xserver-multidpi/dix/ptrveloc.c
Simon Thum 1763550d01 dix: add smooth limited pointer acceleration profile
This profile is inspired by the accel code removed from the wacom driver.
It ascends from zero to acceleration, maxing out at threshold. This means you
can control the slope using threshold, which wasn't possible in wacom.
For sanity's sake, threshold should grow with acceleration.

Works best with adaptive deceleration, since otherwise it only generates
acceleration above 1, causing seldom pixel skips.

Reviewed-by: Peter Hutterer <peter.hutterer@who-t.net>
Signed-off-by: Keith Packard <keithp@keithp.com>
2010-01-01 11:22:42 -08:00

1191 lines
33 KiB
C

/*
*
* Copyright © 2006-2009 Simon Thum simon dot thum at gmx dot de
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#endif
#include <math.h>
#include <ptrveloc.h>
#include <exevents.h>
#include <X11/Xatom.h>
#include <xserver-properties.h>
/*****************************************************************************
* Predictable pointer acceleration
*
* 2006-2009 by Simon Thum (simon [dot] thum [at] gmx de)
*
* Serves 3 complementary functions:
* 1) provide a sophisticated ballistic velocity estimate to improve
* the relation between velocity (of the device) and acceleration
* 2) make arbitrary acceleration profiles possible
* 3) decelerate by two means (constant and adaptive) if enabled
*
* Important concepts are the
*
* - Scheme
* which selects the basic algorithm
* (see devices.c/InitPointerAccelerationScheme)
* - Profile
* which returns an acceleration
* for a given velocity
*
* The profile can be selected by the user at runtime.
* The classic profile is intended to cleanly perform old-style
* function selection (threshold =/!= 0)
*
****************************************************************************/
/* fwds */
int
SetAccelerationProfile(DeviceVelocityPtr vel, int profile_num);
static float
SimpleSmoothProfile(DeviceIntPtr dev, DeviceVelocityPtr vel, float velocity,
float threshold, float acc);
static PointerAccelerationProfileFunc
GetAccelerationProfile(DeviceVelocityPtr vel, int profile_num);
/*#define PTRACCEL_DEBUGGING*/
#ifdef PTRACCEL_DEBUGGING
#define DebugAccelF ErrorF
#else
#define DebugAccelF(...) /* */
#endif
/********************************
* Init/Uninit
*******************************/
/* some int which is not a profile number */
#define PROFILE_UNINITIALIZE (-100)
/* number of properties for predictable acceleration */
#define NPROPS_PREDICTABLE_ACCEL 4
/**
* Init struct so it should match the average case
*/
void
InitVelocityData(DeviceVelocityPtr vel)
{
memset(vel, 0, sizeof(DeviceVelocityRec));
vel->corr_mul = 10.0; /* dots per 10 milisecond should be usable */
vel->const_acceleration = 1.0; /* no acceleration/deceleration */
vel->reset_time = 300;
vel->use_softening = 1;
vel->min_acceleration = 1.0; /* don't decelerate */
vel->max_rel_diff = 0.2;
vel->max_diff = 1.0;
vel->initial_range = 2;
vel->average_accel = TRUE;
SetAccelerationProfile(vel, AccelProfileClassic);
InitTrackers(vel, 16);
}
/**
* Clean up
*/
void
FreeVelocityData(DeviceVelocityPtr vel){
xfree(vel->tracker);
SetAccelerationProfile(vel, PROFILE_UNINITIALIZE);
}
/*
* dix uninit helper, called through scheme
*/
void
AccelerationDefaultCleanup(DeviceIntPtr dev)
{
/*sanity check*/
if( dev->valuator->accelScheme.AccelSchemeProc == acceleratePointerPredictable
&& dev->valuator->accelScheme.accelData != NULL){
dev->valuator->accelScheme.AccelSchemeProc = NULL;
FreeVelocityData(dev->valuator->accelScheme.accelData);
xfree(dev->valuator->accelScheme.accelData);
dev->valuator->accelScheme.accelData = NULL;
DeletePredictableAccelerationProperties(dev);
}
}
/*************************
* Input property support
************************/
/**
* choose profile
*/
static int
AccelSetProfileProperty(DeviceIntPtr dev, Atom atom,
XIPropertyValuePtr val, BOOL checkOnly)
{
DeviceVelocityPtr vel;
int profile, *ptr = &profile;
int rc;
int nelem = 1;
if (atom != XIGetKnownProperty(ACCEL_PROP_PROFILE_NUMBER))
return Success;
vel = GetDevicePredictableAccelData(dev);
if (!vel)
return BadValue;
rc = XIPropToInt(val, &nelem, &ptr);
if(checkOnly)
{
if (rc)
return rc;
if (GetAccelerationProfile(vel, profile) == NULL)
return BadValue;
} else
SetAccelerationProfile(vel, profile);
return Success;
}
static long
AccelInitProfileProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
{
int profile = vel->statistics.profile_number;
Atom prop_profile_number = XIGetKnownProperty(ACCEL_PROP_PROFILE_NUMBER);
XIChangeDeviceProperty(dev, prop_profile_number, XA_INTEGER, 32,
PropModeReplace, 1, &profile, FALSE);
XISetDevicePropertyDeletable(dev, prop_profile_number, FALSE);
return XIRegisterPropertyHandler(dev, AccelSetProfileProperty, NULL, NULL);
}
/**
* constant deceleration
*/
static int
AccelSetDecelProperty(DeviceIntPtr dev, Atom atom,
XIPropertyValuePtr val, BOOL checkOnly)
{
DeviceVelocityPtr vel;
float v, *ptr = &v;
int rc;
int nelem = 1;
if (atom != XIGetKnownProperty(ACCEL_PROP_CONSTANT_DECELERATION))
return Success;
vel = GetDevicePredictableAccelData(dev);
if (!vel)
return BadValue;
rc = XIPropToFloat(val, &nelem, &ptr);
if(checkOnly)
{
if (rc)
return rc;
return (v >= 1.0f) ? Success : BadValue;
}
if(v >= 1.0f)
vel->const_acceleration = 1/v;
return Success;
}
static long
AccelInitDecelProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
{
float fval = 1.0/vel->const_acceleration;
Atom prop_const_decel = XIGetKnownProperty(ACCEL_PROP_CONSTANT_DECELERATION);
XIChangeDeviceProperty(dev, prop_const_decel,
XIGetKnownProperty(XATOM_FLOAT), 32,
PropModeReplace, 1, &fval, FALSE);
XISetDevicePropertyDeletable(dev, prop_const_decel, FALSE);
return XIRegisterPropertyHandler(dev, AccelSetDecelProperty, NULL, NULL);
}
/**
* adaptive deceleration
*/
static int
AccelSetAdaptDecelProperty(DeviceIntPtr dev, Atom atom,
XIPropertyValuePtr val, BOOL checkOnly)
{
DeviceVelocityPtr veloc;
float v, *ptr = &v;
int rc;
int nelem = 1;
if (atom != XIGetKnownProperty(ACCEL_PROP_ADAPTIVE_DECELERATION))
return Success;
veloc = GetDevicePredictableAccelData(dev);
if (!veloc)
return BadValue;
rc = XIPropToFloat(val, &nelem, &ptr);
if(checkOnly)
{
if (rc)
return rc;
return (v >= 1.0f) ? Success : BadValue;
}
if(v >= 1.0f)
veloc->min_acceleration = 1/v;
return Success;
}
static long
AccelInitAdaptDecelProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
{
float fval = 1.0/vel->min_acceleration;
Atom prop_adapt_decel = XIGetKnownProperty(ACCEL_PROP_ADAPTIVE_DECELERATION);
XIChangeDeviceProperty(dev, prop_adapt_decel, XIGetKnownProperty(XATOM_FLOAT), 32,
PropModeReplace, 1, &fval, FALSE);
XISetDevicePropertyDeletable(dev, prop_adapt_decel, FALSE);
return XIRegisterPropertyHandler(dev, AccelSetAdaptDecelProperty, NULL, NULL);
}
/**
* velocity scaling
*/
static int
AccelSetScaleProperty(DeviceIntPtr dev, Atom atom,
XIPropertyValuePtr val, BOOL checkOnly)
{
DeviceVelocityPtr vel;
float v, *ptr = &v;
int rc;
int nelem = 1;
if (atom != XIGetKnownProperty(ACCEL_PROP_VELOCITY_SCALING))
return Success;
vel = GetDevicePredictableAccelData(dev);
if (!vel)
return BadValue;
rc = XIPropToFloat(val, &nelem, &ptr);
if (checkOnly)
{
if (rc)
return rc;
return (v > 0) ? Success : BadValue;
}
if(v > 0)
vel->corr_mul = v;
return Success;
}
static long
AccelInitScaleProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
{
float fval = vel->corr_mul;
Atom prop_velo_scale = XIGetKnownProperty(ACCEL_PROP_VELOCITY_SCALING);
XIChangeDeviceProperty(dev, prop_velo_scale, XIGetKnownProperty(XATOM_FLOAT), 32,
PropModeReplace, 1, &fval, FALSE);
XISetDevicePropertyDeletable(dev, prop_velo_scale, FALSE);
return XIRegisterPropertyHandler(dev, AccelSetScaleProperty, NULL, NULL);
}
static int AccelPropHandlerPrivateKeyIndex;
DevPrivateKey AccelPropHandlerPrivateKey = &AccelPropHandlerPrivateKeyIndex;
BOOL
InitializePredictableAccelerationProperties(DeviceIntPtr dev)
{
DeviceVelocityPtr vel = GetDevicePredictableAccelData(dev);
long *prop_handlers;
if(!vel)
return FALSE;
prop_handlers = xalloc(NPROPS_PREDICTABLE_ACCEL * sizeof(long));
prop_handlers[0] = AccelInitProfileProperty(dev, vel);
prop_handlers[1] = AccelInitDecelProperty(dev, vel);
prop_handlers[2] = AccelInitAdaptDecelProperty(dev, vel);
prop_handlers[3] = AccelInitScaleProperty(dev, vel);
dixSetPrivate(&dev->devPrivates, AccelPropHandlerPrivateKey,
prop_handlers);
return TRUE;
}
BOOL
DeletePredictableAccelerationProperties(DeviceIntPtr dev)
{
Atom prop;
long *prop_handlers;
int i;
prop = XIGetKnownProperty(ACCEL_PROP_VELOCITY_SCALING);
XIDeleteDeviceProperty(dev, prop, FALSE);
prop = XIGetKnownProperty(ACCEL_PROP_ADAPTIVE_DECELERATION);
XIDeleteDeviceProperty(dev, prop, FALSE);
prop = XIGetKnownProperty(ACCEL_PROP_CONSTANT_DECELERATION);
XIDeleteDeviceProperty(dev, prop, FALSE);
prop = XIGetKnownProperty(ACCEL_PROP_PROFILE_NUMBER);
XIDeleteDeviceProperty(dev, prop, FALSE);
prop_handlers = dixLookupPrivate(&dev->devPrivates,
AccelPropHandlerPrivateKey);
dixSetPrivate(&dev->devPrivates, AccelPropHandlerPrivateKey, NULL);
for (i = 0; prop_handlers && i < NPROPS_PREDICTABLE_ACCEL; i++)
XIUnregisterPropertyHandler(dev, prop_handlers[i]);
xfree(prop_handlers);
return TRUE;
}
/*********************
* Tracking logic
********************/
void
InitTrackers(DeviceVelocityPtr vel, int ntracker)
{
if(ntracker < 1){
ErrorF("(dix ptracc) invalid number of trackers\n");
return;
}
xfree(vel->tracker);
vel->tracker = (MotionTrackerPtr)xalloc(ntracker * sizeof(MotionTracker));
memset(vel->tracker, 0, ntracker * sizeof(MotionTracker));
vel->num_tracker = ntracker;
}
/**
* return a bit field of possible directions.
* 0 = N, 2 = E, 4 = S, 6 = W, in-between is as you guess.
* There's no reason against widening to more precise directions (<45 degrees),
* should it not perform well. All this is needed for is sort out non-linear
* motion, so precision isn't paramount. However, one should not flag direction
* too narrow, since it would then cut the linear segment to zero size way too
* often.
*/
static int
DoGetDirection(int dx, int dy){
float r;
int i1, i2;
/* on insignificant mickeys, flag 135 degrees */
if(abs(dx) < 2 && abs(dy < 2)){
/* first check diagonal cases */
if(dx > 0 && dy > 0)
return 4+8+16;
if(dx > 0 && dy < 0)
return 1+2+4;
if(dx < 0 && dy < 0)
return 1+128+64;
if(dx < 0 && dy > 0)
return 16+32+64;
/* check axis-aligned directions */
if(dx > 0)
return 2+4+8; /*E*/
if(dx < 0)
return 128+64+32; /*W*/
if(dy > 0)
return 32+16+8; /*S*/
if(dy < 0)
return 128+1+2; /*N*/
return 255; /* shouldn't happen */
}
/* else, compute angle and set appropriate flags */
#ifdef _ISOC99_SOURCE
r = atan2f(dy, dx);
#else
r = atan2(dy, dx);
#endif
/* find direction. We avoid r to become negative,
* since C has no well-defined modulo for such cases. */
r = (r+(M_PI*2.5))/(M_PI/4);
/* this intends to flag 2 directions (90 degrees),
* except on very well-aligned mickeys. */
i1 = (int)(r+0.1) % 8;
i2 = (int)(r+0.9) % 8;
if(i1 < 0 || i1 > 7 || i2 < 0 || i2 > 7)
return 255; /* shouldn't happen */
return 1 << i1 | 1 << i2;
}
#define DIRECTION_CACHE_RANGE 5
#define DIRECTION_CACHE_SIZE (DIRECTION_CACHE_RANGE*2+1)
/* cache DoGetDirection(). */
static int
GetDirection(int dx, int dy){
static int cache[DIRECTION_CACHE_SIZE][DIRECTION_CACHE_SIZE];
int i;
if (abs(dx) <= DIRECTION_CACHE_RANGE &&
abs(dy) <= DIRECTION_CACHE_RANGE) {
/* cacheable */
i = cache[DIRECTION_CACHE_RANGE+dx][DIRECTION_CACHE_RANGE+dy];
if(i != 0){
return i;
}else{
i = DoGetDirection(dx, dy);
cache[DIRECTION_CACHE_RANGE+dx][DIRECTION_CACHE_RANGE+dy] = i;
return i;
}
}else{
/* non-cacheable */
return DoGetDirection(dx, dy);
}
}
#undef DIRECTION_CACHE_RANGE
#undef DIRECTION_CACHE_SIZE
/* convert offset (age) to array index */
#define TRACKER_INDEX(s, d) (((s)->num_tracker + (s)->cur_tracker - (d)) % (s)->num_tracker)
static inline void
FeedTrackers(DeviceVelocityPtr vel, int dx, int dy, int cur_t)
{
int n;
for(n = 0; n < vel->num_tracker; n++){
vel->tracker[n].dx += dx;
vel->tracker[n].dy += dy;
}
n = (vel->cur_tracker + 1) % vel->num_tracker;
vel->tracker[n].dx = 0;
vel->tracker[n].dy = 0;
vel->tracker[n].time = cur_t;
vel->tracker[n].dir = GetDirection(dx, dy);
DebugAccelF("(dix prtacc) motion [dx: %i dy: %i dir:%i diff: %i]\n",
dx, dy, vel->tracker[n].dir,
cur_t - vel->tracker[vel->cur_tracker].time);
vel->cur_tracker = n;
}
/**
* calc velocity for given tracker, with
* velocity scaling.
* This assumes linear motion.
*/
static float
CalcTracker(DeviceVelocityPtr vel, int offset, int cur_t){
int index = TRACKER_INDEX(vel, offset);
float dist = sqrt( vel->tracker[index].dx * vel->tracker[index].dx
+ vel->tracker[index].dy * vel->tracker[index].dy);
int dtime = cur_t - vel->tracker[index].time;
if(dtime > 0)
return (dist / dtime);
else
return 0;/* synonymous for NaN, since we're not C99 */
}
/* find the most plausible velocity. That is, the most distant
* (in time) tracker which isn't too old, beyond a linear partition,
* or simply too much off initial velocity.
*
* May return 0.
*/
static float
QueryTrackers(DeviceVelocityPtr vel, int cur_t){
int n, offset, dir = 255, i = -1, age_ms;
/* initial velocity: a low-offset, valid velocity */
float iveloc = 0, res = 0, tmp, vdiff;
float vfac = vel->corr_mul * vel->const_acceleration; /* premultiply */
/* loop from current to older data */
for(offset = 1; offset < vel->num_tracker; offset++){
n = TRACKER_INDEX(vel, offset);
age_ms = cur_t - vel->tracker[n].time;
/* bail out if data is too old and protect from overrun */
if (age_ms >= vel->reset_time || age_ms < 0) {
DebugAccelF("(dix prtacc) query: tracker too old\n");
break;
}
/*
* this heuristic avoids using the linear-motion velocity formula
* in CalcTracker() on motion that isn't exactly linear. So to get
* even more precision we could subdivide as a final step, so possible
* non-linearities are accounted for.
*/
dir &= vel->tracker[n].dir;
if(dir == 0){
DebugAccelF("(dix prtacc) query: no longer linear\n");
/* instead of breaking it we might also inspect the partition after,
* but actual improvement with this is probably rare. */
break;
}
tmp = CalcTracker(vel, offset, cur_t) * vfac;
if ((iveloc == 0 || offset <= vel->initial_range) && tmp != 0) {
/* set initial velocity and result */
res = iveloc = tmp;
i = offset;
} else if (iveloc != 0 && tmp != 0) {
vdiff = fabs(iveloc - tmp);
if (vdiff <= vel->max_diff ||
vdiff/(iveloc + tmp) < vel->max_rel_diff) {
/* we're in range with the initial velocity,
* so this result is likely better
* (it contains more information). */
res = tmp;
i = offset;
}else{
/* we're not in range, quit - it won't get better. */
DebugAccelF("(dix prtacc) query: tracker too different:"
" old %2.2f initial %2.2f diff: %2.2f\n",
tmp, iveloc, vdiff);
break;
}
}
}
if(offset == vel->num_tracker){
DebugAccelF("(dix prtacc) query: last tracker in effect\n");
i = vel->num_tracker-1;
}
if(i>=0){
n = TRACKER_INDEX(vel, i);
DebugAccelF("(dix prtacc) result: offset %i [dx: %i dy: %i diff: %i]\n",
i,
vel->tracker[n].dx,
vel->tracker[n].dy,
cur_t - vel->tracker[n].time);
}
return res;
}
#undef TRACKER_INDEX
/**
* Perform velocity approximation based on 2D 'mickeys' (mouse motion delta).
* return true if non-visible state reset is suggested
*/
short
ProcessVelocityData2D(
DeviceVelocityPtr vel,
int dx,
int dy,
int time)
{
float velocity;
vel->last_velocity = vel->velocity;
FeedTrackers(vel, dx, dy, time);
velocity = QueryTrackers(vel, time);
vel->velocity = velocity;
return velocity == 0;
}
/**
* this flattens significant ( > 1) mickeys a little bit for more steady
* constant-velocity response
*/
static inline float
ApplySimpleSoftening(int od, int d)
{
float res = d;
if (d <= 1 && d >= -1)
return res;
if (d > od)
res -= 0.5;
else if (d < od)
res += 0.5;
return res;
}
static void
ApplySofteningAndConstantDeceleration(
DeviceVelocityPtr vel,
int dx,
int dy,
float* fdx,
float* fdy,
short do_soften)
{
if (do_soften && vel->use_softening) {
*fdx = ApplySimpleSoftening(vel->last_dx, dx);
*fdy = ApplySimpleSoftening(vel->last_dy, dy);
} else {
*fdx = dx;
*fdy = dy;
}
*fdx *= vel->const_acceleration;
*fdy *= vel->const_acceleration;
}
/*
* compute the acceleration for given velocity and enforce min_acceleartion
*/
float
BasicComputeAcceleration(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc){
float result;
result = vel->Profile(dev, vel, velocity, threshold, acc);
/* enforce min_acceleration */
if (result < vel->min_acceleration)
result = vel->min_acceleration;
return result;
}
/**
* Compute acceleration. Takes into account averaging, nv-reset, etc.
*/
static float
ComputeAcceleration(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float threshold,
float acc){
float res;
if(vel->velocity <= 0){
DebugAccelF("(dix ptracc) profile skipped\n");
/*
* If we have no idea about device velocity, don't pretend it.
*/
return 1;
}
if(vel->average_accel && vel->velocity != vel->last_velocity){
/* use simpson's rule to average acceleration between
* current and previous velocity.
* Though being the more natural choice, it causes a minor delay
* in comparison, so it can be disabled. */
res = BasicComputeAcceleration(
dev, vel, vel->velocity, threshold, acc);
res += BasicComputeAcceleration(
dev, vel, vel->last_velocity, threshold, acc);
res += 4.0f * BasicComputeAcceleration(dev, vel,
(vel->last_velocity + vel->velocity) / 2,
threshold, acc);
res /= 6.0f;
DebugAccelF("(dix ptracc) profile average [%.2f ... %.2f] is %.3f\n",
vel->velocity, vel->last_velocity, res);
return res;
}else{
res = BasicComputeAcceleration(dev, vel,
vel->velocity, threshold, acc);
DebugAccelF("(dix ptracc) profile sample [%.2f] is %.3f\n",
vel->velocity, res);
return res;
}
}
/*****************************************
* Acceleration functions and profiles
****************************************/
/**
* Polynomial function similar previous one, but with f(1) = 1
*/
static float
PolynomialAccelerationProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float ignored,
float acc)
{
return pow(velocity, (acc - 1.0) * 0.5);
}
/**
* returns acceleration for velocity.
* This profile selects the two functions like the old scheme did
*/
static float
ClassicProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc)
{
if (threshold > 0) {
return SimpleSmoothProfile (dev,
vel,
velocity,
threshold,
acc);
} else {
return PolynomialAccelerationProfile (dev,
vel,
velocity,
0,
acc);
}
}
/**
* Power profile
* This has a completely smooth transition curve, i.e. no jumps in the
* derivatives.
*
* This has the expense of overall response dependency on min-acceleration.
* In effect, min_acceleration mimics const_acceleration in this profile.
*/
static float
PowerProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc)
{
float vel_dist;
acc = (acc-1.0) * 0.1f + 1.0; /* without this, acc of 2 is unuseable */
if (velocity <= threshold)
return vel->min_acceleration;
vel_dist = velocity - threshold;
return (pow(acc, vel_dist)) * vel->min_acceleration;
}
/**
* just a smooth function in [0..1] -> [0..1]
* - point symmetry at 0.5
* - f'(0) = f'(1) = 0
* - starts faster than a sinoid
* - smoothness C1 (Cinf if you dare to ignore endpoints)
*/
static inline float
CalcPenumbralGradient(float x){
x *= 2.0f;
x -= 1.0f;
return 0.5f + (x * sqrt(1.0f - x*x) + asin(x))/M_PI;
}
/**
* acceleration function similar to classic accelerated/unaccelerated,
* but with smooth transition in between (and towards zero for adaptive dec.).
*/
static float
SimpleSmoothProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc)
{
if(velocity < 1.0f)
return CalcPenumbralGradient(0.5 + velocity*0.5) * 2.0f - 1.0f;
if(threshold < 1.0f)
threshold = 1.0f;
if (velocity <= threshold)
return 1;
velocity /= threshold;
if (velocity >= acc)
return acc;
else
return 1.0f + (CalcPenumbralGradient(velocity/acc) * (acc - 1.0f));
}
/**
* This profile uses the first half of the penumbral gradient as a start
* and then scales linearly.
*/
static float
SmoothLinearProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc)
{
float res, nv;
if(acc > 1.0f)
acc -= 1.0f; /*this is so acc = 1 is no acceleration */
else
return 1.0f;
nv = (velocity - threshold) * acc * 0.5f;
if(nv < 0){
res = 0;
}else if(nv < 2){
res = CalcPenumbralGradient(nv*0.25f)*2.0f;
}else{
nv -= 2.0f;
res = nv * 2.0f / M_PI /* steepness of gradient at 0.5 */
+ 1.0f; /* gradient crosses 2|1 */
}
res += vel->min_acceleration;
return res;
}
/**
* From 0 to threshold, the response graduates smoothly from min_accel to
* acceleration. Beyond threshold it is exactly the specified acceleration.
*/
static float
SmoothLimitedProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc)
{
float res;
if(velocity >= threshold || threshold == 0.0f)
return acc;
velocity /= threshold; /* should be [0..1[ now */
res = CalcPenumbralGradient(velocity) * (acc - vel->min_acceleration);
return vel->min_acceleration + res;
}
static float
LinearProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc)
{
return acc * velocity;
}
static float
NoProfile(
DeviceIntPtr dev,
DeviceVelocityPtr vel,
float velocity,
float threshold,
float acc)
{
return 1.0f;
}
static PointerAccelerationProfileFunc
GetAccelerationProfile(
DeviceVelocityPtr vel,
int profile_num)
{
switch(profile_num){
case AccelProfileClassic:
return ClassicProfile;
case AccelProfileDeviceSpecific:
return vel->deviceSpecificProfile;
case AccelProfilePolynomial:
return PolynomialAccelerationProfile;
case AccelProfileSmoothLinear:
return SmoothLinearProfile;
case AccelProfileSimple:
return SimpleSmoothProfile;
case AccelProfilePower:
return PowerProfile;
case AccelProfileLinear:
return LinearProfile;
case AccelProfileSmoothLimited:
return SmoothLimitedProfile;
case AccelProfileNone:
return NoProfile;
default:
return NULL;
}
}
/**
* Set the profile by number.
* Intended to make profiles exchangeable at runtime.
* If you created a profile, give it a number here and in the header to
* make it selectable. In case some profile-specific init is needed, here
* would be a good place, since FreeVelocityData() also calls this with
* PROFILE_UNINITIALIZE.
*
* returns FALSE if profile number is unavailable, TRUE otherwise.
*/
int
SetAccelerationProfile(
DeviceVelocityPtr vel,
int profile_num)
{
PointerAccelerationProfileFunc profile;
profile = GetAccelerationProfile(vel, profile_num);
if(profile == NULL && profile_num != PROFILE_UNINITIALIZE)
return FALSE;
if(vel->profile_private != NULL){
/* Here one could free old profile-private data */
xfree(vel->profile_private);
vel->profile_private = NULL;
}
/* Here one could init profile-private data */
vel->Profile = profile;
vel->statistics.profile_number = profile_num;
return TRUE;
}
/**********************************************
* driver interaction
**********************************************/
/**
* device-specific profile
*
* The device-specific profile is intended as a hook for a driver
* which may want to provide an own acceleration profile.
* It should not rely on profile-private data, instead
* it should do init/uninit in the driver (ie. with DEVICE_INIT and friends).
* Users may override or choose it.
*/
void
SetDeviceSpecificAccelerationProfile(
DeviceVelocityPtr vel,
PointerAccelerationProfileFunc profile)
{
if(vel)
vel->deviceSpecificProfile = profile;
}
/**
* Use this function to obtain a DeviceVelocityPtr for a device. Will return NULL if
* the predictable acceleration scheme is not in effect.
*/
DeviceVelocityPtr
GetDevicePredictableAccelData(
DeviceIntPtr dev)
{
/*sanity check*/
if(!dev){
ErrorF("[dix] accel: DeviceIntPtr was NULL");
return NULL;
}
if( dev->valuator &&
dev->valuator->accelScheme.AccelSchemeProc ==
acceleratePointerPredictable &&
dev->valuator->accelScheme.accelData != NULL){
return (DeviceVelocityPtr)dev->valuator->accelScheme.accelData;
}
return NULL;
}
/********************************
* acceleration schemes
*******************************/
/**
* Modifies valuators in-place.
* This version employs a velocity approximation algorithm to
* enable fine-grained predictable acceleration profiles.
*/
void
acceleratePointerPredictable(
DeviceIntPtr dev,
int first_valuator,
int num_valuators,
int *valuators,
int evtime)
{
float mult = 0.0;
int dx = 0, dy = 0;
int *px = NULL, *py = NULL;
DeviceVelocityPtr velocitydata =
(DeviceVelocityPtr) dev->valuator->accelScheme.accelData;
float fdx, fdy, tmp; /* no need to init */
Bool soften = TRUE;
if (!num_valuators || !valuators || !velocitydata)
return;
if (velocitydata->statistics.profile_number == AccelProfileNone &&
velocitydata->const_acceleration == 1.0f) {
return; /*we're inactive anyway, so skip the whole thing.*/
}
if (first_valuator == 0) {
dx = valuators[0];
px = &valuators[0];
}
if (first_valuator <= 1 && num_valuators >= (2 - first_valuator)) {
dy = valuators[1 - first_valuator];
py = &valuators[1 - first_valuator];
}
if (dx || dy){
/* reset non-visible state? */
if (ProcessVelocityData2D(velocitydata, dx , dy, evtime)) {
soften = FALSE;
}
if (dev->ptrfeed && dev->ptrfeed->ctrl.num) {
/* invoke acceleration profile to determine acceleration */
mult = ComputeAcceleration (dev, velocitydata,
dev->ptrfeed->ctrl.threshold,
(float)dev->ptrfeed->ctrl.num /
(float)dev->ptrfeed->ctrl.den);
if(mult != 1.0 || velocitydata->const_acceleration != 1.0) {
ApplySofteningAndConstantDeceleration( velocitydata,
dx, dy,
&fdx, &fdy,
(mult > 1.0) && soften);
if (dx) {
tmp = mult * fdx + dev->last.remainder[0];
/* Since it may not be apparent: lrintf() does not offer
* strong statements about rounding; however because we
* process each axis conditionally, there's no danger
* of a toggling remainder. Its lack of guarantees likely
* makes it faster on the average target. */
*px = lrintf(tmp);
dev->last.remainder[0] = tmp - (float)*px;
}
if (dy) {
tmp = mult * fdy + dev->last.remainder[1];
*py = lrintf(tmp);
dev->last.remainder[1] = tmp - (float)*py;
}
DebugAccelF("pos (%i | %i) remainders x: %.3f y: %.3f delta x:%.3f y:%.3f\n",
*px, *py, dev->last.remainder[0], dev->last.remainder[1], fdx, fdy);
}
}
}
/* remember last motion delta (for softening/slow movement treatment) */
velocitydata->last_dx = dx;
velocitydata->last_dy = dy;
}
/**
* Originally a part of xf86PostMotionEvent; modifies valuators
* in-place. Retained mostly for embedded scenarios.
*/
void
acceleratePointerLightweight(
DeviceIntPtr dev,
int first_valuator,
int num_valuators,
int *valuators,
int ignored)
{
float mult = 0.0;
int dx = 0, dy = 0;
int *px = NULL, *py = NULL;
if (!num_valuators || !valuators)
return;
if (first_valuator == 0) {
dx = valuators[0];
px = &valuators[0];
}
if (first_valuator <= 1 && num_valuators >= (2 - first_valuator)) {
dy = valuators[1 - first_valuator];
py = &valuators[1 - first_valuator];
}
if (!dx && !dy)
return;
if (dev->ptrfeed && dev->ptrfeed->ctrl.num) {
/* modeled from xf86Events.c */
if (dev->ptrfeed->ctrl.threshold) {
if ((abs(dx) + abs(dy)) >= dev->ptrfeed->ctrl.threshold) {
dev->last.remainder[0] = ((float)dx *
(float)(dev->ptrfeed->ctrl.num)) /
(float)(dev->ptrfeed->ctrl.den) +
dev->last.remainder[0];
if (px) {
*px = (int)dev->last.remainder[0];
dev->last.remainder[0] = dev->last.remainder[0] -
(float)(*px);
}
dev->last.remainder[1] = ((float)dy *
(float)(dev->ptrfeed->ctrl.num)) /
(float)(dev->ptrfeed->ctrl.den) +
dev->last.remainder[1];
if (py) {
*py = (int)dev->last.remainder[1];
dev->last.remainder[1] = dev->last.remainder[1] -
(float)(*py);
}
}
}
else {
mult = pow((float)dx * (float)dx + (float)dy * (float)dy,
((float)(dev->ptrfeed->ctrl.num) /
(float)(dev->ptrfeed->ctrl.den) - 1.0) /
2.0) / 2.0;
if (dx) {
dev->last.remainder[0] = mult * (float)dx +
dev->last.remainder[0];
*px = (int)dev->last.remainder[0];
dev->last.remainder[0] = dev->last.remainder[0] -
(float)(*px);
}
if (dy) {
dev->last.remainder[1] = mult * (float)dy +
dev->last.remainder[1];
*py = (int)dev->last.remainder[1];
dev->last.remainder[1] = dev->last.remainder[1] -
(float)(*py);
}
}
}
}