xserver-multidpi/exa/exa.c
Eric Anholt c1601717d5 Add a new migration scheme, "always", which will move pixmaps to their
desired location always (unless they don't fit in FB, in which case
    they all get moved out for software rendering). The default remains as
    before, but can be controlled by the MigrationHeuristic xorg.conf
    option (which is intentionally not documented, as it may be
    short-lived). This is part of the exa-damagetrack work, which appears
    stable in testing with fakexa, unlike the work as a whole.
2006-03-15 01:20:08 +00:00

590 lines
17 KiB
C

/*
* Copyright © 2001 Keith Packard
*
* Partly based on code that is Copyright © The XFree86 Project Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Keith Packard not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Keith Packard makes no
* representations about the suitability of this software for any purpose. It
* is provided "as is" without express or implied warranty.
*
* KEITH PACKARD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL KEITH PACKARD BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/** @file
* This file covers the initialization and teardown of EXA, and has various
* functions not responsible for performing rendering, pixmap migration, or
* memory management.
*/
#ifdef HAVE_DIX_CONFIG_H
#include <dix-config.h>
#endif
#include <stdlib.h>
#include "exa_priv.h"
#include <X11/fonts/fontstruct.h>
#include "dixfontstr.h"
#include "exa.h"
#include "cw.h"
static int exaGeneration;
int exaScreenPrivateIndex;
int exaPixmapPrivateIndex;
/**
* exaGetPixmapOffset() returns the offset (in bytes) within the framebuffer of
* the beginning of the given pixmap.
*
* Note that drivers are free to, and often do, munge this offset as necessary
* for handing to the hardware -- for example, translating it into a different
* aperture. This function may need to be extended in the future if we grow
* support for having multiple card-accessible offscreen, such as an AGP memory
* pool alongside the framebuffer pool.
*/
unsigned long
exaGetPixmapOffset(PixmapPtr pPix)
{
ExaScreenPriv (pPix->drawable.pScreen);
return ((unsigned long)pPix->devPrivate.ptr -
(unsigned long)pExaScr->info->memoryBase);
}
/**
* exaGetPixmapPitch() returns the pitch (in bytes) of the given pixmap.
*
* This is a helper to make driver code more obvious, due to the rather obscure
* naming of the pitch field in the pixmap.
*/
unsigned long
exaGetPixmapPitch(PixmapPtr pPix)
{
return pPix->devKind;
}
/**
* exaGetPixmapSize() returns the size in bytes of the given pixmap in video
* memory. Only valid when the pixmap is currently in framebuffer.
*/
unsigned long
exaGetPixmapSize(PixmapPtr pPix)
{
ExaPixmapPrivPtr pExaPixmap;
pExaPixmap = ExaGetPixmapPriv(pPix);
if (pExaPixmap != NULL)
return pExaPixmap->size;
return 0;
}
/**
* exaGetDrawablePixmap() returns a backing pixmap for a given drawable.
*
* @param pDrawable the drawable being requested.
*
* This function returns the backing pixmap for a drawable, whether it is a
* redirected window, unredirected window, or already a pixmap. Note that
* coordinate translation is needed when drawing to the backing pixmap of a
* redirected window, and the translation coordinates are provided by calling
* exaGetOffscreenPixmap() on the drawable.
*/
PixmapPtr
exaGetDrawablePixmap(DrawablePtr pDrawable)
{
if (pDrawable->type == DRAWABLE_WINDOW)
return pDrawable->pScreen->GetWindowPixmap ((WindowPtr) pDrawable);
else
return (PixmapPtr) pDrawable;
}
/**
* exaDrawableDirty() marks a pixmap backing a drawable as dirty, allowing for
* optimizations in pixmap migration when no changes have occurred.
*/
void
exaDrawableDirty (DrawablePtr pDrawable)
{
ExaPixmapPrivPtr pExaPixmap;
pExaPixmap = ExaGetPixmapPriv(exaGetDrawablePixmap (pDrawable));
if (pExaPixmap != NULL)
pExaPixmap->dirty = TRUE;
}
static Bool
exaDestroyPixmap (PixmapPtr pPixmap)
{
if (pPixmap->refcnt == 1)
{
ExaPixmapPriv (pPixmap);
if (pExaPixmap->area)
{
DBG_PIXMAP(("-- 0x%p (0x%x) (%dx%d)\n",
(void*)pPixmap->drawable.id,
ExaGetPixmapPriv(pPixmap)->area->offset,
pPixmap->drawable.width,
pPixmap->drawable.height));
/* Free the offscreen area */
exaOffscreenFree (pPixmap->drawable.pScreen, pExaPixmap->area);
pPixmap->devPrivate = pExaPixmap->devPrivate;
pPixmap->devKind = pExaPixmap->devKind;
}
}
return fbDestroyPixmap (pPixmap);
}
/**
* exaCreatePixmap() creates a new pixmap.
*
* If width and height are 0, this won't be a full-fledged pixmap and it will
* get ModifyPixmapHeader() called on it later. So, we mark it as pinned, because
* ModifyPixmapHeader() would break migration. These types of pixmaps are used
* for scratch pixmaps, or to represent the visible screen.
*/
static PixmapPtr
exaCreatePixmap(ScreenPtr pScreen, int w, int h, int depth)
{
PixmapPtr pPixmap;
ExaPixmapPrivPtr pExaPixmap;
int bpp;
ExaScreenPriv(pScreen);
if (w > 32767 || h > 32767)
return NullPixmap;
pPixmap = fbCreatePixmap (pScreen, w, h, depth);
if (!pPixmap)
return NULL;
pExaPixmap = ExaGetPixmapPriv(pPixmap);
/* Glyphs have w/h equal to zero, and may not be migrated. See exaGlyphs. */
if (!w || !h)
pExaPixmap->score = EXA_PIXMAP_SCORE_PINNED;
else
pExaPixmap->score = EXA_PIXMAP_SCORE_INIT;
pExaPixmap->area = NULL;
pExaPixmap->dirty = FALSE;
return pPixmap;
}
/**
* exaPixmapIsOffscreen() is used to determine if a pixmap is in offscreen
* memory, meaning that acceleration could probably be done to it, and that it
* will need to be wrapped by PrepareAccess()/FinishAccess() when accessing it
* with the CPU.
*
* Note that except for UploadToScreen()/DownloadFromScreen() (which explicitly
* deal with moving pixmaps in and out of system memory), EXA will give drivers
* pixmaps as arguments for which exaPixmapIsOffscreen() is TRUE.
*
* @return TRUE if the given drawable is in framebuffer memory.
*/
Bool
exaPixmapIsOffscreen(PixmapPtr p)
{
ScreenPtr pScreen = p->drawable.pScreen;
ExaScreenPriv(pScreen);
return ((unsigned long) ((CARD8 *) p->devPrivate.ptr -
(CARD8 *) pExaScr->info->memoryBase) <
pExaScr->info->memorySize);
}
/**
* exaDrawableIsOffscreen() is a convenience wrapper for exaPixmapIsOffscreen().
*/
Bool
exaDrawableIsOffscreen (DrawablePtr pDrawable)
{
return exaPixmapIsOffscreen (exaGetDrawablePixmap (pDrawable));
}
/**
* Returns the pixmap which backs a drawable, and the offsets to add to
* coordinates to make them address the same bits in the backing drawable.
* These coordinates are nonzero only for redirected windows.
*/
PixmapPtr
exaGetOffscreenPixmap (DrawablePtr pDrawable, int *xp, int *yp)
{
PixmapPtr pPixmap;
int x, y;
if (pDrawable->type == DRAWABLE_WINDOW) {
pPixmap = (*pDrawable->pScreen->GetWindowPixmap) ((WindowPtr) pDrawable);
#ifdef COMPOSITE
x = -pPixmap->screen_x;
y = -pPixmap->screen_y;
#else
x = 0;
y = 0;
#endif
}
else
{
pPixmap = (PixmapPtr) pDrawable;
x = 0;
y = 0;
}
*xp = x;
*yp = y;
if (exaPixmapIsOffscreen (pPixmap))
return pPixmap;
else
return NULL;
}
/**
* exaPrepareAccess() is EXA's wrapper for the driver's PrepareAccess() handler.
*
* It deals with waiting for synchronization with the card, determining if
* PrepareAccess() is necessary, and working around PrepareAccess() failure.
*/
void
exaPrepareAccess(DrawablePtr pDrawable, int index)
{
ScreenPtr pScreen = pDrawable->pScreen;
ExaScreenPriv (pScreen);
PixmapPtr pPixmap;
pPixmap = exaGetDrawablePixmap (pDrawable);
if (exaPixmapIsOffscreen (pPixmap))
exaWaitSync (pDrawable->pScreen);
else
return;
if (pExaScr->info->PrepareAccess == NULL)
return;
if (!(*pExaScr->info->PrepareAccess) (pPixmap, index)) {
ExaPixmapPriv (pPixmap);
if (pExaPixmap->score != EXA_PIXMAP_SCORE_PINNED)
FatalError("Driver failed PrepareAccess on a pinned pixmap\n");
exaMoveOutPixmap (pPixmap);
}
}
/**
* exaFinishAccess() is EXA's wrapper for the driver's FinishAccess() handler.
*
* It deals with marking drawables as dirty, and calling the driver's
* FinishAccess() only if necessary.
*/
void
exaFinishAccess(DrawablePtr pDrawable, int index)
{
ScreenPtr pScreen = pDrawable->pScreen;
ExaScreenPriv (pScreen);
PixmapPtr pPixmap;
if (index == EXA_PREPARE_DEST)
exaDrawableDirty (pDrawable);
if (pExaScr->info->FinishAccess == NULL)
return;
pPixmap = exaGetDrawablePixmap (pDrawable);
if (!exaPixmapIsOffscreen (pPixmap))
return;
(*pExaScr->info->FinishAccess) (pPixmap, index);
}
/**
* exaValidateGC() chooses between the accelerated and unaccelerated GC Ops
* vectors.
*
* The unaccelerated (exaAsyncPixmapGCOps) vector is chosen if the drawable is
* offscreen. This means that operations that affect only that drawable will
* not result in migration of the pixmap. However, exaAsyncPixmapGCOps does use
* the accelerated operations for the Copy* functions, because the other
* drawable involved might be in framebuffer and require synchronization before
* accessing it. This means that for the Copy* functions, even using
* exaAsyncPixmapGCOps may result in migration, and therefore acceleration.
*
* Because of how nonintuitive exaAsyncPixmapGCOps is, and the fact that its
* only use is for dubious performance reasons (and probably just historical
* reasons), it is likely to go away in the future.
*/
static void
exaValidateGC (GCPtr pGC, Mask changes, DrawablePtr pDrawable)
{
fbValidateGC (pGC, changes, pDrawable);
if (exaDrawableIsOffscreen (pDrawable))
pGC->ops = (GCOps *) &exaOps;
else
pGC->ops = (GCOps *) &exaAsyncPixmapGCOps;
}
static GCFuncs exaGCFuncs = {
exaValidateGC,
miChangeGC,
miCopyGC,
miDestroyGC,
miChangeClip,
miDestroyClip,
miCopyClip
};
/**
* exaCreateGC makes a new GC and hooks up its funcs handler, so that
* exaValidateGC() will get called.
*/
static int
exaCreateGC (GCPtr pGC)
{
if (!fbCreateGC (pGC))
return FALSE;
pGC->funcs = &exaGCFuncs;
return TRUE;
}
/**
* exaCloseScreen() unwraps its wrapped screen functions and tears down EXA's
* screen private, before calling down to the next CloseSccreen.
*/
static Bool
exaCloseScreen(int i, ScreenPtr pScreen)
{
ExaScreenPriv(pScreen);
#ifdef RENDER
PictureScreenPtr ps = GetPictureScreenIfSet(pScreen);
#endif
pScreen->CreateGC = pExaScr->SavedCreateGC;
pScreen->CloseScreen = pExaScr->SavedCloseScreen;
pScreen->GetImage = pExaScr->SavedGetImage;
pScreen->GetSpans = pExaScr->SavedGetSpans;
pScreen->PaintWindowBackground = pExaScr->SavedPaintWindowBackground;
pScreen->PaintWindowBorder = pExaScr->SavedPaintWindowBorder;
pScreen->CreatePixmap = pExaScr->SavedCreatePixmap;
pScreen->DestroyPixmap = pExaScr->SavedDestroyPixmap;
pScreen->CopyWindow = pExaScr->SavedCopyWindow;
#ifdef RENDER
if (ps) {
ps->Composite = pExaScr->SavedComposite;
ps->Glyphs = pExaScr->SavedGlyphs;
}
#endif
xfree (pExaScr);
return (*pScreen->CloseScreen) (i, pScreen);
}
/**
* This function allocates a driver structure for EXA drivers to fill in. By
* having EXA allocate the structure, the driver structure can be extended
* without breaking ABI between EXA and the drivers. The driver's
* responsibility is to check beforehand that the EXA module has a matching
* major number and sufficient minor. Drivers are responsible for freeing the
* driver structure using xfree().
*
* @return a newly allocated, zero-filled driver structure
*/
ExaDriverPtr
exaDriverAlloc(void)
{
return xcalloc(1, sizeof(ExaDriverRec));
}
/**
* @param pScreen screen being initialized
* @param pScreenInfo EXA driver record
*
* exaDriverInit sets up EXA given a driver record filled in by the driver.
* pScreenInfo should have been allocated by exaDriverAlloc(). See the
* comments in _ExaDriver for what must be filled in and what is optional.
*
* @return TRUE if EXA was successfully initialized.
*/
Bool
exaDriverInit (ScreenPtr pScreen,
ExaDriverPtr pScreenInfo)
{
ExaScreenPrivPtr pExaScr;
if (pScreenInfo->exa_major != EXA_VERSION_MAJOR ||
pScreenInfo->exa_minor > EXA_VERSION_MINOR)
{
LogMessage(X_ERROR, "EXA(%d): driver's EXA version requirements "
"(%d.%d) are incompatible with EXA version (%d.%d)\n",
pScreen->myNum,
pScreenInfo->exa_major, pScreenInfo->exa_minor,
EXA_VERSION_MAJOR, EXA_VERSION_MINOR);
return FALSE;
}
#ifdef RENDER
PictureScreenPtr ps = GetPictureScreenIfSet(pScreen);
#endif
if (exaGeneration != serverGeneration)
{
exaScreenPrivateIndex = AllocateScreenPrivateIndex();
exaPixmapPrivateIndex = AllocatePixmapPrivateIndex();
exaGeneration = serverGeneration;
}
pExaScr = xcalloc (sizeof (ExaScreenPrivRec), 1);
if (!pExaScr) {
LogMessage(X_WARNING, "EXA(%d): Failed to allocate screen private\n",
pScreen->myNum);
return FALSE;
}
pExaScr->info = pScreenInfo;
pScreen->devPrivates[exaScreenPrivateIndex].ptr = (pointer) pExaScr;
pExaScr->migration = ExaMigrationGreedy;
exaDDXDriverInit(pScreen);
/*
* Replace various fb screen functions
*/
pExaScr->SavedCloseScreen = pScreen->CloseScreen;
pScreen->CloseScreen = exaCloseScreen;
pExaScr->SavedCreateGC = pScreen->CreateGC;
pScreen->CreateGC = exaCreateGC;
pExaScr->SavedGetImage = pScreen->GetImage;
pScreen->GetImage = exaGetImage;
pExaScr->SavedGetSpans = pScreen->GetSpans;
pScreen->GetSpans = exaGetSpans;
pExaScr->SavedCopyWindow = pScreen->CopyWindow;
pScreen->CopyWindow = exaCopyWindow;
pExaScr->SavedPaintWindowBackground = pScreen->PaintWindowBackground;
pScreen->PaintWindowBackground = exaPaintWindow;
pExaScr->SavedPaintWindowBorder = pScreen->PaintWindowBorder;
pScreen->PaintWindowBorder = exaPaintWindow;
pScreen->BackingStoreFuncs.SaveAreas = ExaCheckSaveAreas;
pScreen->BackingStoreFuncs.RestoreAreas = ExaCheckRestoreAreas;
#ifdef RENDER
if (ps) {
pExaScr->SavedComposite = ps->Composite;
ps->Composite = exaComposite;
pExaScr->SavedGlyphs = ps->Glyphs;
ps->Glyphs = exaGlyphs;
}
#endif
miDisableCompositeWrapper(pScreen);
/*
* Hookup offscreen pixmaps
*/
if ((pExaScr->info->flags & EXA_OFFSCREEN_PIXMAPS) &&
pExaScr->info->offScreenBase < pExaScr->info->memorySize)
{
if (!AllocatePixmapPrivate(pScreen, exaPixmapPrivateIndex,
sizeof (ExaPixmapPrivRec))) {
LogMessage(X_WARNING,
"EXA(%d): Failed to allocate pixmap private\n",
pScreen->myNum);
return FALSE;
}
pExaScr->SavedCreatePixmap = pScreen->CreatePixmap;
pScreen->CreatePixmap = exaCreatePixmap;
pExaScr->SavedDestroyPixmap = pScreen->DestroyPixmap;
pScreen->DestroyPixmap = exaDestroyPixmap;
}
else
{
LogMessage(X_INFO, "EXA(%d): No offscreen pixmaps\n", pScreen->myNum);
if (!AllocatePixmapPrivate(pScreen, exaPixmapPrivateIndex, 0))
return FALSE;
}
DBG_PIXMAP(("============== %ld < %ld\n", pExaScr->info->offScreenBase,
pExaScr->info->memorySize));
if (pExaScr->info->offScreenBase < pExaScr->info->memorySize) {
if (!exaOffscreenInit (pScreen)) {
LogMessage(X_WARNING, "EXA(%d): Offscreen pixmap setup failed\n",
pScreen->myNum);
return FALSE;
}
}
return TRUE;
}
/**
* exaDriverFini tears down EXA on a given screen.
*
* @param pScreen screen being torn down.
*/
void
exaDriverFini (ScreenPtr pScreen)
{
/*right now does nothing*/
}
/**
* exaMarkSync() should be called after any asynchronous drawing by the hardware.
*
* @param pScreen screen which drawing occurred on
*
* exaMarkSync() sets a flag to indicate that some asynchronous drawing has
* happened and a WaitSync() will be necessary before relying on the contents of
* offscreen memory from the CPU's perspective. It also calls an optional
* driver MarkSync() callback, the return value of which may be used to do partial
* synchronization with the hardware in the future.
*/
void exaMarkSync(ScreenPtr pScreen)
{
ExaScreenPriv(pScreen);
pExaScr->info->needsSync = TRUE;
if (pExaScr->info->MarkSync != NULL) {
pExaScr->info->lastMarker = (*pExaScr->info->MarkSync)(pScreen);
}
}
/**
* exaWaitSync() ensures that all drawing has been completed.
*
* @param pScreen screen being synchronized.
*
* Calls down into the driver to ensure that all previous drawing has completed.
* It should always be called before relying on the framebuffer contents
* reflecting previous drawing, from a CPU perspective.
*/
void exaWaitSync(ScreenPtr pScreen)
{
ExaScreenPriv(pScreen);
if (pExaScr->info->needsSync && !pExaScr->swappedOut) {
(*pExaScr->info->WaitMarker)(pScreen, pExaScr->info->lastMarker);
pExaScr->info->needsSync = FALSE;
}
}