
return(addr);
}
_X_EXPORT pciConfigPtr *
xf86scanpci(int flags)
{
pciConfigPtr devp;
pciBusInfo_t *busp;
int idx = 0, i;
PCITAG tag;
static Bool done = FALSE;
/*
* if we haven't found PCI devices checking for pci_devp may
* result in an endless recursion if platform/OS specific PCI
* bus probing code calls this function from with in it.
*/
if (done || pci_devp[0])
return pci_devp;
done = TRUE;
pciInit();
#ifdef XF86SCANPCI_WRAPPER
XF86SCANPCI_WRAPPER(SCANPCI_INIT);
#endif
tag = pciFindFirst(0,0); /* 0 mask means match any valid device */
/* Check if no devices, return now */
if (tag == PCI_NOT_FOUND) {
#ifdef XF86SCANPCI_WRAPPER
XF86SCANPCI_WRAPPER(SCANPCI_TERM);
#endif
return NULL;
}
#ifdef DEBUGPCI
ErrorF("xf86scanpci: tag = 0x%lx\n", tag);
#endif
#ifndef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: PCI scan (all values are in hex)\n");
#endif
while (idx < xf86MaxPciDevs && tag != PCI_NOT_FOUND) {
devp = xcalloc(1, sizeof(pciDevice));
if (!devp) {
xf86Msg(X_ERROR,
"xf86scanpci: Out of memory after %d devices!!\n", idx);
return (pciConfigPtr *)NULL;
}
/* Identify pci device by bus, dev, func, and tag */
devp->tag = tag;
devp->busnum = PCI_BUS_FROM_TAG(tag);
devp->devnum = PCI_DEV_FROM_TAG(tag);
devp->funcnum = PCI_FUNC_FROM_TAG(tag);
/* Read config space for this device */
for (i = 0; i < 17; i++) /* PCI hdr plus 1st dev spec dword */
devp->cfgspc.dwords[i] = pciReadLong(tag, i * sizeof(CARD32));
/* Some broken devices don't implement this field... */
if (devp->pci_header_type == 0xff)
devp->pci_header_type = 0;
switch (devp->pci_header_type & 0x7f) {
case 0:
/* Get base address sizes for type 0 headers */
for (i = 0; i < 7; i++)
devp->basesize[i] =
pciGetBaseSize(tag, i, FALSE, &devp->minBasesize);
break;
case 1:
case 2:
/* Allow master aborts to complete normally on secondary buses */
if (!(devp->pci_bridge_control & PCI_PCI_BRIDGE_MASTER_ABORT_EN))
break;
pciWriteByte(tag, PCI_PCI_BRIDGE_CONTROL_REG,
devp->pci_bridge_control &
~(PCI_PCI_BRIDGE_MASTER_ABORT_EN |
PCI_PCI_BRIDGE_SECONDARY_RESET));
break;
default:
break;
}
#ifdef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: BusID 0x%.2x,0x%02x,0x%1x "
"ID 0x%04x,0x%04x Rev 0x%02x Class 0x%02x,0x%02x\n",
devp->busnum, devp->devnum, devp->funcnum,
devp->pci_vendor, devp->pci_device, devp->pci_rev_id,
devp->pci_base_class, devp->pci_sub_class);
#else
xf86MsgVerb(X_INFO, 2, "PCI: %.2x:%02x:%1x: chip %04x,%04x"
" card %04x,%04x rev %02x class %02x,%02x,%02x hdr %02x\n",
devp->busnum, devp->devnum, devp->funcnum,
devp->pci_vendor, devp->pci_device,
devp->pci_subsys_vendor, devp->pci_subsys_card,
devp->pci_rev_id, devp->pci_base_class,
devp->pci_sub_class, devp->pci_prog_if,
devp->pci_header_type);
#endif
pci_devp[idx++] = devp;
if (idx == xf86MaxPciDevs)
break;
tag = pciFindNext();
#ifdef DEBUGPCI
ErrorF("xf86scanpci: tag = pciFindNext = 0x%lx\n", tag);
#endif
}
/* Restore modified data (in reverse order), and link buses */
while (--idx >= 0) {
devp = pci_devp[idx];
switch (devp->pci_header_type & 0x7f) {
case 0:
if ((devp->pci_base_class != PCI_CLASS_BRIDGE) ||
(devp->pci_sub_class != PCI_SUBCLASS_BRIDGE_HOST))
break;
pciBusInfo[devp->busnum]->bridge = devp;
pciBusInfo[devp->busnum]->primary_bus = devp->busnum;
break;
case 1:
case 2:
i = PCI_SECONDARY_BUS_EXTRACT(devp->pci_pp_bus_register, devp->tag);
if (i > devp->busnum) {
if (pciBusInfo[i]) {
pciBusInfo[i]->bridge = devp;
/*
* The back link needs to be set here, and is unlikely to
* change.
*/
devp->businfo = pciBusInfo[i];
}
#ifdef ARCH_PCI_PCI_BRIDGE
ARCH_PCI_PCI_BRIDGE(devp);
#endif
}
if (!(devp->pci_bridge_control & PCI_PCI_BRIDGE_MASTER_ABORT_EN))
break;
pciWriteByte(devp->tag, PCI_PCI_BRIDGE_CONTROL_REG,
devp->pci_bridge_control & ~PCI_PCI_BRIDGE_SECONDARY_RESET);
break;
default:
break;
}
}
#ifdef XF86SCANPCI_WRAPPER
XF86SCANPCI_WRAPPER(SCANPCI_TERM);
#endif
/*
* Lastly, link bridges to their secondary bus, after the architecture has
* had a chance to modify these assignments.
*/
for (idx = 0; idx < pciNumBuses; idx++) {
if (!(busp = pciBusInfo[idx]) || !(devp = busp->bridge))
continue;
devp->businfo = busp;
}
#ifndef OLD_FORMAT
xf86MsgVerb(X_INFO, 2, "PCI: End of PCI scan\n");
#endif
return pci_devp;
}
pciConfigPtr
xf86GetPciConfigFromTag(PCITAG Tag)
{
pciConfigPtr pDev;
int i = 0;
for (i = 0 ; (pDev = pci_devp[i]) && i <= MAX_PCI_DEVICES; i++) {
if (Tag == pDev->tag)
return pDev;
}
return NULL; /* Bad data */
}
CARD32
pciCheckForBrokenBase(PCITAG Tag,int basereg)
{
pciWriteLong(Tag, PCI_MAP_REG_START + (basereg << 2), 0xffffffff);
return pciReadLong(Tag, PCI_MAP_REG_START + (basereg << 2));
}
#if defined(INCLUDE_XF86_MAP_PCI_MEM)
_X_EXPORT pointer
xf86MapPciMem(int ScreenNum, int Flags, PCITAG Tag, ADDRESS Base,
unsigned long Size)
{
ADDRESS hostbase = pciBusAddrToHostAddr(Tag, PCI_MEM,Base);
pointer base;
CARD32 save = 0;
/*
* If there are possible read side-effects, disable memory while
* doing the mapping.
*/
if (Flags & VIDMEM_READSIDEEFFECT) {
save = pciReadLong(Tag, PCI_CMD_STAT_REG);
pciWriteLong(Tag, PCI_CMD_STAT_REG,
save & ~PCI_CMD_MEM_ENABLE);
}
base = xf86MapDomainMemory(ScreenNum, Flags, Tag, hostbase, Size);
if (!base) {
FatalError("xf86MapPciMem: Could not mmap PCI memory "
"[base=0x%lx,hostbase=0x%lx,size=%lx] (%s)\n",
Base, hostbase, Size, strerror(errno));
}
/*
* If read side-effects, do whatever might be needed to prevent
* unintended reads, then restore PCI_CMD_STAT_REG.
*/
if (Flags & VIDMEM_READSIDEEFFECT) {
xf86MapReadSideEffects(ScreenNum, Flags, base, Size);
pciWriteLong(Tag, PCI_CMD_STAT_REG, save);
}
return((pointer)base);
}
static int
handlePciBIOS( PCITAG Tag, int basereg, unsigned char * buf, int len )
{
CARD32 romsave = 0;
int i;
romBaseSource b_reg;
ADDRESS hostbase;
CARD8 tmp[64];
int ret = 0;
romsave = pciReadLong(Tag, PCI_MAP_ROM_REG);
for (i = ROM_BASE_PRESET; i <= ROM_BASE_FIND; i++) {
memType savebase = 0, newbase, romaddr;
switch (i) {
case ROM_BASE_PRESET:
/* Does the driver have a preference? */
if (basereg > ROM_BASE_PRESET && basereg <= ROM_BASE_FIND)
b_reg = basereg;
else
b_reg = ++i;
break;
case ROM_BASE_FIND:
/*
* If we have something that looks like a valid address
* in romsave, it's probably not going to help to try
* to guess a new address and reprogram it.
*/
if (PCIGETROM(romsave)) {
pciWriteLong(Tag, PCI_MAP_ROM_REG, PCI_MAP_ROM_ADDRESS_MASK);
if (romsave != pciReadLong(Tag, PCI_MAP_ROM_REG)) {
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
continue;
}
}
default:
b_reg = i;
}
if (!(newbase = getValidBIOSBase(Tag, b_reg)))
continue; /* no valid address found */
romaddr = PCIGETROM(newbase);
/* if we use a mem base save it and move it out of the way */
if (b_reg >= 0 && b_reg <= 5) {
memType emptybase;
savebase = pciReadLong(Tag, PCI_MAP_REG_START+(b_reg<<2));
xf86MsgVerb(X_INFO,5,"xf86ReadPciBios: modifying membase[%i]"
" for device %i:%i:%i\n", basereg,
(int)PCI_BUS_FROM_TAG(Tag), (int)PCI_DEV_FROM_TAG(Tag),
(int)PCI_FUNC_FROM_TAG(Tag));
if (!(emptybase = getEmptyPciRange(Tag,b_reg))) {
xf86Msg(X_ERROR,"Cannot find empty range to map base to\n");
return 0;
}
pciWriteLong(Tag, PCI_MAP_REG_START + (b_reg << 2),
emptybase);
}
/* Set ROM base address and enable ROM address decoding */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romaddr
| PCI_MAP_ROM_DECODE_ENABLE);
hostbase = pciBusAddrToHostAddr(Tag, PCI_MEM, PCIGETROM(romaddr));
if ((xf86ReadDomainMemory(Tag, hostbase, sizeof(tmp), tmp) !=
sizeof(tmp)) ||
(tmp[0] != 0x55) || (tmp[1] != 0xaa) || !tmp[2] ) {
/* Restore the base registers if they were changed. */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
if (savebase) pciWriteLong(Tag, PCI_MAP_REG_START + (b_reg << 2),
(CARD32) savebase);
/* No BIOS found: try another address */
continue;
}
ret = readPciBios( Tag, tmp, hostbase, buf, len, PCI_BIOS_PC );
/* Restore the base register if it was changed. */
if (savebase) pciWriteLong(Tag, PCI_MAP_REG_START + (b_reg << 2),
(CARD32) savebase);
/* Restore ROM address decoding */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
return ret;
}
/* Restore ROM address decoding */
pciWriteLong(Tag, PCI_MAP_ROM_REG, romsave);
return 0;
}
static int
readPciBios(PCITAG Tag, CARD8* tmp, ADDRESS hostbase, unsigned char * buf,
int len, PciBiosType bios_type )
{
unsigned int image_length = 0;
int ret;
/* We found a PCI BIOS Image. Now we look for the correct type */
while ((tmp[0] == 0x55) && (tmp[1] == 0xAA)) {
unsigned short data_off = tmp[0x18] | (tmp[0x19] << 8);
unsigned char data[0x18];
unsigned char type;
if ((xf86ReadDomainMemory(Tag, hostbase + data_off, sizeof(data), data)
!= sizeof(data)) ||
(data[0] != 'P') ||
(data[1] != 'C') ||
(data[2] != 'I') ||
(data[3] != 'R'))
break;
type = data[0x14];
#ifdef PRINT_PCI
ErrorF("data segment in BIOS: 0x%x, type: 0x%x\n", data_off, type);
#endif
if (type != bios_type) { /* not correct image: find next one */
const unsigned char indicator = data[0x15];
unsigned int i_length;
if (indicator & 0x80) /* last image */
break;
i_length = (data[0x10] | (data[0x11] << 8)) << 9;
#ifdef PRINT_PCI
ErrorF( "data image length: 0x%x, ind: 0x%x\n", i_length, indicator );
#endif
hostbase += i_length;
if (xf86ReadDomainMemory(Tag, hostbase, sizeof(tmp), tmp)
!= sizeof(tmp))
break;
continue;
}
/* OK, we have a PCI BIOS Image of the correct type */
if ( bios_type == PCI_BIOS_PC )
image_length = tmp[2] << 9;
else
image_length = (data[0x10] | (data[0x11] << 8)) << 9;
#ifdef PRINT_PCI
ErrorF("BIOS length: 0x%x\n", image_length);
#endif
break;
}
ret = 0;
if (image_length) {
/* If no length is given return the full length. Beware: Area pointed to
* by Buf must be large enough!
*/
if (len == 0) {
len = image_length;
}
else if ( len > image_length ) {
len = image_length;
xf86MsgVerb( X_INFO, 3, "Truncating PCI BIOS Length to %i\n",
len );
}
/* Read BIOS */
ret = xf86ReadDomainMemory( Tag, hostbase, len, buf );
}
return ret;
}
static int
HandlePciBios(PCITAG Tag, int basereg, unsigned char * buf, int len)
{
int n, num;
CARD32 Acc1, Acc2;
PCITAG *pTag;
int i;
/* fall back to the old code if the OS code fails */
if (pciOSHandleBIOS) {
n = pciOSHandleBIOS(Tag, basereg, buf, len);
if (n)
return n;
}
n = handlePciBIOS( Tag, basereg, buf, len );
if (n)
return n;
num = pciTestMultiDeviceCard(PCI_BUS_FROM_TAG(Tag),
PCI_DEV_FROM_TAG(Tag),
PCI_FUNC_FROM_TAG(Tag),&pTag);
if (!num) return 0;
#define PCI_ENA (PCI_CMD_MEM_ENABLE | PCI_CMD_IO_ENABLE)
Acc1 = pciReadLong(Tag, PCI_CMD_STAT_REG);
pciWriteLong(Tag, PCI_CMD_STAT_REG, (Acc1 & ~PCI_ENA));
for (i = 0; i < num; i++) {
Acc2 = pciReadLong(pTag[i], PCI_CMD_STAT_REG);
pciWriteLong(pTag[i], PCI_CMD_STAT_REG, (Acc2 | PCI_ENA));
n = handlePciBIOS( pTag[i], 0, buf, len );
pciWriteLong(pTag[i], PCI_CMD_STAT_REG, Acc2);
if (n)
break;
}
pciWriteLong(Tag, PCI_CMD_STAT_REG, Acc1);
return n;
}
_X_EXPORT int
xf86ReadPciBIOS(unsigned long Offset, PCITAG Tag, int basereg,
unsigned char *Buf, int Len)
{
return HandlePciBios(Tag, basereg, Buf, Len);
}
#endif /* INCLUDE_XF86_MAP_PCI_MEM */
#ifdef INCLUDE_XF86_NO_DOMAIN
_X_EXPORT int
xf86GetPciDomain(PCITAG Tag)
{
return 0;
}
_X_EXPORT pointer
xf86MapDomainMemory(int ScreenNum, int Flags, PCITAG Tag,
ADDRESS Base, unsigned long Size)
{
return xf86MapVidMem(ScreenNum, Flags, Base, Size);
}
_X_EXPORT IOADDRESS
xf86MapDomainIO(int ScreenNum, int Flags, PCITAG Tag,
IOADDRESS Base, unsigned long Size)
{
return Base;
}
_X_EXPORT int
xf86ReadDomainMemory(PCITAG Tag, ADDRESS Base, int Len, unsigned char *Buf)
{
int ret, length, rlength;
/* Read in 64kB chunks */
ret = 0;
while ((length = Len) > 0) {
if (length > 0x010000) length = 0x010000;
rlength = xf86ReadBIOS(Base, 0, Buf, length);
if (rlength < 0) {
ret = rlength;
break;
}
ret += rlength;
if (rlength < length) break;
Base += rlength;
Buf += rlength;
Len -= rlength;
}
return ret;
}
#endif /* INCLUDE_XF86_NO_DOMAIN */