xserver-multidpi/xkb/XKBMisc.c
Paulo Cesar Pereira de Andrade d6cbd4511e Export symbols defined in the sdk.
This is the biggest "visibility" patch. Instead of doing a "export"
symbol on demand, export everything in the sdk, so that if some module
fails due to an unresolved symbol, it is because it is using a symbol
not in the sdk.

  Most exported symbols shouldn't really be made visible, neither
advertised in the sdk, as they are only used by a single shared object.

  Symbols in the sdk (or referenced in sdk macros), but not defined
anywhere include:
XkbBuildCoreState()
XkbInitialMap
XkbXIUnsupported
XkbCheckActionVMods()
XkbSendCompatNotify()
XkbDDXFakePointerButton()
XkbDDXApplyConfig()
_XkbStrCaseCmp()
_XkbErrMessages[]
_XkbErrCode
_XkbErrLocation
_XkbErrData
XkbAccessXDetailText()
XkbNKNDetailMaskText()
XkbLookupGroupAndLevel()
XkbInitAtoms()
XkbGetOrderedDrawables()
XkbFreeOrderedDrawables()
XkbConvertXkbComponents()
XkbWriteXKBSemantics()
XkbWriteXKBLayout()
XkbWriteXKBKeymap()
XkbWriteXKBFile()
XkbWriteCFile()
XkbWriteXKMFile()
XkbWriteToServer()
XkbMergeFile()
XkmFindTOCEntry()
XkmReadFileSection()
XkmReadFileSectionName()
InitExtInput()
xf86CheckButton()
xf86SwitchCoreDevice()
RamDacSetGamma()
RamDacRestoreDACValues()
xf86Bpp
xf86ConfigPix24
xf86MouseCflags[]
xf86SupportedMouseTypes[]
xf86NumMouseTypes
xf86ChangeBusIndex()
xf86EntityEnter()
xf86EntityLeave()
xf86WrapperInit()
xf86RingBell()
xf86findOptionBoolean()
xf86debugListOptions()
LoadSubModuleLocal()
LoaderSymbolLocal()
getInt10Rec()
xf86CurrentScreen
xf86ReallocatePciResources()
xf86NewSerialNumber()
xf86RandRSetInitialMode()
fbCompositeSolidMask_nx1xn
fbCompositeSolidMask_nx8888x0565C
fbCompositeSolidMask_nx8888x8888C
fbCompositeSolidMask_nx8x0565
fbCompositeSolidMask_nx8x0888
fbCompositeSolidMask_nx8x8888
fbCompositeSrc_0565x0565
fbCompositeSrc_8888x0565
fbCompositeSrc_8888x0888
fbCompositeSrc_8888x8888
fbCompositeSrcAdd_1000x1000
fbCompositeSrcAdd_8000x8000
fbCompositeSrcAdd_8888x8888
fbGeneration
fbIn
fbOver
fbOver24
fbOverlayGeneration
fbRasterizeEdges
fbRestoreAreas
fbSaveAreas
composeFunctions
VBEBuildVbeModeList()
VBECalcVbeModeIndex()
TIramdac3030CalculateMNPForClock()
shadowBufPtr
shadowFindBuf()
miRRGetScreenInfo()
RRSetScreenConfig()
RRModePruneUnused()
PixmanImageFromPicture()
extern int miPointerGetMotionEvents()
miClipPicture()
miRasterizeTriangle()
fbPush1toN()
fbInitializeBackingStore()
ddxBeforeReset()
SetupSprite()
InitSprite()
DGADeliverEvent()

  SPECIAL CASES
o defined as _X_INTERNAL
	xf86NewInputDevice()
o defined as static
	fbGCPrivateKey
	fbOverlayScreenPrivateKey
	fbScreenPrivateKey
	fbWinPrivateKey
o defined in libXfont.so, but declared in xorg/dixfont.h
	GetGlyphs()
	QueryGlyphExtents()
	QueryTextExtents()
	ParseGlyphCachingMode()
	InitGlyphCaching()
	SetGlyphCachingMode()
2008-11-29 23:56:06 -02:00

796 lines
23 KiB
C

/************************************************************
Copyright (c) 1993 by Silicon Graphics Computer Systems, Inc.
Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright
notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting
documentation, and that the name of Silicon Graphics not be
used in advertising or publicity pertaining to distribution
of the software without specific prior written permission.
Silicon Graphics makes no representation about the suitability
of this software for any purpose. It is provided "as is"
without any express or implied warranty.
SILICON GRAPHICS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
GRAPHICS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS SOFTWARE.
********************************************************/
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#elif defined(HAVE_CONFIG_H)
#include <config.h>
#endif
#include <stdio.h>
#include <X11/X.h>
#define NEED_EVENTS
#define NEED_REPLIES
#include <X11/Xproto.h>
#include "misc.h"
#include "inputstr.h"
#include <X11/keysym.h>
#define XKBSRV_NEED_FILE_FUNCS
#include <xkbsrv.h>
/***====================================================================***/
#define CORE_SYM(i) (i<map_width?core_syms[i]:NoSymbol)
#define XKB_OFFSET(g,l) (((g)*groupsWidth)+(l))
_X_EXPORT int
XkbKeyTypesForCoreSymbols( XkbDescPtr xkb,
int map_width,
KeySym * core_syms,
unsigned int protected,
int * types_inout,
KeySym * xkb_syms_rtrn)
{
register int i;
unsigned int empty;
int nSyms[XkbNumKbdGroups];
int nGroups,tmp,groupsWidth;
/* Section 12.2 of the protocol describes this process in more detail */
/* Step 1: find the # of symbols in the core mapping per group */
groupsWidth= 2;
for (i=0;i<XkbNumKbdGroups;i++) {
if ((protected&(1<<i))&&(types_inout[i]<xkb->map->num_types)) {
nSyms[i]= xkb->map->types[types_inout[i]].num_levels;
if (nSyms[i]>groupsWidth)
groupsWidth= nSyms[i];
}
else {
types_inout[i]= XkbTwoLevelIndex; /* don't really know, yet */
nSyms[i]= 2;
}
}
if (nSyms[XkbGroup1Index]<2)
nSyms[XkbGroup1Index]= 2;
if (nSyms[XkbGroup2Index]<2)
nSyms[XkbGroup2Index]= 2;
/* Step 2: Copy the symbols from the core ordering to XKB ordering */
/* symbols in the core are in the order: */
/* G1L1 G1L2 G2L1 G2L2 [G1L[3-n]] [G2L[3-n]] [G3L*] [G3L*] */
xkb_syms_rtrn[XKB_OFFSET(XkbGroup1Index,0)]= CORE_SYM(0);
xkb_syms_rtrn[XKB_OFFSET(XkbGroup1Index,1)]= CORE_SYM(1);
for (i=2;i<nSyms[XkbGroup1Index];i++) {
xkb_syms_rtrn[XKB_OFFSET(XkbGroup1Index,i)]= CORE_SYM(2+i);
}
xkb_syms_rtrn[XKB_OFFSET(XkbGroup2Index,0)]= CORE_SYM(2);
xkb_syms_rtrn[XKB_OFFSET(XkbGroup2Index,1)]= CORE_SYM(3);
tmp= 2+(nSyms[XkbGroup1Index]-2); /* offset to extra group2 syms */
for (i=2;i<nSyms[XkbGroup2Index];i++) {
xkb_syms_rtrn[XKB_OFFSET(XkbGroup2Index,i)]= CORE_SYM(tmp+i);
}
tmp= nSyms[XkbGroup1Index]+nSyms[XkbGroup2Index];
if ((tmp>=map_width)&&
((protected&(XkbExplicitKeyType3Mask|XkbExplicitKeyType4Mask))==0)) {
nSyms[XkbGroup3Index]= 0;
nSyms[XkbGroup4Index]= 0;
nGroups= 2;
}
else {
nGroups= 3;
for (i=0;i<nSyms[XkbGroup3Index];i++,tmp++) {
xkb_syms_rtrn[XKB_OFFSET(XkbGroup3Index,i)]= CORE_SYM(tmp);
}
if ((tmp<map_width)||(protected&XkbExplicitKeyType4Mask)) {
nGroups= 4;
for (i=0;i<nSyms[XkbGroup4Index];i++,tmp++) {
xkb_syms_rtrn[XKB_OFFSET(XkbGroup4Index,i)]= CORE_SYM(tmp);
}
}
else {
nSyms[XkbGroup4Index]= 0;
}
}
/* steps 3&4: alphanumeric expansion, assign canonical types */
empty= 0;
for (i=0;i<nGroups;i++) {
KeySym *syms;
syms= &xkb_syms_rtrn[XKB_OFFSET(i,0)];
if ((nSyms[i]>1)&&(syms[1]==NoSymbol)&&(syms[0]!=NoSymbol)) {
KeySym upper,lower;
XConvertCase(syms[0],&lower,&upper);
if (upper!=lower) {
xkb_syms_rtrn[XKB_OFFSET(i,0)]= lower;
xkb_syms_rtrn[XKB_OFFSET(i,1)]= upper;
if ((protected&(1<<i))==0)
types_inout[i]= XkbAlphabeticIndex;
}
else if ((protected&(1<<i))==0) {
types_inout[i]= XkbOneLevelIndex;
/* nSyms[i]= 1;*/
}
}
if (((protected&(1<<i))==0)&&(types_inout[i]==XkbTwoLevelIndex)) {
if (IsKeypadKey(syms[0])||IsKeypadKey(syms[1]))
types_inout[i]= XkbKeypadIndex;
else {
KeySym upper,lower;
XConvertCase(syms[0],&lower,&upper);
if ((syms[0]==lower)&&(syms[1]==upper))
types_inout[i]= XkbAlphabeticIndex;
}
}
if (syms[0]==NoSymbol) {
register int n;
Bool found;
for (n=1,found=False;(!found)&&(n<nSyms[i]);n++) {
found= (syms[n]!=NoSymbol);
}
if (!found)
empty|= (1<<i);
}
}
/* step 5: squoosh out empty groups */
if (empty) {
for (i=nGroups-1;i>=0;i--) {
if (((empty&(1<<i))==0)||(protected&(1<<i)))
break;
nGroups--;
}
}
if (nGroups<1)
return 0;
/* step 6: replicate group 1 into group two, if necessary */
if ((nGroups>1)&&((empty&(XkbGroup1Mask|XkbGroup2Mask))==XkbGroup2Mask)) {
if ((protected&(XkbExplicitKeyType1Mask|XkbExplicitKeyType2Mask))==0) {
nSyms[XkbGroup2Index]= nSyms[XkbGroup1Index];
types_inout[XkbGroup2Index]= types_inout[XkbGroup1Index];
memcpy((char *)&xkb_syms_rtrn[2],(char *)xkb_syms_rtrn,
2*sizeof(KeySym));
}
else if (types_inout[XkbGroup1Index]==types_inout[XkbGroup2Index]) {
memcpy((char *)&xkb_syms_rtrn[nSyms[XkbGroup1Index]],
(char *)xkb_syms_rtrn,
nSyms[XkbGroup1Index]*sizeof(KeySym));
}
}
/* step 7: check for all groups identical or all width 1
*
* Special feature: if group 1 has an explicit type and all other groups
* have canonical types with same symbols, we assume it's info lost from
* the core replication.
*/
if (nGroups>1) {
Bool sameType,allOneLevel, canonical = True;
allOneLevel= (xkb->map->types[types_inout[0]].num_levels==1);
for (i=1,sameType=True;(allOneLevel||sameType)&&(i<nGroups);i++) {
sameType=(sameType&&(types_inout[i]==types_inout[XkbGroup1Index]));
if (allOneLevel)
allOneLevel= (xkb->map->types[types_inout[i]].num_levels==1);
if (types_inout[i] > XkbLastRequiredType)
canonical = False;
}
if (((sameType) || canonical)&&
(!(protected&(XkbExplicitKeyTypesMask&~XkbExplicitKeyType1Mask)))){
register int s;
Bool identical;
for (i=1,identical=True;identical&&(i<nGroups);i++) {
KeySym *syms;
syms= &xkb_syms_rtrn[XKB_OFFSET(i,0)];
for (s=0;identical&&(s<nSyms[i]);s++) {
if (syms[s]!=xkb_syms_rtrn[s])
identical= False;
}
}
if (identical)
nGroups= 1;
}
if (allOneLevel && (nGroups>1)) {
KeySym *syms;
syms= &xkb_syms_rtrn[nSyms[XkbGroup1Index]];
nSyms[XkbGroup1Index]= 1;
for (i=1;i<nGroups;i++) {
xkb_syms_rtrn[i]= syms[0];
syms+= nSyms[i];
nSyms[i]= 1;
}
}
}
return nGroups;
}
static XkbSymInterpretPtr
_XkbFindMatchingInterp( XkbDescPtr xkb,
KeySym sym,
unsigned int real_mods,
unsigned int level)
{
register unsigned i;
XkbSymInterpretPtr interp,rtrn;
CARD8 mods;
rtrn= NULL;
interp= xkb->compat->sym_interpret;
for (i=0;i<xkb->compat->num_si;i++,interp++) {
if ((interp->sym==NoSymbol)||(sym==interp->sym)) {
int match;
if ((level==0)||((interp->match&XkbSI_LevelOneOnly)==0))
mods= real_mods;
else mods= 0;
switch (interp->match&XkbSI_OpMask) {
case XkbSI_NoneOf:
match= ((interp->mods&mods)==0);
break;
case XkbSI_AnyOfOrNone:
match= ((mods==0)||((interp->mods&mods)!=0));
break;
case XkbSI_AnyOf:
match= ((interp->mods&mods)!=0);
break;
case XkbSI_AllOf:
match= ((interp->mods&mods)==interp->mods);
break;
case XkbSI_Exactly:
match= (interp->mods==mods);
break;
default:
match= 0;
break;
}
if (match) {
if (interp->sym!=NoSymbol) {
return interp;
}
else if (rtrn==NULL) {
rtrn= interp;
}
}
}
}
return rtrn;
}
static void
_XkbAddKeyChange(KeyCode *pFirst,unsigned char *pNum,KeyCode newKey)
{
KeyCode last;
last= (*pFirst)+(*pNum);
if (newKey<*pFirst) {
*pFirst= newKey;
*pNum= (last-newKey)+1;
}
else if (newKey>last) {
*pNum= (last-*pFirst)+1;
}
return;
}
static void
_XkbSetActionKeyMods(XkbDescPtr xkb,XkbAction *act,unsigned mods)
{
unsigned tmp;
switch (act->type) {
case XkbSA_SetMods: case XkbSA_LatchMods: case XkbSA_LockMods:
if (act->mods.flags&XkbSA_UseModMapMods)
act->mods.real_mods= act->mods.mask= mods;
if ((tmp= XkbModActionVMods(&act->mods))!=0) {
XkbVirtualModsToReal(xkb,tmp,&tmp);
act->mods.mask|= tmp;
}
break;
case XkbSA_ISOLock:
if (act->iso.flags&XkbSA_UseModMapMods)
act->iso.real_mods= act->iso.mask= mods;
if ((tmp= XkbModActionVMods(&act->iso))!=0) {
XkbVirtualModsToReal(xkb,tmp,&tmp);
act->iso.mask|= tmp;
}
break;
}
return;
}
#define IBUF_SIZE 8
_X_EXPORT Bool
XkbApplyCompatMapToKey(XkbDescPtr xkb,KeyCode key,XkbChangesPtr changes)
{
KeySym * syms;
unsigned char explicit,mods;
XkbSymInterpretPtr *interps,ibuf[IBUF_SIZE];
int n,nSyms,found;
unsigned changed,tmp;
if ((!xkb)||(!xkb->map)||(!xkb->map->key_sym_map)||
(!xkb->compat)||(!xkb->compat->sym_interpret)||
(key<xkb->min_key_code)||(key>xkb->max_key_code)) {
return False;
}
if (((!xkb->server)||(!xkb->server->key_acts))&&
(XkbAllocServerMap(xkb,XkbAllServerInfoMask,0)!=Success)) {
return False;
}
changed= 0; /* keeps track of what has changed in _this_ call */
explicit= xkb->server->explicit[key];
if (explicit&XkbExplicitInterpretMask) /* nothing to do */
return True;
mods= (xkb->map->modmap?xkb->map->modmap[key]:0);
nSyms= XkbKeyNumSyms(xkb,key);
syms= XkbKeySymsPtr(xkb,key);
if (nSyms>IBUF_SIZE) {
interps= _XkbTypedCalloc(nSyms,XkbSymInterpretPtr);
if (interps==NULL) {
interps= ibuf;
nSyms= IBUF_SIZE;
}
}
else {
interps= ibuf;
}
found= 0;
for (n=0;n<nSyms;n++) {
unsigned level= (n%XkbKeyGroupsWidth(xkb,key));
interps[n]= NULL;
if (syms[n]!=NoSymbol) {
interps[n]= _XkbFindMatchingInterp(xkb,syms[n],mods,level);
if (interps[n]&&interps[n]->act.type!=XkbSA_NoAction)
found++;
else interps[n]= NULL;
}
}
/* 1/28/96 (ef) -- XXX! WORKING HERE */
if (!found) {
if (xkb->server->key_acts[key]!=0) {
xkb->server->key_acts[key]= 0;
changed|= XkbKeyActionsMask;
}
}
else {
XkbAction *pActs;
unsigned int new_vmodmask;
changed|= XkbKeyActionsMask;
pActs= XkbResizeKeyActions(xkb,key,nSyms);
if (!pActs) {
if (nSyms > IBUF_SIZE)
xfree(interps);
return False;
}
new_vmodmask= 0;
for (n=0;n<nSyms;n++) {
if (interps[n]) {
unsigned effMods;
pActs[n]= *((XkbAction *)&interps[n]->act);
if ((n==0)||((interps[n]->match&XkbSI_LevelOneOnly)==0)) {
effMods= mods;
if (interps[n]->virtual_mod!=XkbNoModifier)
new_vmodmask|= (1<<interps[n]->virtual_mod);
}
else effMods= 0;
_XkbSetActionKeyMods(xkb,&pActs[n],effMods);
}
else pActs[n].type= XkbSA_NoAction;
}
if (((explicit&XkbExplicitVModMapMask)==0)&&
(xkb->server->vmodmap[key]!=new_vmodmask)) {
changed|= XkbVirtualModMapMask;
xkb->server->vmodmap[key]= new_vmodmask;
}
if (interps[0]) {
if ((interps[0]->flags&XkbSI_LockingKey)&&
((explicit&XkbExplicitBehaviorMask)==0)) {
xkb->server->behaviors[key].type= XkbKB_Lock;
changed|= XkbKeyBehaviorsMask;
}
if (((explicit&XkbExplicitAutoRepeatMask)==0)&&(xkb->ctrls)) {
CARD8 old;
old= xkb->ctrls->per_key_repeat[key/8];
if (interps[0]->flags&XkbSI_AutoRepeat)
xkb->ctrls->per_key_repeat[key/8]|= (1<<(key%8));
else xkb->ctrls->per_key_repeat[key/8]&= ~(1<<(key%8));
if (changes && (old!=xkb->ctrls->per_key_repeat[key/8]))
changes->ctrls.changed_ctrls|= XkbPerKeyRepeatMask;
}
}
}
if ((!found)||(interps[0]==NULL)) {
if (((explicit&XkbExplicitAutoRepeatMask)==0)&&(xkb->ctrls)) {
CARD8 old;
old= xkb->ctrls->per_key_repeat[key/8];
xkb->ctrls->per_key_repeat[key/8]|= (1<<(key%8));
if (changes && (old!=xkb->ctrls->per_key_repeat[key/8]))
changes->ctrls.changed_ctrls|= XkbPerKeyRepeatMask;
}
if (((explicit&XkbExplicitBehaviorMask)==0)&&
(xkb->server->behaviors[key].type==XkbKB_Lock)) {
xkb->server->behaviors[key].type= XkbKB_Default;
changed|= XkbKeyBehaviorsMask;
}
}
if (changes) {
XkbMapChangesPtr mc;
mc= &changes->map;
tmp= (changed&mc->changed);
if (tmp&XkbKeyActionsMask)
_XkbAddKeyChange(&mc->first_key_act,&mc->num_key_acts,key);
else if (changed&XkbKeyActionsMask) {
mc->changed|= XkbKeyActionsMask;
mc->first_key_act= key;
mc->num_key_acts= 1;
}
if (tmp&XkbKeyBehaviorsMask) {
_XkbAddKeyChange(&mc->first_key_behavior,&mc->num_key_behaviors,
key);
}
else if (changed&XkbKeyBehaviorsMask) {
mc->changed|= XkbKeyBehaviorsMask;
mc->first_key_behavior= key;
mc->num_key_behaviors= 1;
}
if (tmp&XkbVirtualModMapMask)
_XkbAddKeyChange(&mc->first_vmodmap_key,&mc->num_vmodmap_keys,key);
else if (changed&XkbVirtualModMapMask) {
mc->changed|= XkbVirtualModMapMask;
mc->first_vmodmap_key= key;
mc->num_vmodmap_keys= 1;
}
mc->changed|= changed;
}
if (interps!=ibuf)
_XkbFree(interps);
return True;
}
_X_EXPORT Status
XkbChangeTypesOfKey( XkbDescPtr xkb,
int key,
int nGroups,
unsigned groups,
int * newTypesIn,
XkbMapChangesPtr changes)
{
XkbKeyTypePtr pOldType,pNewType;
register int i;
int width,nOldGroups,oldWidth,newTypes[XkbNumKbdGroups];
if ((!xkb) || (!XkbKeycodeInRange(xkb,key)) || (!xkb->map) ||
(!xkb->map->types)||(!newTypesIn)||((groups&XkbAllGroupsMask)==0)||
(nGroups>XkbNumKbdGroups)) {
return BadMatch;
}
if (nGroups==0) {
for (i=0;i<XkbNumKbdGroups;i++) {
xkb->map->key_sym_map[key].kt_index[i]= XkbOneLevelIndex;
}
i= xkb->map->key_sym_map[key].group_info;
i= XkbSetNumGroups(i,0);
xkb->map->key_sym_map[key].group_info= i;
XkbResizeKeySyms(xkb,key,0);
return Success;
}
nOldGroups= XkbKeyNumGroups(xkb,key);
oldWidth= XkbKeyGroupsWidth(xkb,key);
for (width=i=0;i<nGroups;i++) {
if (groups&(1<<i))
newTypes[i]= newTypesIn[i];
else if (i<nOldGroups)
newTypes[i]= XkbKeyKeyTypeIndex(xkb,key,i);
else if (nOldGroups>0)
newTypes[i]= XkbKeyKeyTypeIndex(xkb,key,XkbGroup1Index);
else newTypes[i]= XkbTwoLevelIndex;
if (newTypes[i]>xkb->map->num_types)
return BadMatch;
pNewType= &xkb->map->types[newTypes[i]];
if (pNewType->num_levels>width)
width= pNewType->num_levels;
}
if ((xkb->ctrls)&&(nGroups>xkb->ctrls->num_groups))
xkb->ctrls->num_groups= nGroups;
if ((width!=oldWidth)||(nGroups!=nOldGroups)) {
KeySym oldSyms[XkbMaxSymsPerKey],*pSyms;
int nCopy;
if (nOldGroups==0) {
pSyms= XkbResizeKeySyms(xkb,key,width*nGroups);
if (pSyms!=NULL) {
i= xkb->map->key_sym_map[key].group_info;
i= XkbSetNumGroups(i,nGroups);
xkb->map->key_sym_map[key].group_info= i;
xkb->map->key_sym_map[key].width= width;
for (i=0;i<nGroups;i++) {
xkb->map->key_sym_map[key].kt_index[i]= newTypes[i];
}
return Success;
}
return BadAlloc;
}
pSyms= XkbKeySymsPtr(xkb,key);
memcpy(oldSyms,pSyms,XkbKeyNumSyms(xkb,key)*sizeof(KeySym));
pSyms= XkbResizeKeySyms(xkb,key,width*nGroups);
if (pSyms==NULL)
return BadAlloc;
bzero(pSyms,width*nGroups*sizeof(KeySym));
for (i=0;(i<nGroups)&&(i<nOldGroups);i++) {
pOldType= XkbKeyKeyType(xkb,key,i);
pNewType= &xkb->map->types[newTypes[i]];
if (pNewType->num_levels>pOldType->num_levels)
nCopy= pOldType->num_levels;
else nCopy= pNewType->num_levels;
memcpy(&pSyms[i*width],&oldSyms[i*oldWidth],nCopy*sizeof(KeySym));
}
if (XkbKeyHasActions(xkb,key)) {
XkbAction oldActs[XkbMaxSymsPerKey],*pActs;
pActs= XkbKeyActionsPtr(xkb,key);
memcpy(oldActs,pActs,XkbKeyNumSyms(xkb,key)*sizeof(XkbAction));
pActs= XkbResizeKeyActions(xkb,key,width*nGroups);
if (pActs==NULL)
return BadAlloc;
bzero(pActs,width*nGroups*sizeof(XkbAction));
for (i=0;(i<nGroups)&&(i<nOldGroups);i++) {
pOldType= XkbKeyKeyType(xkb,key,i);
pNewType= &xkb->map->types[newTypes[i]];
if (pNewType->num_levels>pOldType->num_levels)
nCopy= pOldType->num_levels;
else nCopy= pNewType->num_levels;
memcpy(&pActs[i*width],&oldActs[i*oldWidth],
nCopy*sizeof(XkbAction));
}
}
i= xkb->map->key_sym_map[key].group_info;
i= XkbSetNumGroups(i,nGroups);
xkb->map->key_sym_map[key].group_info= i;
xkb->map->key_sym_map[key].width= width;
}
width= 0;
for (i=0;i<nGroups;i++) {
xkb->map->key_sym_map[key].kt_index[i]= newTypes[i];
if (xkb->map->types[newTypes[i]].num_levels>width)
width= xkb->map->types[newTypes[i]].num_levels;
}
xkb->map->key_sym_map[key].width= width;
if (changes!=NULL) {
if (changes->changed&XkbKeySymsMask) {
_XkbAddKeyChange(&changes->first_key_sym,&changes->num_key_syms,
key);
}
else {
changes->changed|= XkbKeySymsMask;
changes->first_key_sym= key;
changes->num_key_syms= 1;
}
}
return Success;
}
/***====================================================================***/
_X_EXPORT Bool
XkbVirtualModsToReal(XkbDescPtr xkb,unsigned virtual_mask,unsigned *mask_rtrn)
{
register int i,bit;
register unsigned mask;
if (xkb==NULL)
return False;
if (virtual_mask==0) {
*mask_rtrn= 0;
return True;
}
if (xkb->server==NULL)
return False;
for (i=mask=0,bit=1;i<XkbNumVirtualMods;i++,bit<<=1) {
if (virtual_mask&bit)
mask|= xkb->server->vmods[i];
}
*mask_rtrn= mask;
return True;
}
/***====================================================================***/
static Bool
XkbUpdateActionVirtualMods(XkbDescPtr xkb,XkbAction *act,unsigned changed)
{
unsigned int tmp;
switch (act->type) {
case XkbSA_SetMods: case XkbSA_LatchMods: case XkbSA_LockMods:
if (((tmp= XkbModActionVMods(&act->mods))&changed)!=0) {
XkbVirtualModsToReal(xkb,tmp,&tmp);
act->mods.mask= act->mods.real_mods;
act->mods.mask|= tmp;
return True;
}
break;
case XkbSA_ISOLock:
if ((((tmp= XkbModActionVMods(&act->iso))!=0)&changed)!=0) {
XkbVirtualModsToReal(xkb,tmp,&tmp);
act->iso.mask= act->iso.real_mods;
act->iso.mask|= tmp;
return True;
}
break;
}
return False;
}
static void
XkbUpdateKeyTypeVirtualMods( XkbDescPtr xkb,
XkbKeyTypePtr type,
unsigned int changed,
XkbChangesPtr changes)
{
register unsigned int i;
unsigned int mask;
XkbVirtualModsToReal(xkb,type->mods.vmods,&mask);
type->mods.mask= type->mods.real_mods|mask;
if ((type->map_count>0)&&(type->mods.vmods!=0)) {
XkbKTMapEntryPtr entry;
for (i=0,entry=type->map;i<type->map_count;i++,entry++) {
if (entry->mods.vmods!=0) {
XkbVirtualModsToReal(xkb,entry->mods.vmods,&mask);
entry->mods.mask=entry->mods.real_mods|mask;
/* entry is active if vmods are bound*/
entry->active= (mask!=0);
}
else entry->active= 1;
}
}
if (changes) {
int type_ndx;
type_ndx= type-xkb->map->types;
if ((type_ndx<0)||(type_ndx>xkb->map->num_types))
return;
if (changes->map.changed&XkbKeyTypesMask) {
int last;
last= changes->map.first_type+changes->map.num_types-1;
if (type_ndx<changes->map.first_type) {
changes->map.first_type= type_ndx;
changes->map.num_types= (last-type_ndx)+1;
}
else if (type_ndx>last) {
changes->map.num_types= (type_ndx-changes->map.first_type)+1;
}
}
else {
changes->map.changed|= XkbKeyTypesMask;
changes->map.first_type= type_ndx;
changes->map.num_types= 1;
}
}
return;
}
_X_EXPORT Bool
XkbApplyVirtualModChanges(XkbDescPtr xkb,unsigned changed,XkbChangesPtr changes)
{
register int i;
unsigned int checkState = 0;
if ((!xkb) || (!xkb->map) || (changed==0))
return False;
for (i=0;i<xkb->map->num_types;i++) {
if (xkb->map->types[i].mods.vmods & changed)
XkbUpdateKeyTypeVirtualMods(xkb,&xkb->map->types[i],changed,changes);
}
if (changed&xkb->ctrls->internal.vmods) {
unsigned int newMask;
XkbVirtualModsToReal(xkb,xkb->ctrls->internal.vmods,&newMask);
newMask|= xkb->ctrls->internal.real_mods;
if (xkb->ctrls->internal.mask!=newMask) {
xkb->ctrls->internal.mask= newMask;
if (changes) {
changes->ctrls.changed_ctrls|= XkbInternalModsMask;
checkState= True;
}
}
}
if (changed&xkb->ctrls->ignore_lock.vmods) {
unsigned int newMask;
XkbVirtualModsToReal(xkb,xkb->ctrls->ignore_lock.vmods,&newMask);
newMask|= xkb->ctrls->ignore_lock.real_mods;
if (xkb->ctrls->ignore_lock.mask!=newMask) {
xkb->ctrls->ignore_lock.mask= newMask;
if (changes) {
changes->ctrls.changed_ctrls|= XkbIgnoreLockModsMask;
checkState= True;
}
}
}
if (xkb->indicators!=NULL) {
XkbIndicatorMapPtr map;
map= &xkb->indicators->maps[0];
for (i=0;i<XkbNumIndicators;i++,map++) {
if (map->mods.vmods&changed) {
unsigned int newMask;
XkbVirtualModsToReal(xkb,map->mods.vmods,&newMask);
newMask|= map->mods.real_mods;
if (newMask!=map->mods.mask) {
map->mods.mask= newMask;
if (changes) {
changes->indicators.map_changes|= (1<<i);
checkState= True;
}
}
}
}
}
if (xkb->compat!=NULL) {
XkbCompatMapPtr compat;
compat= xkb->compat;
for (i=0;i<XkbNumKbdGroups;i++) {
unsigned int newMask;
XkbVirtualModsToReal(xkb,compat->groups[i].vmods,&newMask);
newMask|= compat->groups[i].real_mods;
if (compat->groups[i].mask!=newMask) {
compat->groups[i].mask= newMask;
if (changes) {
changes->compat.changed_groups|= (1<<i);
checkState= True;
}
}
}
}
if (xkb->map && xkb->server) {
int highChange = 0, lowChange = -1;
for (i=xkb->min_key_code;i<=xkb->max_key_code;i++) {
if (XkbKeyHasActions(xkb,i)) {
register XkbAction *pAct;
register int n;
pAct= XkbKeyActionsPtr(xkb,i);
for (n=XkbKeyNumActions(xkb,i);n>0;n--,pAct++) {
if ((pAct->type!=XkbSA_NoAction)&&
XkbUpdateActionVirtualMods(xkb,pAct,changed)) {
if (lowChange<0)
lowChange= i;
highChange= i;
}
}
}
}
if (changes && (lowChange>0)) { /* something changed */
if (changes->map.changed&XkbKeyActionsMask) {
int last;
if (changes->map.first_key_act<lowChange)
lowChange= changes->map.first_key_act;
last= changes->map.first_key_act+changes->map.num_key_acts-1;
if (last>highChange)
highChange= last;
}
changes->map.changed|= XkbKeyActionsMask;
changes->map.first_key_act= lowChange;
changes->map.num_key_acts= (highChange-lowChange)+1;
}
}
return checkState;
}