xserver-multidpi/hw/xfree86/ddc/interpret_edid.c

789 lines
21 KiB
C

/*
* Copyright 1998 by Egbert Eich <Egbert.Eich@Physik.TU-Darmstadt.DE>
* Copyright 2007 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* interpret_edid.c: interpret a primary EDID block
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include "misc.h"
#include "xf86.h"
#include "xf86_OSproc.h"
#define _PARSE_EDID_
#include "xf86DDC.h"
#include <string.h>
static void get_vendor_section(Uchar *, struct vendor *);
static void get_version_section(Uchar *, struct edid_version *);
static void get_display_section(Uchar *, struct disp_features *,
struct edid_version *);
static void get_established_timing_section(Uchar *,
struct established_timings *);
static void get_std_timing_section(Uchar *, struct std_timings *,
struct edid_version *);
static void fetch_detailed_block(Uchar * c, struct edid_version *ver,
struct detailed_monitor_section *det_mon);
static void get_dt_md_section(Uchar *, struct edid_version *,
struct detailed_monitor_section *det_mon);
static void copy_string(Uchar *, Uchar *);
static void get_dst_timing_section(Uchar *, struct std_timings *,
struct edid_version *);
static void get_monitor_ranges(Uchar *, struct monitor_ranges *);
static void get_whitepoint_section(Uchar *, struct whitePoints *);
static void get_detailed_timing_section(Uchar *, struct detailed_timings *);
static Bool validate_version(int scrnIndex, struct edid_version *);
static void
find_ranges_section(struct detailed_monitor_section *det, void *ranges)
{
if (det->type == DS_RANGES && det->section.ranges.max_clock)
*(struct monitor_ranges **) ranges = &det->section.ranges;
}
static void
find_max_detailed_clock(struct detailed_monitor_section *det, void *ret)
{
if (det->type == DT) {
*(int *) ret = max(*((int *) ret), det->section.d_timings.clock);
}
}
static void
handle_edid_quirks(xf86MonPtr m)
{
struct monitor_ranges *ranges = NULL;
/*
* max_clock is only encoded in EDID in tens of MHz, so occasionally we
* find a monitor claiming a max of 160 with a mode requiring 162, or
* similar. Strictly we should refuse to round up too far, but let's
* see how well this works.
*/
/* Try to find Monitor Range and max clock, then re-set range value */
xf86ForEachDetailedBlock(m, find_ranges_section, &ranges);
if (ranges && ranges->max_clock) {
int clock = 0;
xf86ForEachDetailedBlock(m, find_max_detailed_clock, &clock);
if (clock && (ranges->max_clock * 1e6 < clock)) {
xf86Msg(X_WARNING, "EDID timing clock %.2f exceeds claimed max "
"%dMHz, fixing\n", clock / 1.0e6, ranges->max_clock);
ranges->max_clock = (clock + 999999) / 1e6;
}
}
}
struct det_hv_parameter {
int real_hsize;
int real_vsize;
float target_aspect;
};
static void
handle_detailed_hvsize(struct detailed_monitor_section *det_mon, void *data)
{
struct det_hv_parameter *p = (struct det_hv_parameter *) data;
float timing_aspect;
if (det_mon->type == DT) {
struct detailed_timings *timing;
timing = &det_mon->section.d_timings;
if (!timing->v_size)
return;
timing_aspect = (float) timing->h_size / timing->v_size;
if (fabs(1 - (timing_aspect / p->target_aspect)) < 0.05) {
p->real_hsize = max(p->real_hsize, timing->h_size);
p->real_vsize = max(p->real_vsize, timing->v_size);
}
}
}
static void
encode_aspect_ratio(xf86MonPtr m)
{
/*
* some monitors encode the aspect ratio instead of the physical size.
* try to find the largest detailed timing that matches that aspect
* ratio and use that to fill in the feature section.
*/
if ((m->features.hsize == 16 && m->features.vsize == 9) ||
(m->features.hsize == 16 && m->features.vsize == 10) ||
(m->features.hsize == 4 && m->features.vsize == 3) ||
(m->features.hsize == 5 && m->features.vsize == 4)) {
struct det_hv_parameter p;
p.real_hsize = 0;
p.real_vsize = 0;
p.target_aspect = (float) m->features.hsize / m->features.vsize;
xf86ForEachDetailedBlock(m, handle_detailed_hvsize, &p);
if (!p.real_hsize || !p.real_vsize) {
m->features.hsize = m->features.vsize = 0;
}
else if ((m->features.hsize * 10 == p.real_hsize) &&
(m->features.vsize * 10 == p.real_vsize)) {
/* exact match is just unlikely, should do a better check though */
m->features.hsize = m->features.vsize = 0;
}
else {
/* convert mm to cm */
m->features.hsize = (p.real_hsize + 5) / 10;
m->features.vsize = (p.real_vsize + 5) / 10;
}
xf86Msg(X_INFO, "Quirked EDID physical size to %dx%d cm\n",
m->features.hsize, m->features.vsize);
}
}
xf86MonPtr
xf86InterpretEDID(int scrnIndex, Uchar * block)
{
xf86MonPtr m;
if (!block)
return NULL;
if (!(m = xnfcalloc(sizeof(xf86Monitor), 1)))
return NULL;
m->scrnIndex = scrnIndex;
m->rawData = block;
get_vendor_section(SECTION(VENDOR_SECTION, block), &m->vendor);
get_version_section(SECTION(VERSION_SECTION, block), &m->ver);
if (!validate_version(scrnIndex, &m->ver))
goto error;
get_display_section(SECTION(DISPLAY_SECTION, block), &m->features, &m->ver);
get_established_timing_section(SECTION(ESTABLISHED_TIMING_SECTION, block),
&m->timings1);
get_std_timing_section(SECTION(STD_TIMING_SECTION, block), m->timings2,
&m->ver);
get_dt_md_section(SECTION(DET_TIMING_SECTION, block), &m->ver, m->det_mon);
m->no_sections = (int) *(char *) SECTION(NO_EDID, block);
handle_edid_quirks(m);
encode_aspect_ratio(m);
return m;
error:
free(m);
return NULL;
}
static int
get_cea_detail_timing(Uchar * blk, xf86MonPtr mon,
struct detailed_monitor_section *det_mon)
{
int dt_num;
int dt_offset = ((struct cea_ext_body *) blk)->dt_offset;
dt_num = 0;
if (dt_offset < CEA_EXT_MIN_DATA_OFFSET)
return dt_num;
for (; dt_offset < (CEA_EXT_MAX_DATA_OFFSET - DET_TIMING_INFO_LEN) &&
dt_num < CEA_EXT_DET_TIMING_NUM; _NEXT_DT_MD_SECTION(dt_offset)) {
fetch_detailed_block(blk + dt_offset, &mon->ver, det_mon + dt_num);
dt_num = dt_num + 1;
}
return dt_num;
}
static void
handle_cea_detail_block(Uchar * ext, xf86MonPtr mon,
handle_detailed_fn fn, void *data)
{
int i;
struct detailed_monitor_section det_mon[CEA_EXT_DET_TIMING_NUM];
int det_mon_num;
det_mon_num = get_cea_detail_timing(ext, mon, det_mon);
for (i = 0; i < det_mon_num; i++)
fn(det_mon + i, data);
}
void
xf86ForEachDetailedBlock(xf86MonPtr mon, handle_detailed_fn fn, void *data)
{
int i;
Uchar *ext;
if (mon == NULL)
return;
for (i = 0; i < DET_TIMINGS; i++)
fn(mon->det_mon + i, data);
for (i = 0; i < mon->no_sections; i++) {
ext = mon->rawData + EDID1_LEN * (i + 1);
switch (ext[EXT_TAG]) {
case CEA_EXT:
handle_cea_detail_block(ext, mon, fn, data);
break;
case VTB_EXT:
case DI_EXT:
case LS_EXT:
case MI_EXT:
break;
}
}
}
static struct cea_data_block *
extract_cea_data_block(Uchar * ext, int data_type)
{
struct cea_ext_body *cea;
struct cea_data_block *data_collection;
struct cea_data_block *data_end;
cea = (struct cea_ext_body *) ext;
if (cea->dt_offset <= CEA_EXT_MIN_DATA_OFFSET)
return NULL;
data_collection = &cea->data_collection;
data_end = (struct cea_data_block *) (cea->dt_offset + ext);
for (; data_collection < data_end;) {
if (data_type == data_collection->tag) {
return data_collection;
}
data_collection = (void *) ((unsigned char *) data_collection +
data_collection->len + 1);
}
return NULL;
}
static void
handle_cea_video_block(Uchar * ext, handle_video_fn fn, void *data)
{
struct cea_video_block *video;
struct cea_video_block *video_end;
struct cea_data_block *data_collection;
data_collection = extract_cea_data_block(ext, CEA_VIDEO_BLK);
if (data_collection == NULL)
return;
video = &data_collection->u.video;
video_end = (struct cea_video_block *)
((Uchar *) video + data_collection->len);
for (; video < video_end; video = video + 1) {
fn(video, data);
}
}
void
xf86ForEachVideoBlock(xf86MonPtr mon, handle_video_fn fn, void *data)
{
int i;
Uchar *ext;
if (mon == NULL)
return;
for (i = 0; i < mon->no_sections; i++) {
ext = mon->rawData + EDID1_LEN * (i + 1);
switch (ext[EXT_TAG]) {
case CEA_EXT:
handle_cea_video_block(ext, fn, data);
break;
case VTB_EXT:
case DI_EXT:
case LS_EXT:
case MI_EXT:
break;
}
}
}
static Bool
cea_db_offsets(Uchar *cea, int *start, int *end)
{
/* Data block offset in CEA extension block */
*start = CEA_EXT_MIN_DATA_OFFSET;
*end = cea[2];
if (*end == 0)
*end = CEA_EXT_MAX_DATA_OFFSET;
if (*end < CEA_EXT_MIN_DATA_OFFSET || *end > CEA_EXT_MAX_DATA_OFFSET)
return FALSE;
return TRUE;
}
static int
cea_db_len(Uchar *db)
{
return db[0] & 0x1f;
}
static int
cea_db_tag(Uchar *db)
{
return db[0] >> 5;
}
typedef void (*handle_cea_db_fn) (Uchar *, void *);
static void
cea_for_each_db(xf86MonPtr mon, handle_cea_db_fn fn, void *data)
{
int i;
if (!mon)
return;
if (!(mon->flags & EDID_COMPLETE_RAWDATA))
return;
if (!mon->no_sections)
return;
if (!mon->rawData)
return;
for (i = 0; i < mon->no_sections; i++) {
int start, end, offset;
Uchar *ext;
ext = mon->rawData + EDID1_LEN * (i + 1);
if (ext[EXT_TAG] != CEA_EXT)
continue;
if (!cea_db_offsets(ext, &start, &end))
continue;
for (offset = start;
offset < end && offset + cea_db_len(&ext[offset]) < end;
offset += cea_db_len(&ext[offset]) + 1)
fn(&ext[offset], data);
}
}
struct find_hdmi_block_data {
struct cea_data_block *hdmi;
};
static void find_hdmi_block(Uchar *db, void *data)
{
struct find_hdmi_block_data *result = data;
int oui;
if (cea_db_tag(db) != CEA_VENDOR_BLK)
return;
if (cea_db_len(db) < 5)
return;
oui = (db[3] << 16) | (db[2] << 8) | db[1];
if (oui == IEEE_ID_HDMI)
result->hdmi = (struct cea_data_block *)db;
}
struct cea_data_block *xf86MonitorFindHDMIBlock(xf86MonPtr mon)
{
struct find_hdmi_block_data result = { NULL };
cea_for_each_db(mon, find_hdmi_block, &result);
return result.hdmi;
}
xf86MonPtr
xf86InterpretEEDID(int scrnIndex, Uchar * block)
{
xf86MonPtr m;
m = xf86InterpretEDID(scrnIndex, block);
if (!m)
return NULL;
/* extension parse */
return m;
}
static void
get_vendor_section(Uchar * c, struct vendor *r)
{
r->name[0] = L1;
r->name[1] = L2;
r->name[2] = L3;
r->name[3] = '\0';
r->prod_id = PROD_ID;
r->serial = SERIAL_NO;
r->week = WEEK;
r->year = YEAR;
}
static void
get_version_section(Uchar * c, struct edid_version *r)
{
r->version = VERSION;
r->revision = REVISION;
}
static void
get_display_section(Uchar * c, struct disp_features *r, struct edid_version *v)
{
r->input_type = INPUT_TYPE;
if (!DIGITAL(r->input_type)) {
r->input_voltage = INPUT_VOLTAGE;
r->input_setup = SETUP;
r->input_sync = SYNC;
}
else if (v->revision == 2 || v->revision == 3) {
r->input_dfp = DFP;
}
else if (v->revision >= 4) {
r->input_bpc = BPC;
r->input_interface = DIGITAL_INTERFACE;
}
r->hsize = HSIZE_MAX;
r->vsize = VSIZE_MAX;
r->gamma = GAMMA;
r->dpms = DPMS;
r->display_type = DISPLAY_TYPE;
r->msc = MSC;
r->redx = REDX;
r->redy = REDY;
r->greenx = GREENX;
r->greeny = GREENY;
r->bluex = BLUEX;
r->bluey = BLUEY;
r->whitex = WHITEX;
r->whitey = WHITEY;
}
static void
get_established_timing_section(Uchar * c, struct established_timings *r)
{
r->t1 = T1;
r->t2 = T2;
r->t_manu = T_MANU;
}
static void
get_cvt_timing_section(Uchar * c, struct cvt_timings *r)
{
int i;
for (i = 0; i < 4; i++) {
if (c[0] && c[1] && c[2]) {
r[i].height = (c[0] + ((c[1] & 0xF0) << 8) + 1) * 2;
switch (c[1] & 0xc0) {
case 0x00:
r[i].width = r[i].height * 4 / 3;
break;
case 0x40:
r[i].width = r[i].height * 16 / 9;
break;
case 0x80:
r[i].width = r[i].height * 16 / 10;
break;
case 0xc0:
r[i].width = r[i].height * 15 / 9;
break;
}
switch (c[2] & 0x60) {
case 0x00:
r[i].rate = 50;
break;
case 0x20:
r[i].rate = 60;
break;
case 0x40:
r[i].rate = 75;
break;
case 0x60:
r[i].rate = 85;
break;
}
r[i].rates = c[2] & 0x1f;
}
else {
return;
}
c += 3;
}
}
static void
get_std_timing_section(Uchar * c, struct std_timings *r, struct edid_version *v)
{
int i;
for (i = 0; i < STD_TIMINGS; i++) {
if (VALID_TIMING) {
r[i].hsize = HSIZE1;
VSIZE1(r[i].vsize);
r[i].refresh = REFRESH_R;
r[i].id = STD_TIMING_ID;
}
else {
r[i].hsize = r[i].vsize = r[i].refresh = r[i].id = 0;
}
NEXT_STD_TIMING;
}
}
static const unsigned char empty_block[18];
static void
fetch_detailed_block(Uchar * c, struct edid_version *ver,
struct detailed_monitor_section *det_mon)
{
if (ver->version == 1 && ver->revision >= 1 && IS_MONITOR_DESC) {
switch (MONITOR_DESC_TYPE) {
case SERIAL_NUMBER:
det_mon->type = DS_SERIAL;
copy_string(c, det_mon->section.serial);
break;
case ASCII_STR:
det_mon->type = DS_ASCII_STR;
copy_string(c, det_mon->section.ascii_data);
break;
case MONITOR_RANGES:
det_mon->type = DS_RANGES;
get_monitor_ranges(c, &det_mon->section.ranges);
break;
case MONITOR_NAME:
det_mon->type = DS_NAME;
copy_string(c, det_mon->section.name);
break;
case ADD_COLOR_POINT:
det_mon->type = DS_WHITE_P;
get_whitepoint_section(c, det_mon->section.wp);
break;
case ADD_STD_TIMINGS:
det_mon->type = DS_STD_TIMINGS;
get_dst_timing_section(c, det_mon->section.std_t, ver);
break;
case COLOR_MANAGEMENT_DATA:
det_mon->type = DS_CMD;
break;
case CVT_3BYTE_DATA:
det_mon->type = DS_CVT;
get_cvt_timing_section(c, det_mon->section.cvt);
break;
case ADD_EST_TIMINGS:
det_mon->type = DS_EST_III;
memcpy(det_mon->section.est_iii, c + 6, 6);
break;
case ADD_DUMMY:
det_mon->type = DS_DUMMY;
break;
default:
det_mon->type = DS_UNKOWN;
break;
}
if (c[3] <= 0x0F && memcmp(c, empty_block, sizeof(empty_block))) {
det_mon->type = DS_VENDOR + c[3];
}
}
else {
det_mon->type = DT;
get_detailed_timing_section(c, &det_mon->section.d_timings);
}
}
static void
get_dt_md_section(Uchar * c, struct edid_version *ver,
struct detailed_monitor_section *det_mon)
{
int i;
for (i = 0; i < DET_TIMINGS; i++) {
fetch_detailed_block(c, ver, det_mon + i);
NEXT_DT_MD_SECTION;
}
}
static void
copy_string(Uchar * c, Uchar * s)
{
int i;
c = c + 5;
for (i = 0; (i < 13 && *c != 0x0A); i++)
*(s++) = *(c++);
*s = 0;
while (i-- && (*--s == 0x20))
*s = 0;
}
static void
get_dst_timing_section(Uchar * c, struct std_timings *t, struct edid_version *v)
{
int j;
c = c + 5;
for (j = 0; j < 5; j++) {
t[j].hsize = HSIZE1;
VSIZE1(t[j].vsize);
t[j].refresh = REFRESH_R;
t[j].id = STD_TIMING_ID;
NEXT_STD_TIMING;
}
}
static void
get_monitor_ranges(Uchar * c, struct monitor_ranges *r)
{
r->min_v = MIN_V;
r->max_v = MAX_V;
r->min_h = MIN_H;
r->max_h = MAX_H;
r->max_clock = 0;
if (MAX_CLOCK != 0xff) /* is specified? */
r->max_clock = MAX_CLOCK * 10 + 5;
r->display_range_timing_flags = c[10];
if (HAVE_2ND_GTF) {
r->gtf_2nd_f = F_2ND_GTF;
r->gtf_2nd_c = C_2ND_GTF;
r->gtf_2nd_m = M_2ND_GTF;
r->gtf_2nd_k = K_2ND_GTF;
r->gtf_2nd_j = J_2ND_GTF;
}
else {
r->gtf_2nd_f = 0;
}
if (HAVE_CVT) {
r->max_clock_khz = MAX_CLOCK_KHZ;
r->max_clock = r->max_clock_khz / 1000;
r->maxwidth = MAXWIDTH;
r->supported_aspect = SUPPORTED_ASPECT;
r->preferred_aspect = PREFERRED_ASPECT;
r->supported_blanking = SUPPORTED_BLANKING;
r->supported_scaling = SUPPORTED_SCALING;
r->preferred_refresh = PREFERRED_REFRESH;
}
else {
r->max_clock_khz = 0;
}
}
static void
get_whitepoint_section(Uchar * c, struct whitePoints *wp)
{
wp[0].white_x = WHITEX1;
wp[0].white_y = WHITEY1;
wp[1].white_x = WHITEX2;
wp[1].white_y = WHITEY2;
wp[0].index = WHITE_INDEX1;
wp[1].index = WHITE_INDEX2;
wp[0].white_gamma = WHITE_GAMMA1;
wp[1].white_gamma = WHITE_GAMMA2;
}
static void
get_detailed_timing_section(Uchar * c, struct detailed_timings *r)
{
r->clock = PIXEL_CLOCK;
r->h_active = H_ACTIVE;
r->h_blanking = H_BLANK;
r->v_active = V_ACTIVE;
r->v_blanking = V_BLANK;
r->h_sync_off = H_SYNC_OFF;
r->h_sync_width = H_SYNC_WIDTH;
r->v_sync_off = V_SYNC_OFF;
r->v_sync_width = V_SYNC_WIDTH;
r->h_size = H_SIZE;
r->v_size = V_SIZE;
r->h_border = H_BORDER;
r->v_border = V_BORDER;
r->interlaced = INTERLACED;
r->stereo = STEREO;
r->stereo_1 = STEREO1;
r->sync = SYNC_T;
r->misc = MISC;
}
#define MAX_EDID_MINOR 4
static Bool
validate_version(int scrnIndex, struct edid_version *r)
{
if (r->version != 1) {
xf86DrvMsg(scrnIndex, X_ERROR, "Unknown EDID version %d\n", r->version);
return FALSE;
}
if (r->revision > MAX_EDID_MINOR)
xf86DrvMsg(scrnIndex, X_WARNING,
"Assuming version 1.%d is compatible with 1.%d\n",
r->revision, MAX_EDID_MINOR);
return TRUE;
}
Bool
gtf_supported(xf86MonPtr mon)
{
int i;
if (!mon)
return FALSE;
if ((mon->ver.version == 1) && (mon->ver.revision < 4)) {
if (mon->features.msc & 0x1)
return TRUE;
} else {
for (i = 0; i < DET_TIMINGS; i++) {
struct detailed_monitor_section *det_timing_des = &(mon->det_mon[i]);
if (det_timing_des && (det_timing_des->type == DS_RANGES) && (mon->features.msc & 0x1) &&
(det_timing_des->section.ranges.display_range_timing_flags == DR_DEFAULT_GTF
|| det_timing_des->section.ranges.display_range_timing_flags == DR_SECONDARY_GTF))
return TRUE;
}
}
return FALSE;
}
/*
* Returns true if HDMI, false if definitely not or unknown.
*/
Bool
xf86MonitorIsHDMI(xf86MonPtr mon)
{
return xf86MonitorFindHDMIBlock(mon) != NULL;
}