xserver-multidpi/hw/xfree86/modes/xf86RandR12.c
Daniel Strnad 05b3c681ea hw/xfree86: Propagate physical dimensions from DRM connector
Physical dimmension of display can be obtained not just by configuration or
DDC, but also directly from kernel via drmModeGetConnector(). Until now
xserver silently discarded these values even when no configuration nor EDID
were present and fallbacked to default DPI.
2021-06-15 13:21:11 +00:00

2401 lines
73 KiB
C

/*
* Copyright © 2002 Keith Packard, member of The XFree86 Project, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include "xf86.h"
#include "os.h"
#include "globals.h"
#include "xf86Modes.h"
#include "xf86Priv.h"
#include "xf86DDC.h"
#include "mipointer.h"
#include "windowstr.h"
#include "inputstr.h"
#include <randrstr.h>
#include <X11/extensions/render.h>
#include "xf86cmap.h"
#include "xf86Crtc.h"
#include "xf86RandR12.h"
typedef struct _xf86RandR12Info {
int virtualX;
int virtualY;
int mmWidth;
int mmHeight;
int maxX;
int maxY;
int pointerX;
int pointerY;
Rotation rotation; /* current mode */
Rotation supported_rotations; /* driver supported */
/* Compatibility with colormaps and XF86VidMode's gamma */
int palette_red_size;
int palette_green_size;
int palette_blue_size;
int palette_size;
LOCO *palette;
/* Used to wrap EnterVT so we can re-probe the outputs when a laptop unsuspends
* (actually, any time that we switch back into our VT).
*
* See https://bugs.freedesktop.org/show_bug.cgi?id=21554
*/
xf86EnterVTProc *orig_EnterVT;
Bool panning;
ConstrainCursorHarderProcPtr orig_ConstrainCursorHarder;
} XF86RandRInfoRec, *XF86RandRInfoPtr;
#ifdef RANDR_12_INTERFACE
static Bool xf86RandR12Init12(ScreenPtr pScreen);
static Bool xf86RandR12CreateScreenResources12(ScreenPtr pScreen);
#endif
static int xf86RandR12Generation;
static DevPrivateKeyRec xf86RandR12KeyRec;
#define XF86RANDRINFO(p) ((XF86RandRInfoPtr) \
dixLookupPrivate(&(p)->devPrivates, &xf86RandR12KeyRec))
static int
xf86RandR12ModeRefresh(DisplayModePtr mode)
{
if (mode->VRefresh)
return (int) (mode->VRefresh + 0.5);
else
return (int) (mode->Clock * 1000.0 / mode->HTotal / mode->VTotal + 0.5);
}
/* Adapt panning area; return TRUE if panning area was valid without adaption */
static int
xf86RandR13VerifyPanningArea(xf86CrtcPtr crtc, int screenWidth,
int screenHeight)
{
int ret = TRUE;
if (crtc->version < 2)
return FALSE;
if (crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1) {
/* Panning in X is disabled */
if (crtc->panningTotalArea.x1 || crtc->panningTotalArea.x2)
/* Illegal configuration -> fail/disable */
ret = FALSE;
crtc->panningTotalArea.x1 = crtc->panningTotalArea.x2 = 0;
crtc->panningTrackingArea.x1 = crtc->panningTrackingArea.x2 = 0;
crtc->panningBorder[0] = crtc->panningBorder[2] = 0;
}
else {
/* Panning in X is enabled */
if (crtc->panningTotalArea.x1 < 0) {
/* Panning region outside screen -> move inside */
crtc->panningTotalArea.x2 -= crtc->panningTotalArea.x1;
crtc->panningTotalArea.x1 = 0;
ret = FALSE;
}
if (crtc->panningTotalArea.x2 <
crtc->panningTotalArea.x1 + crtc->mode.HDisplay) {
/* Panning region smaller than displayed area -> crop to displayed area */
crtc->panningTotalArea.x2 =
crtc->panningTotalArea.x1 + crtc->mode.HDisplay;
ret = FALSE;
}
if (crtc->panningTotalArea.x2 > screenWidth) {
/* Panning region larger than screen -> move inside, then crop to screen */
crtc->panningTotalArea.x1 -=
crtc->panningTotalArea.x2 - screenWidth;
crtc->panningTotalArea.x2 = screenWidth;
ret = FALSE;
if (crtc->panningTotalArea.x1 < 0)
crtc->panningTotalArea.x1 = 0;
}
if (crtc->panningBorder[0] + crtc->panningBorder[2] >
crtc->mode.HDisplay) {
/* Borders too large -> set to 0 */
crtc->panningBorder[0] = crtc->panningBorder[2] = 0;
ret = FALSE;
}
}
if (crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1) {
/* Panning in Y is disabled */
if (crtc->panningTotalArea.y1 || crtc->panningTotalArea.y2)
/* Illegal configuration -> fail/disable */
ret = FALSE;
crtc->panningTotalArea.y1 = crtc->panningTotalArea.y2 = 0;
crtc->panningTrackingArea.y1 = crtc->panningTrackingArea.y2 = 0;
crtc->panningBorder[1] = crtc->panningBorder[3] = 0;
}
else {
/* Panning in Y is enabled */
if (crtc->panningTotalArea.y1 < 0) {
/* Panning region outside screen -> move inside */
crtc->panningTotalArea.y2 -= crtc->panningTotalArea.y1;
crtc->panningTotalArea.y1 = 0;
ret = FALSE;
}
if (crtc->panningTotalArea.y2 <
crtc->panningTotalArea.y1 + crtc->mode.VDisplay) {
/* Panning region smaller than displayed area -> crop to displayed area */
crtc->panningTotalArea.y2 =
crtc->panningTotalArea.y1 + crtc->mode.VDisplay;
ret = FALSE;
}
if (crtc->panningTotalArea.y2 > screenHeight) {
/* Panning region larger than screen -> move inside, then crop to screen */
crtc->panningTotalArea.y1 -=
crtc->panningTotalArea.y2 - screenHeight;
crtc->panningTotalArea.y2 = screenHeight;
ret = FALSE;
if (crtc->panningTotalArea.y1 < 0)
crtc->panningTotalArea.y1 = 0;
}
if (crtc->panningBorder[1] + crtc->panningBorder[3] >
crtc->mode.VDisplay) {
/* Borders too large -> set to 0 */
crtc->panningBorder[1] = crtc->panningBorder[3] = 0;
ret = FALSE;
}
}
return ret;
}
/*
* The heart of the panning operation:
*
* Given a frame buffer position (fb_x, fb_y),
* and a crtc position (crtc_x, crtc_y),
* and a transform matrix which maps frame buffer to crtc,
* compute a panning position (pan_x, pan_y) that
* makes the resulting transform line those two up
*/
static void
xf86ComputeCrtcPan(Bool transform_in_use,
struct pixman_f_transform *m,
double screen_x, double screen_y,
double crtc_x, double crtc_y,
int old_pan_x, int old_pan_y, int *new_pan_x, int *new_pan_y)
{
if (transform_in_use) {
/*
* Given the current transform, M, the current position
* on the Screen, S, and the desired position on the CRTC,
* C, compute a translation, T, such that:
*
* M T S = C
*
* where T is of the form
*
* | 1 0 dx |
* | 0 1 dy |
* | 0 0 1 |
*
* M T S =
* | M00 Sx + M01 Sy + M00 dx + M01 dy + M02 | | Cx F |
* | M10 Sx + M11 Sy + M10 dx + M11 dy + M12 | = | Cy F |
* | M20 Sx + M21 Sy + M20 dx + M21 dy + M22 | | F |
*
* R = M S
*
* Cx F = M00 dx + M01 dy + R0
* Cy F = M10 dx + M11 dy + R1
* F = M20 dx + M21 dy + R2
*
* Zero out dx, then dy
*
* F (Cx M10 - Cy M00) =
* (M10 M01 - M00 M11) dy + M10 R0 - M00 R1
* F (M10 - Cy M20) =
* (M10 M21 - M20 M11) dy + M10 R2 - M20 R1
*
* F (Cx M11 - Cy M01) =
* (M11 M00 - M01 M10) dx + M11 R0 - M01 R1
* F (M11 - Cy M21) =
* (M11 M20 - M21 M10) dx + M11 R2 - M21 R1
*
* Make some temporaries
*
* T = | Cx M10 - Cy M00 |
* | Cx M11 - Cy M01 |
*
* U = | M10 M01 - M00 M11 |
* | M11 M00 - M01 M10 |
*
* Q = | M10 R0 - M00 R1 |
* | M11 R0 - M01 R1 |
*
* P = | M10 - Cy M20 |
* | M11 - Cy M21 |
*
* W = | M10 M21 - M20 M11 |
* | M11 M20 - M21 M10 |
*
* V = | M10 R2 - M20 R1 |
* | M11 R2 - M21 R1 |
*
* Rewrite:
*
* F T0 = U0 dy + Q0
* F P0 = W0 dy + V0
* F T1 = U1 dx + Q1
* F P1 = W1 dx + V1
*
* Solve for F (two ways)
*
* F (W0 T0 - U0 P0) = W0 Q0 - U0 V0
*
* W0 Q0 - U0 V0
* F = -------------
* W0 T0 - U0 P0
*
* F (W1 T1 - U1 P1) = W1 Q1 - U1 V1
*
* W1 Q1 - U1 V1
* F = -------------
* W1 T1 - U1 P1
*
* We'll use which ever solution works (denominator != 0)
*
* Finally, solve for dx and dy:
*
* dx = (F T1 - Q1) / U1
* dx = (F P1 - V1) / W1
*
* dy = (F T0 - Q0) / U0
* dy = (F P0 - V0) / W0
*/
double r[3];
double q[2], u[2], t[2], v[2], w[2], p[2];
double f;
struct pict_f_vector d;
int i;
/* Get the un-normalized crtc coordinates again */
for (i = 0; i < 3; i++)
r[i] = m->m[i][0] * screen_x + m->m[i][1] * screen_y + m->m[i][2];
/* Combine values into temporaries */
for (i = 0; i < 2; i++) {
q[i] = m->m[1][i] * r[0] - m->m[0][i] * r[1];
u[i] = m->m[1][i] * m->m[0][1 - i] - m->m[0][i] * m->m[1][1 - i];
t[i] = m->m[1][i] * crtc_x - m->m[0][i] * crtc_y;
v[i] = m->m[1][i] * r[2] - m->m[2][i] * r[1];
w[i] = m->m[1][i] * m->m[2][1 - i] - m->m[2][i] * m->m[1][1 - i];
p[i] = m->m[1][i] - m->m[2][i] * crtc_y;
}
/* Find a way to compute f */
f = 0;
for (i = 0; i < 2; i++) {
double a = w[i] * q[i] - u[i] * v[i];
double b = w[i] * t[i] - u[i] * p[i];
if (b != 0) {
f = a / b;
break;
}
}
/* Solve for the resulting transform vector */
for (i = 0; i < 2; i++) {
if (u[i])
d.v[1 - i] = (t[i] * f - q[i]) / u[i];
else if (w[1])
d.v[1 - i] = (p[i] * f - v[i]) / w[i];
else
d.v[1 - i] = 0;
}
*new_pan_x = old_pan_x - floor(d.v[0] + 0.5);
*new_pan_y = old_pan_y - floor(d.v[1] + 0.5);
}
else {
*new_pan_x = screen_x - crtc_x;
*new_pan_y = screen_y - crtc_y;
}
}
static void
xf86RandR13Pan(xf86CrtcPtr crtc, int x, int y)
{
int newX, newY;
int width, height;
Bool panned = FALSE;
if (crtc->version < 2)
return;
if (!crtc->enabled ||
(crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1 &&
crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1))
return;
newX = crtc->x;
newY = crtc->y;
width = crtc->mode.HDisplay;
height = crtc->mode.VDisplay;
if ((crtc->panningTrackingArea.x2 <= crtc->panningTrackingArea.x1 ||
(x >= crtc->panningTrackingArea.x1 &&
x < crtc->panningTrackingArea.x2)) &&
(crtc->panningTrackingArea.y2 <= crtc->panningTrackingArea.y1 ||
(y >= crtc->panningTrackingArea.y1 &&
y < crtc->panningTrackingArea.y2))) {
struct pict_f_vector c;
/*
* Pre-clip the mouse position to the panning area so that we don't
* push the crtc outside. This doesn't deal with changes to the
* panning values, only mouse position changes.
*/
if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
if (x < crtc->panningTotalArea.x1)
x = crtc->panningTotalArea.x1;
if (x >= crtc->panningTotalArea.x2)
x = crtc->panningTotalArea.x2 - 1;
}
if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
if (y < crtc->panningTotalArea.y1)
y = crtc->panningTotalArea.y1;
if (y >= crtc->panningTotalArea.y2)
y = crtc->panningTotalArea.y2 - 1;
}
c.v[0] = x;
c.v[1] = y;
c.v[2] = 1.0;
if (crtc->transform_in_use) {
pixman_f_transform_point(&crtc->f_framebuffer_to_crtc, &c);
}
else {
c.v[0] -= crtc->x;
c.v[1] -= crtc->y;
}
if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
if (c.v[0] < crtc->panningBorder[0]) {
c.v[0] = crtc->panningBorder[0];
panned = TRUE;
}
if (c.v[0] >= width - crtc->panningBorder[2]) {
c.v[0] = width - crtc->panningBorder[2] - 1;
panned = TRUE;
}
}
if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
if (c.v[1] < crtc->panningBorder[1]) {
c.v[1] = crtc->panningBorder[1];
panned = TRUE;
}
if (c.v[1] >= height - crtc->panningBorder[3]) {
c.v[1] = height - crtc->panningBorder[3] - 1;
panned = TRUE;
}
}
if (panned)
xf86ComputeCrtcPan(crtc->transform_in_use,
&crtc->f_framebuffer_to_crtc,
x, y, c.v[0], c.v[1], newX, newY, &newX, &newY);
}
/*
* Ensure that the crtc is within the panning region.
*
* XXX This computation only works when we do not have a transform
* in use.
*/
if (!crtc->transform_in_use) {
/* Validate against [xy]1 after [xy]2, to be sure that results are > 0 for [xy]1 > 0 */
if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
if (newX > crtc->panningTotalArea.x2 - width)
newX = crtc->panningTotalArea.x2 - width;
if (newX < crtc->panningTotalArea.x1)
newX = crtc->panningTotalArea.x1;
}
if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
if (newY > crtc->panningTotalArea.y2 - height)
newY = crtc->panningTotalArea.y2 - height;
if (newY < crtc->panningTotalArea.y1)
newY = crtc->panningTotalArea.y1;
}
}
if (newX != crtc->x || newY != crtc->y)
xf86CrtcSetOrigin(crtc, newX, newY);
}
static Bool
xf86RandR12GetInfo(ScreenPtr pScreen, Rotation * rotations)
{
RRScreenSizePtr pSize;
ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
DisplayModePtr mode;
int maxX = 0, maxY = 0;
*rotations = randrp->supported_rotations;
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = scrp->virtualX;
randrp->virtualY = scrp->virtualY;
}
/* Re-probe the outputs for new monitors or modes */
if (scrp->vtSema) {
xf86ProbeOutputModes(scrp, 0, 0);
xf86SetScrnInfoModes(scrp);
}
for (mode = scrp->modes;; mode = mode->next) {
int refresh = xf86RandR12ModeRefresh(mode);
if (randrp->maxX == 0 || randrp->maxY == 0) {
if (maxX < mode->HDisplay)
maxX = mode->HDisplay;
if (maxY < mode->VDisplay)
maxY = mode->VDisplay;
}
pSize = RRRegisterSize(pScreen,
mode->HDisplay, mode->VDisplay,
randrp->mmWidth, randrp->mmHeight);
if (!pSize)
return FALSE;
RRRegisterRate(pScreen, pSize, refresh);
if (xf86ModesEqual(mode, scrp->currentMode)) {
RRSetCurrentConfig(pScreen, randrp->rotation, refresh, pSize);
}
if (mode->next == scrp->modes)
break;
}
if (randrp->maxX == 0 || randrp->maxY == 0) {
randrp->maxX = maxX;
randrp->maxY = maxY;
}
return TRUE;
}
static Bool
xf86RandR12SetMode(ScreenPtr pScreen,
DisplayModePtr mode,
Bool useVirtual, int mmWidth, int mmHeight)
{
ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
int oldWidth = pScreen->width;
int oldHeight = pScreen->height;
int oldmmWidth = pScreen->mmWidth;
int oldmmHeight = pScreen->mmHeight;
WindowPtr pRoot = pScreen->root;
DisplayModePtr currentMode = NULL;
Bool ret = TRUE;
if (pRoot)
(*scrp->EnableDisableFBAccess) (scrp, FALSE);
if (useVirtual) {
scrp->virtualX = randrp->virtualX;
scrp->virtualY = randrp->virtualY;
}
else {
scrp->virtualX = mode->HDisplay;
scrp->virtualY = mode->VDisplay;
}
if (randrp->rotation & (RR_Rotate_90 | RR_Rotate_270)) {
/* If the screen is rotated 90 or 270 degrees, swap the sizes. */
pScreen->width = scrp->virtualY;
pScreen->height = scrp->virtualX;
pScreen->mmWidth = mmHeight;
pScreen->mmHeight = mmWidth;
}
else {
pScreen->width = scrp->virtualX;
pScreen->height = scrp->virtualY;
pScreen->mmWidth = mmWidth;
pScreen->mmHeight = mmHeight;
}
if (scrp->currentMode == mode) {
/* Save current mode */
currentMode = scrp->currentMode;
/* Reset, just so we ensure the drivers SwitchMode is called */
scrp->currentMode = NULL;
}
/*
* We know that if the driver failed to SwitchMode to the rotated
* version, then it should revert back to its prior mode.
*/
if (!xf86SwitchMode(pScreen, mode)) {
ret = FALSE;
scrp->virtualX = pScreen->width = oldWidth;
scrp->virtualY = pScreen->height = oldHeight;
pScreen->mmWidth = oldmmWidth;
pScreen->mmHeight = oldmmHeight;
scrp->currentMode = currentMode;
}
/*
* Make sure the layout is correct
*/
xf86ReconfigureLayout();
/*
* Make sure the whole screen is visible
*/
xf86SetViewport(pScreen, pScreen->width, pScreen->height);
xf86SetViewport(pScreen, 0, 0);
if (pRoot)
(*scrp->EnableDisableFBAccess) (scrp, TRUE);
return ret;
}
Bool
xf86RandR12SetConfig(ScreenPtr pScreen,
Rotation rotation, int rate, RRScreenSizePtr pSize)
{
ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
DisplayModePtr mode;
int pos[MAXDEVICES][2];
Bool useVirtual = FALSE;
int maxX = 0, maxY = 0;
Rotation oldRotation = randrp->rotation;
DeviceIntPtr dev;
Bool view_adjusted = FALSE;
randrp->rotation = rotation;
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = scrp->virtualX;
randrp->virtualY = scrp->virtualY;
}
for (dev = inputInfo.devices; dev; dev = dev->next) {
if (!IsMaster(dev) && !IsFloating(dev))
continue;
miPointerGetPosition(dev, &pos[dev->id][0], &pos[dev->id][1]);
}
for (mode = scrp->modes;; mode = mode->next) {
if (randrp->maxX == 0 || randrp->maxY == 0) {
if (maxX < mode->HDisplay)
maxX = mode->HDisplay;
if (maxY < mode->VDisplay)
maxY = mode->VDisplay;
}
if (mode->HDisplay == pSize->width &&
mode->VDisplay == pSize->height &&
(rate == 0 || xf86RandR12ModeRefresh(mode) == rate))
break;
if (mode->next == scrp->modes) {
if (pSize->width == randrp->virtualX &&
pSize->height == randrp->virtualY) {
mode = scrp->modes;
useVirtual = TRUE;
break;
}
if (randrp->maxX == 0 || randrp->maxY == 0) {
randrp->maxX = maxX;
randrp->maxY = maxY;
}
return FALSE;
}
}
if (randrp->maxX == 0 || randrp->maxY == 0) {
randrp->maxX = maxX;
randrp->maxY = maxY;
}
if (!xf86RandR12SetMode(pScreen, mode, useVirtual, pSize->mmWidth,
pSize->mmHeight)) {
randrp->rotation = oldRotation;
return FALSE;
}
/*
* Move the cursor back where it belongs; SwitchMode repositions it
* FIXME: duplicated code, see modes/xf86RandR12.c
*/
for (dev = inputInfo.devices; dev; dev = dev->next) {
if (!IsMaster(dev) && !IsFloating(dev))
continue;
if (pScreen == miPointerGetScreen(dev)) {
int px = pos[dev->id][0];
int py = pos[dev->id][1];
px = (px >= pScreen->width ? (pScreen->width - 1) : px);
py = (py >= pScreen->height ? (pScreen->height - 1) : py);
/* Setting the viewpoint makes only sense on one device */
if (!view_adjusted && IsMaster(dev)) {
xf86SetViewport(pScreen, px, py);
view_adjusted = TRUE;
}
(*pScreen->SetCursorPosition) (dev, pScreen, px, py, FALSE);
}
}
return TRUE;
}
#define PANNING_ENABLED(crtc) \
((crtc)->panningTotalArea.x2 > (crtc)->panningTotalArea.x1 || \
(crtc)->panningTotalArea.y2 > (crtc)->panningTotalArea.y1)
static Bool
xf86RandR12ScreenSetSize(ScreenPtr pScreen,
CARD16 width,
CARD16 height, CARD32 mmWidth, CARD32 mmHeight)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
WindowPtr pRoot = pScreen->root;
PixmapPtr pScrnPix;
Bool ret = FALSE;
int c;
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = pScrn->virtualX;
randrp->virtualY = pScrn->virtualY;
}
if (pRoot && pScrn->vtSema)
(*pScrn->EnableDisableFBAccess) (pScrn, FALSE);
/* Let the driver update virtualX and virtualY */
if (!(*config->funcs->resize) (pScrn, width, height))
goto finish;
ret = TRUE;
/* Update panning information */
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
if (PANNING_ENABLED (crtc)) {
if (crtc->panningTotalArea.x2 > crtc->panningTrackingArea.x1)
crtc->panningTotalArea.x2 += width - pScreen->width;
if (crtc->panningTotalArea.y2 > crtc->panningTrackingArea.y1)
crtc->panningTotalArea.y2 += height - pScreen->height;
if (crtc->panningTrackingArea.x2 > crtc->panningTrackingArea.x1)
crtc->panningTrackingArea.x2 += width - pScreen->width;
if (crtc->panningTrackingArea.y2 > crtc->panningTrackingArea.y1)
crtc->panningTrackingArea.y2 += height - pScreen->height;
xf86RandR13VerifyPanningArea(crtc, width, height);
xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
}
}
pScrnPix = (*pScreen->GetScreenPixmap) (pScreen);
pScreen->width = pScrnPix->drawable.width = width;
pScreen->height = pScrnPix->drawable.height = height;
randrp->mmWidth = pScreen->mmWidth = mmWidth;
randrp->mmHeight = pScreen->mmHeight = mmHeight;
xf86SetViewport(pScreen, pScreen->width - 1, pScreen->height - 1);
xf86SetViewport(pScreen, 0, 0);
finish:
update_desktop_dimensions();
if (pRoot && pScrn->vtSema)
(*pScrn->EnableDisableFBAccess) (pScrn, TRUE);
#if RANDR_12_INTERFACE
if (pScreen->root && ret)
RRScreenSizeNotify(pScreen);
#endif
return ret;
}
Rotation
xf86RandR12GetRotation(ScreenPtr pScreen)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
return randrp->rotation;
}
Bool
xf86RandR12CreateScreenResources(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config;
XF86RandRInfoPtr randrp;
int c;
int width, height;
int mmWidth, mmHeight;
#ifdef PANORAMIX
/* XXX disable RandR when using Xinerama */
if (!noPanoramiXExtension)
return TRUE;
#endif
config = XF86_CRTC_CONFIG_PTR(pScrn);
randrp = XF86RANDRINFO(pScreen);
/*
* Compute size of screen
*/
width = 0;
height = 0;
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
int crtc_width = crtc->x + xf86ModeWidth(&crtc->mode, crtc->rotation);
int crtc_height = crtc->y + xf86ModeHeight(&crtc->mode, crtc->rotation);
if (crtc->enabled) {
if (crtc_width > width)
width = crtc_width;
if (crtc_height > height)
height = crtc_height;
if (crtc->panningTotalArea.x2 > width)
width = crtc->panningTotalArea.x2;
if (crtc->panningTotalArea.y2 > height)
height = crtc->panningTotalArea.y2;
}
}
if (width && height) {
/*
* Compute physical size of screen
*/
if (monitorResolution) {
mmWidth = width * 25.4 / monitorResolution;
mmHeight = height * 25.4 / monitorResolution;
}
else {
xf86OutputPtr output = xf86CompatOutput(pScrn);
if (output &&
output->conf_monitor &&
(output->conf_monitor->mon_width > 0 &&
output->conf_monitor->mon_height > 0)) {
/*
* Prefer user configured DisplaySize
*/
mmWidth = output->conf_monitor->mon_width;
mmHeight = output->conf_monitor->mon_height;
}
else if (output &&
(output->mm_width > 0 &&
output->mm_height > 0)) {
mmWidth = output->mm_width;
mmHeight = output->mm_height;
}
else {
/*
* Otherwise, just set the screen to DEFAULT_DPI
*/
mmWidth = width * 25.4 / DEFAULT_DPI;
mmHeight = height * 25.4 / DEFAULT_DPI;
}
}
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Setting screen physical size to %d x %d\n",
mmWidth, mmHeight);
/*
* This is the initial setting of the screen size.
* We have to pre-set it here, otherwise panning would be adapted
* to the new screen size.
*/
pScreen->width = width;
pScreen->height = height;
xf86RandR12ScreenSetSize(pScreen, width, height, mmWidth, mmHeight);
}
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = pScrn->virtualX;
randrp->virtualY = pScrn->virtualY;
}
xf86CrtcSetScreenSubpixelOrder(pScreen);
#if RANDR_12_INTERFACE
if (xf86RandR12CreateScreenResources12(pScreen))
return TRUE;
#endif
return TRUE;
}
Bool
xf86RandR12Init(ScreenPtr pScreen)
{
rrScrPrivPtr rp;
XF86RandRInfoPtr randrp;
#ifdef PANORAMIX
/* XXX disable RandR when using Xinerama */
if (!noPanoramiXExtension) {
if (xf86NumScreens == 1)
noPanoramiXExtension = TRUE;
else
return TRUE;
}
#endif
if (xf86RandR12Generation != serverGeneration)
xf86RandR12Generation = serverGeneration;
if (!dixRegisterPrivateKey(&xf86RandR12KeyRec, PRIVATE_SCREEN, 0))
return FALSE;
randrp = malloc(sizeof(XF86RandRInfoRec));
if (!randrp)
return FALSE;
if (!RRScreenInit(pScreen)) {
free(randrp);
return FALSE;
}
rp = rrGetScrPriv(pScreen);
rp->rrGetInfo = xf86RandR12GetInfo;
rp->rrSetConfig = xf86RandR12SetConfig;
randrp->virtualX = -1;
randrp->virtualY = -1;
randrp->mmWidth = pScreen->mmWidth;
randrp->mmHeight = pScreen->mmHeight;
randrp->rotation = RR_Rotate_0; /* initial rotated mode */
randrp->supported_rotations = RR_Rotate_0;
randrp->maxX = randrp->maxY = 0;
randrp->palette_size = 0;
randrp->palette = NULL;
dixSetPrivate(&pScreen->devPrivates, &xf86RandR12KeyRec, randrp);
#if RANDR_12_INTERFACE
if (!xf86RandR12Init12(pScreen))
return FALSE;
#endif
return TRUE;
}
void
xf86RandR12CloseScreen(ScreenPtr pScreen)
{
XF86RandRInfoPtr randrp;
if (!dixPrivateKeyRegistered(&xf86RandR12KeyRec))
return;
randrp = XF86RANDRINFO(pScreen);
#if RANDR_12_INTERFACE
xf86ScreenToScrn(pScreen)->EnterVT = randrp->orig_EnterVT;
pScreen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder;
#endif
free(randrp->palette);
free(randrp);
}
void
xf86RandR12SetRotations(ScreenPtr pScreen, Rotation rotations)
{
XF86RandRInfoPtr randrp;
#if RANDR_12_INTERFACE
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
int c;
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
#endif
if (!dixPrivateKeyRegistered(&xf86RandR12KeyRec))
return;
randrp = XF86RANDRINFO(pScreen);
#if RANDR_12_INTERFACE
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
RRCrtcSetRotations(crtc->randr_crtc, rotations);
}
#endif
randrp->supported_rotations = rotations;
}
void
xf86RandR12SetTransformSupport(ScreenPtr pScreen, Bool transforms)
{
#if RANDR_13_INTERFACE
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
int c;
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
if (!dixPrivateKeyRegistered(&xf86RandR12KeyRec))
return;
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
RRCrtcSetTransformSupport(crtc->randr_crtc, transforms);
}
#endif
}
void
xf86RandR12GetOriginalVirtualSize(ScrnInfoPtr pScrn, int *x, int *y)
{
ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
if (xf86RandR12Generation != serverGeneration ||
XF86RANDRINFO(pScreen)->virtualX == -1) {
*x = pScrn->virtualX;
*y = pScrn->virtualY;
}
else {
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
*x = randrp->virtualX;
*y = randrp->virtualY;
}
}
#if RANDR_12_INTERFACE
#define FLAG_BITS (RR_HSyncPositive | \
RR_HSyncNegative | \
RR_VSyncPositive | \
RR_VSyncNegative | \
RR_Interlace | \
RR_DoubleScan | \
RR_CSync | \
RR_CSyncPositive | \
RR_CSyncNegative | \
RR_HSkewPresent | \
RR_BCast | \
RR_PixelMultiplex | \
RR_DoubleClock | \
RR_ClockDivideBy2)
static Bool
xf86RandRModeMatches(RRModePtr randr_mode, DisplayModePtr mode)
{
#if 0
if (match_name) {
/* check for same name */
int len = strlen(mode->name);
if (randr_mode->mode.nameLength != len)
return FALSE;
if (memcmp(randr_mode->name, mode->name, len) != 0)
return FALSE;
}
#endif
/* check for same timings */
if (randr_mode->mode.dotClock / 1000 != mode->Clock)
return FALSE;
if (randr_mode->mode.width != mode->HDisplay)
return FALSE;
if (randr_mode->mode.hSyncStart != mode->HSyncStart)
return FALSE;
if (randr_mode->mode.hSyncEnd != mode->HSyncEnd)
return FALSE;
if (randr_mode->mode.hTotal != mode->HTotal)
return FALSE;
if (randr_mode->mode.hSkew != mode->HSkew)
return FALSE;
if (randr_mode->mode.height != mode->VDisplay)
return FALSE;
if (randr_mode->mode.vSyncStart != mode->VSyncStart)
return FALSE;
if (randr_mode->mode.vSyncEnd != mode->VSyncEnd)
return FALSE;
if (randr_mode->mode.vTotal != mode->VTotal)
return FALSE;
/* check for same flags (using only the XF86 valid flag bits) */
if ((randr_mode->mode.modeFlags & FLAG_BITS) != (mode->Flags & FLAG_BITS))
return FALSE;
/* everything matches */
return TRUE;
}
static Bool
xf86RandR12CrtcNotify(RRCrtcPtr randr_crtc)
{
ScreenPtr pScreen = randr_crtc->pScreen;
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
RRModePtr randr_mode = NULL;
int x;
int y;
Rotation rotation;
int numOutputs;
RROutputPtr *randr_outputs;
RROutputPtr randr_output;
xf86CrtcPtr crtc = randr_crtc->devPrivate;
xf86OutputPtr output;
int i, j;
DisplayModePtr mode = &crtc->mode;
Bool ret;
randr_outputs = xallocarray(config->num_output, sizeof(RROutputPtr));
if (!randr_outputs)
return FALSE;
x = crtc->x;
y = crtc->y;
rotation = crtc->rotation;
numOutputs = 0;
randr_mode = NULL;
for (i = 0; i < config->num_output; i++) {
output = config->output[i];
if (output->crtc == crtc) {
randr_output = output->randr_output;
randr_outputs[numOutputs++] = randr_output;
/*
* We make copies of modes, so pointer equality
* isn't sufficient
*/
for (j = 0; j < randr_output->numModes + randr_output->numUserModes;
j++) {
RRModePtr m =
(j <
randr_output->numModes ? randr_output->
modes[j] : randr_output->userModes[j -
randr_output->
numModes]);
if (xf86RandRModeMatches(m, mode)) {
randr_mode = m;
break;
}
}
}
}
ret = RRCrtcNotify(randr_crtc, randr_mode, x, y,
rotation,
crtc->transformPresent ? &crtc->transform : NULL,
numOutputs, randr_outputs);
free(randr_outputs);
return ret;
}
/*
* Convert a RandR mode to a DisplayMode
*/
static void
xf86RandRModeConvert(ScrnInfoPtr scrn,
RRModePtr randr_mode, DisplayModePtr mode)
{
memset(mode, 0, sizeof(DisplayModeRec));
mode->status = MODE_OK;
mode->Clock = randr_mode->mode.dotClock / 1000;
mode->HDisplay = randr_mode->mode.width;
mode->HSyncStart = randr_mode->mode.hSyncStart;
mode->HSyncEnd = randr_mode->mode.hSyncEnd;
mode->HTotal = randr_mode->mode.hTotal;
mode->HSkew = randr_mode->mode.hSkew;
mode->VDisplay = randr_mode->mode.height;
mode->VSyncStart = randr_mode->mode.vSyncStart;
mode->VSyncEnd = randr_mode->mode.vSyncEnd;
mode->VTotal = randr_mode->mode.vTotal;
mode->VScan = 0;
mode->Flags = randr_mode->mode.modeFlags & FLAG_BITS;
xf86SetModeCrtc(mode, scrn->adjustFlags);
}
static Bool
xf86RandR12CrtcSet(ScreenPtr pScreen,
RRCrtcPtr randr_crtc,
RRModePtr randr_mode,
int x,
int y,
Rotation rotation,
int num_randr_outputs, RROutputPtr * randr_outputs)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
xf86CrtcPtr crtc = randr_crtc->devPrivate;
RRTransformPtr transform;
Bool changed = FALSE;
int o, ro;
xf86CrtcPtr *save_crtcs;
Bool save_enabled = crtc->enabled;
if (!crtc->scrn->vtSema)
return FALSE;
save_crtcs = xallocarray(config->num_output, sizeof(xf86CrtcPtr));
if ((randr_mode != NULL) != crtc->enabled)
changed = TRUE;
else if (randr_mode && !xf86RandRModeMatches(randr_mode, &crtc->mode))
changed = TRUE;
if (rotation != crtc->rotation)
changed = TRUE;
if (crtc->current_scanout != randr_crtc->scanout_pixmap ||
crtc->current_scanout_back != randr_crtc->scanout_pixmap_back)
changed = TRUE;
transform = RRCrtcGetTransform(randr_crtc);
if ((transform != NULL) != crtc->transformPresent)
changed = TRUE;
else if (transform &&
!RRTransformEqual(transform, &crtc->transform))
changed = TRUE;
if (x != crtc->x || y != crtc->y)
changed = TRUE;
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
xf86CrtcPtr new_crtc;
save_crtcs[o] = output->crtc;
if (output->crtc == crtc)
new_crtc = NULL;
else
new_crtc = output->crtc;
for (ro = 0; ro < num_randr_outputs; ro++)
if (output->randr_output == randr_outputs[ro]) {
new_crtc = crtc;
break;
}
if (new_crtc != output->crtc) {
changed = TRUE;
output->crtc = new_crtc;
}
}
for (ro = 0; ro < num_randr_outputs; ro++)
if (randr_outputs[ro]->pendingProperties)
changed = TRUE;
/* XXX need device-independent mode setting code through an API */
if (changed) {
crtc->enabled = randr_mode != NULL;
if (randr_mode) {
DisplayModeRec mode;
xf86RandRModeConvert(pScrn, randr_mode, &mode);
if (!xf86CrtcSetModeTransform
(crtc, &mode, rotation, transform, x, y)) {
crtc->enabled = save_enabled;
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
output->crtc = save_crtcs[o];
}
free(save_crtcs);
return FALSE;
}
xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height);
xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
randrp->panning = PANNING_ENABLED (crtc);
/*
* Save the last successful setting for EnterVT
*/
xf86SaveModeContents(&crtc->desiredMode, &mode);
crtc->desiredRotation = rotation;
crtc->current_scanout = randr_crtc->scanout_pixmap;
crtc->current_scanout_back = randr_crtc->scanout_pixmap_back;
if (transform) {
crtc->desiredTransform = *transform;
crtc->desiredTransformPresent = TRUE;
}
else
crtc->desiredTransformPresent = FALSE;
crtc->desiredX = x;
crtc->desiredY = y;
}
xf86DisableUnusedFunctions(pScrn);
}
free(save_crtcs);
return xf86RandR12CrtcNotify(randr_crtc);
}
static void
xf86RandR12CrtcComputeGamma(xf86CrtcPtr crtc, LOCO *palette,
int palette_red_size, int palette_green_size,
int palette_blue_size, CARD16 *gamma_red,
CARD16 *gamma_green, CARD16 *gamma_blue,
int gamma_size)
{
int gamma_slots;
unsigned shift;
CARD32 value;
int i, j;
for (shift = 0; (gamma_size << shift) < (1 << 16); shift++);
if (crtc->gamma_size >= palette_red_size) {
/* Upsampling of smaller palette to larger hw lut size */
gamma_slots = crtc->gamma_size / palette_red_size;
for (i = 0; i < palette_red_size; i++) {
value = palette[i].red;
if (gamma_red)
value = gamma_red[value];
else
value <<= shift;
for (j = 0; j < gamma_slots; j++)
crtc->gamma_red[i * gamma_slots + j] = value;
}
} else {
/* Downsampling of larger palette to smaller hw lut size */
for (i = 0; i < crtc->gamma_size; i++) {
value = palette[i * (palette_red_size - 1) / (crtc->gamma_size - 1)].red;
if (gamma_red)
value = gamma_red[value];
else
value <<= shift;
crtc->gamma_red[i] = value;
}
}
if (crtc->gamma_size >= palette_green_size) {
/* Upsampling of smaller palette to larger hw lut size */
gamma_slots = crtc->gamma_size / palette_green_size;
for (i = 0; i < palette_green_size; i++) {
value = palette[i].green;
if (gamma_green)
value = gamma_green[value];
else
value <<= shift;
for (j = 0; j < gamma_slots; j++)
crtc->gamma_green[i * gamma_slots + j] = value;
}
} else {
/* Downsampling of larger palette to smaller hw lut size */
for (i = 0; i < crtc->gamma_size; i++) {
value = palette[i * (palette_green_size - 1) / (crtc->gamma_size - 1)].green;
if (gamma_green)
value = gamma_green[value];
else
value <<= shift;
crtc->gamma_green[i] = value;
}
}
if (crtc->gamma_size >= palette_blue_size) {
/* Upsampling of smaller palette to larger hw lut size */
gamma_slots = crtc->gamma_size / palette_blue_size;
for (i = 0; i < palette_blue_size; i++) {
value = palette[i].blue;
if (gamma_blue)
value = gamma_blue[value];
else
value <<= shift;
for (j = 0; j < gamma_slots; j++)
crtc->gamma_blue[i * gamma_slots + j] = value;
}
} else {
/* Downsampling of larger palette to smaller hw lut size */
for (i = 0; i < crtc->gamma_size; i++) {
value = palette[i * (palette_blue_size - 1) / (crtc->gamma_size - 1)].blue;
if (gamma_blue)
value = gamma_blue[value];
else
value <<= shift;
crtc->gamma_blue[i] = value;
}
}
}
static void
xf86RandR12CrtcReloadGamma(xf86CrtcPtr crtc)
{
if (!crtc->scrn->vtSema || !crtc->funcs->gamma_set)
return;
/* Only set it when the crtc is actually running.
* Otherwise it will be set when it's activated.
*/
if (crtc->active)
crtc->funcs->gamma_set(crtc, crtc->gamma_red, crtc->gamma_green,
crtc->gamma_blue, crtc->gamma_size);
}
static Bool
xf86RandR12CrtcSetGamma(ScreenPtr pScreen, RRCrtcPtr randr_crtc)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (crtc->funcs->gamma_set == NULL)
return FALSE;
if (randrp->palette_size) {
xf86RandR12CrtcComputeGamma(crtc, randrp->palette,
randrp->palette_red_size,
randrp->palette_green_size,
randrp->palette_blue_size,
randr_crtc->gammaRed,
randr_crtc->gammaGreen,
randr_crtc->gammaBlue,
randr_crtc->gammaSize);
} else {
memcpy(crtc->gamma_red, randr_crtc->gammaRed,
crtc->gamma_size * sizeof(crtc->gamma_red[0]));
memcpy(crtc->gamma_green, randr_crtc->gammaGreen,
crtc->gamma_size * sizeof(crtc->gamma_green[0]));
memcpy(crtc->gamma_blue, randr_crtc->gammaBlue,
crtc->gamma_size * sizeof(crtc->gamma_blue[0]));
}
xf86RandR12CrtcReloadGamma(crtc);
return TRUE;
}
static void
init_one_component(CARD16 *comp, unsigned size, float gamma)
{
int i;
unsigned shift;
for (shift = 0; (size << shift) < (1 << 16); shift++);
if (gamma == 1.0) {
for (i = 0; i < size; i++)
comp[i] = i << shift;
} else {
for (i = 0; i < size; i++)
comp[i] = (CARD16) (pow((double) i / (double) (size - 1),
1. / (double) gamma) *
(double) (size - 1) * (1 << shift));
}
}
static Bool
xf86RandR12CrtcInitGamma(xf86CrtcPtr crtc, float gamma_red, float gamma_green,
float gamma_blue)
{
unsigned size = crtc->randr_crtc->gammaSize;
CARD16 *red, *green, *blue;
if (!crtc->funcs->gamma_set &&
(gamma_red != 1.0f || gamma_green != 1.0f || gamma_blue != 1.0f))
return FALSE;
red = xallocarray(size, 3 * sizeof(CARD16));
if (!red)
return FALSE;
green = red + size;
blue = green + size;
init_one_component(red, size, gamma_red);
init_one_component(green, size, gamma_green);
init_one_component(blue, size, gamma_blue);
RRCrtcGammaSet(crtc->randr_crtc, red, green, blue);
free(red);
return TRUE;
}
static Bool
xf86RandR12OutputInitGamma(xf86OutputPtr output)
{
XF86ConfMonitorPtr mon = output->conf_monitor;
float gamma_red = 1.0, gamma_green = 1.0, gamma_blue = 1.0;
if (!mon)
return TRUE;
/* Get configured values, where they exist. */
if (mon->mon_gamma_red >= GAMMA_MIN && mon->mon_gamma_red <= GAMMA_MAX)
gamma_red = mon->mon_gamma_red;
if (mon->mon_gamma_green >= GAMMA_MIN && mon->mon_gamma_green <= GAMMA_MAX)
gamma_green = mon->mon_gamma_green;
if (mon->mon_gamma_blue >= GAMMA_MIN && mon->mon_gamma_blue <= GAMMA_MAX)
gamma_blue = mon->mon_gamma_blue;
/* Don't set gamma 1.0 if another cloned output on this CRTC already set a
* different gamma
*/
if (gamma_red != 1.0 || gamma_green != 1.0 || gamma_blue != 1.0) {
if (!output->crtc->randr_crtc) {
xf86DrvMsg(output->scrn->scrnIndex, X_WARNING,
"Gamma correction for output %s not possible because "
"RandR is disabled\n", output->name);
return TRUE;
}
xf86DrvMsg(output->scrn->scrnIndex, X_INFO,
"Output %s wants gamma correction (%.1f, %.1f, %.1f)\n",
output->name, gamma_red, gamma_green, gamma_blue);
return xf86RandR12CrtcInitGamma(output->crtc, gamma_red, gamma_green,
gamma_blue);
}
return TRUE;
}
Bool
xf86RandR12InitGamma(ScrnInfoPtr pScrn, unsigned gammaSize) {
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int o, c;
/* Set default gamma for all CRTCs
* This is done to avoid problems later on with cloned outputs
*/
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
if (!crtc->randr_crtc)
continue;
if (!RRCrtcGammaSetSize(crtc->randr_crtc, gammaSize) ||
!xf86RandR12CrtcInitGamma(crtc, 1.0f, 1.0f, 1.0f))
return FALSE;
}
/* Set initial gamma per monitor configuration
*/
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
if (output->crtc &&
!xf86RandR12OutputInitGamma(output))
xf86DrvMsg(pScrn->scrnIndex, X_WARNING,
"Initial gamma correction for output %s: failed.\n",
output->name);
}
return TRUE;
}
static Bool
xf86RandR12OutputSetProperty(ScreenPtr pScreen,
RROutputPtr randr_output,
Atom property, RRPropertyValuePtr value)
{
xf86OutputPtr output = randr_output->devPrivate;
/* If we don't have any property handler, then we don't care what the
* user is setting properties to.
*/
if (output->funcs->set_property == NULL)
return TRUE;
/*
* This function gets called even when vtSema is FALSE, as
* drivers will need to remember the correct value to apply
* when the VT switch occurs
*/
return output->funcs->set_property(output, property, value);
}
static Bool
xf86RandR13OutputGetProperty(ScreenPtr pScreen,
RROutputPtr randr_output, Atom property)
{
xf86OutputPtr output = randr_output->devPrivate;
if (output->funcs->get_property == NULL)
return TRUE;
/* Should be safe even w/o vtSema */
return output->funcs->get_property(output, property);
}
static Bool
xf86RandR12OutputValidateMode(ScreenPtr pScreen,
RROutputPtr randr_output, RRModePtr randr_mode)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86OutputPtr output = randr_output->devPrivate;
DisplayModeRec mode;
xf86RandRModeConvert(pScrn, randr_mode, &mode);
/*
* This function may be called when vtSema is FALSE, so
* the underlying function must either avoid touching the hardware
* or return FALSE when vtSema is FALSE
*/
if (output->funcs->mode_valid(output, &mode) != MODE_OK)
return FALSE;
return TRUE;
}
static void
xf86RandR12ModeDestroy(ScreenPtr pScreen, RRModePtr randr_mode)
{
}
/**
* Given a list of xf86 modes and a RandR Output object, construct
* RandR modes and assign them to the output
*/
static Bool
xf86RROutputSetModes(RROutputPtr randr_output, DisplayModePtr modes)
{
DisplayModePtr mode;
RRModePtr *rrmodes = NULL;
int nmode = 0;
int npreferred = 0;
Bool ret = TRUE;
int pref;
for (mode = modes; mode; mode = mode->next)
nmode++;
if (nmode) {
rrmodes = xallocarray(nmode, sizeof(RRModePtr));
if (!rrmodes)
return FALSE;
nmode = 0;
for (pref = 1; pref >= 0; pref--) {
for (mode = modes; mode; mode = mode->next) {
if ((pref != 0) == ((mode->type & M_T_PREFERRED) != 0)) {
xRRModeInfo modeInfo;
RRModePtr rrmode;
modeInfo.nameLength = strlen(mode->name);
modeInfo.width = mode->HDisplay;
modeInfo.dotClock = mode->Clock * 1000;
modeInfo.hSyncStart = mode->HSyncStart;
modeInfo.hSyncEnd = mode->HSyncEnd;
modeInfo.hTotal = mode->HTotal;
modeInfo.hSkew = mode->HSkew;
modeInfo.height = mode->VDisplay;
modeInfo.vSyncStart = mode->VSyncStart;
modeInfo.vSyncEnd = mode->VSyncEnd;
modeInfo.vTotal = mode->VTotal;
modeInfo.modeFlags = mode->Flags;
rrmode = RRModeGet(&modeInfo, mode->name);
if (rrmode) {
rrmodes[nmode++] = rrmode;
npreferred += pref;
}
}
}
}
}
ret = RROutputSetModes(randr_output, rrmodes, nmode, npreferred);
free(rrmodes);
return ret;
}
/*
* Mirror the current mode configuration to RandR
*/
static Bool
xf86RandR12SetInfo12(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
RROutputPtr *clones;
RRCrtcPtr *crtcs;
int ncrtc;
int o, c, l;
int nclone;
clones = xallocarray(config->num_output, sizeof(RROutputPtr));
crtcs = xallocarray(config->num_crtc, sizeof(RRCrtcPtr));
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
ncrtc = 0;
for (c = 0; c < config->num_crtc; c++)
if (output->possible_crtcs & (1 << c))
crtcs[ncrtc++] = config->crtc[c]->randr_crtc;
if (!RROutputSetCrtcs(output->randr_output, crtcs, ncrtc)) {
free(crtcs);
free(clones);
return FALSE;
}
RROutputSetPhysicalSize(output->randr_output,
output->mm_width, output->mm_height);
xf86RROutputSetModes(output->randr_output, output->probed_modes);
switch (output->status) {
case XF86OutputStatusConnected:
RROutputSetConnection(output->randr_output, RR_Connected);
break;
case XF86OutputStatusDisconnected:
if (xf86OutputForceEnabled(output))
RROutputSetConnection(output->randr_output, RR_Connected);
else
RROutputSetConnection(output->randr_output, RR_Disconnected);
break;
case XF86OutputStatusUnknown:
RROutputSetConnection(output->randr_output, RR_UnknownConnection);
break;
}
RROutputSetSubpixelOrder(output->randr_output, output->subpixel_order);
/*
* Valid clones
*/
nclone = 0;
for (l = 0; l < config->num_output; l++) {
xf86OutputPtr clone = config->output[l];
if (l != o && (output->possible_clones & (1 << l)))
clones[nclone++] = clone->randr_output;
}
if (!RROutputSetClones(output->randr_output, clones, nclone)) {
free(crtcs);
free(clones);
return FALSE;
}
}
free(crtcs);
free(clones);
return TRUE;
}
/*
* Query the hardware for the current state, then mirror
* that to RandR
*/
static Bool
xf86RandR12GetInfo12(ScreenPtr pScreen, Rotation * rotations)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
if (!pScrn->vtSema)
return TRUE;
xf86ProbeOutputModes(pScrn, 0, 0);
xf86SetScrnInfoModes(pScrn);
return xf86RandR12SetInfo12(pScreen);
}
static Bool
xf86RandR12CreateObjects12(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int c;
int o;
if (!RRInit())
return FALSE;
/*
* Configure crtcs
*/
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
crtc->randr_crtc = RRCrtcCreate(pScreen, crtc);
}
/*
* Configure outputs
*/
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
output->randr_output = RROutputCreate(pScreen, output->name,
strlen(output->name), output);
if (output->funcs->create_resources != NULL)
output->funcs->create_resources(output);
RRPostPendingProperties(output->randr_output);
}
if (config->name) {
config->randr_provider = RRProviderCreate(pScreen, config->name,
strlen(config->name));
RRProviderSetCapabilities(config->randr_provider, pScrn->capabilities);
}
return TRUE;
}
static void
xf86RandR12CreateMonitors(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int o, ot;
int ht, vt;
int ret;
char buf[25];
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
struct xf86CrtcTileInfo *tile_info = &output->tile_info, *this_tile;
RRMonitorPtr monitor;
int output_num, num_outputs;
if (!tile_info->group_id)
continue;
if (tile_info->tile_h_loc ||
tile_info->tile_v_loc)
continue;
num_outputs = tile_info->num_h_tile * tile_info->num_v_tile;
monitor = RRMonitorAlloc(num_outputs);
if (!monitor)
return;
monitor->pScreen = pScreen;
snprintf(buf, 25, "Auto-Monitor-%d", tile_info->group_id);
monitor->name = MakeAtom(buf, strlen(buf), TRUE);
monitor->primary = 0;
monitor->automatic = TRUE;
memset(&monitor->geometry.box, 0, sizeof(monitor->geometry.box));
output_num = 0;
for (ht = 0; ht < tile_info->num_h_tile; ht++) {
for (vt = 0; vt < tile_info->num_v_tile; vt++) {
for (ot = 0; ot < config->num_output; ot++) {
this_tile = &config->output[ot]->tile_info;
if (this_tile->group_id != tile_info->group_id)
continue;
if (this_tile->tile_h_loc != ht ||
this_tile->tile_v_loc != vt)
continue;
monitor->outputs[output_num] = config->output[ot]->randr_output->id;
output_num++;
}
}
}
ret = RRMonitorAdd(serverClient, pScreen, monitor);
if (ret) {
RRMonitorFree(monitor);
return;
}
}
}
static Bool
xf86RandR12CreateScreenResources12(ScreenPtr pScreen)
{
int c;
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
rrScrPrivPtr rp = rrGetScrPriv(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
for (c = 0; c < config->num_crtc; c++)
xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc);
RRScreenSetSizeRange(pScreen, config->minWidth, config->minHeight,
config->maxWidth, config->maxHeight);
xf86RandR12CreateMonitors(pScreen);
if (!pScreen->isGPU) {
rp->primaryOutput = config->output[0]->randr_output;
RROutputChanged(rp->primaryOutput, FALSE);
rp->layoutChanged = TRUE;
}
return TRUE;
}
/*
* Something happened within the screen configuration due
* to DGA, VidMode or hot key. Tell RandR
*/
void
xf86RandR12TellChanged(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int c;
xf86RandR12SetInfo12(pScreen);
for (c = 0; c < config->num_crtc; c++)
xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc);
RRTellChanged(pScreen);
}
static void
xf86RandR12PointerMoved(ScrnInfoPtr pScrn, int x, int y)
{
ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
int c;
randrp->pointerX = x;
randrp->pointerY = y;
for (c = 0; c < config->num_crtc; c++)
xf86RandR13Pan(config->crtc[c], x, y);
}
static Bool
xf86RandR13GetPanning(ScreenPtr pScreen,
RRCrtcPtr randr_crtc,
BoxPtr totalArea, BoxPtr trackingArea, INT16 *border)
{
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (crtc->version < 2)
return FALSE;
if (totalArea)
memcpy(totalArea, &crtc->panningTotalArea, sizeof(BoxRec));
if (trackingArea)
memcpy(trackingArea, &crtc->panningTrackingArea, sizeof(BoxRec));
if (border)
memcpy(border, crtc->panningBorder, 4 * sizeof(INT16));
return TRUE;
}
static Bool
xf86RandR13SetPanning(ScreenPtr pScreen,
RRCrtcPtr randr_crtc,
BoxPtr totalArea, BoxPtr trackingArea, INT16 *border)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
xf86CrtcPtr crtc = randr_crtc->devPrivate;
BoxRec oldTotalArea;
BoxRec oldTrackingArea;
INT16 oldBorder[4];
Bool oldPanning = randrp->panning;
if (crtc->version < 2)
return FALSE;
memcpy(&oldTotalArea, &crtc->panningTotalArea, sizeof(BoxRec));
memcpy(&oldTrackingArea, &crtc->panningTrackingArea, sizeof(BoxRec));
memcpy(oldBorder, crtc->panningBorder, 4 * sizeof(INT16));
if (totalArea)
memcpy(&crtc->panningTotalArea, totalArea, sizeof(BoxRec));
if (trackingArea)
memcpy(&crtc->panningTrackingArea, trackingArea, sizeof(BoxRec));
if (border)
memcpy(crtc->panningBorder, border, 4 * sizeof(INT16));
if (xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height)) {
xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
randrp->panning = PANNING_ENABLED (crtc);
return TRUE;
}
else {
/* Restore old settings */
memcpy(&crtc->panningTotalArea, &oldTotalArea, sizeof(BoxRec));
memcpy(&crtc->panningTrackingArea, &oldTrackingArea, sizeof(BoxRec));
memcpy(crtc->panningBorder, oldBorder, 4 * sizeof(INT16));
randrp->panning = oldPanning;
return FALSE;
}
}
/*
* Compatibility with colormaps and XF86VidMode's gamma
*/
void
xf86RandR12LoadPalette(ScrnInfoPtr pScrn, int numColors, int *indices,
LOCO *colors, VisualPtr pVisual)
{
ScreenPtr pScreen = pScrn->pScreen;
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int reds, greens, blues, index, palette_size;
int c, i;
if (pVisual->class == TrueColor || pVisual->class == DirectColor) {
reds = (pVisual->redMask >> pVisual->offsetRed) + 1;
greens = (pVisual->greenMask >> pVisual->offsetGreen) + 1;
blues = (pVisual->blueMask >> pVisual->offsetBlue) + 1;
} else {
reds = greens = blues = pVisual->ColormapEntries;
}
palette_size = max(reds, max(greens, blues));
if (dixPrivateKeyRegistered(rrPrivKey)) {
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
if (randrp->palette_size != palette_size) {
randrp->palette = reallocarray(randrp->palette, palette_size,
sizeof(colors[0]));
if (!randrp->palette) {
randrp->palette_size = 0;
return;
}
randrp->palette_size = palette_size;
}
randrp->palette_red_size = reds;
randrp->palette_green_size = greens;
randrp->palette_blue_size = blues;
for (i = 0; i < numColors; i++) {
index = indices[i];
if (index < reds)
randrp->palette[index].red = colors[index].red;
if (index < greens)
randrp->palette[index].green = colors[index].green;
if (index < blues)
randrp->palette[index].blue = colors[index].blue;
}
}
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
RRCrtcPtr randr_crtc = crtc->randr_crtc;
if (randr_crtc) {
xf86RandR12CrtcComputeGamma(crtc, colors, reds, greens, blues,
randr_crtc->gammaRed,
randr_crtc->gammaGreen,
randr_crtc->gammaBlue,
randr_crtc->gammaSize);
} else {
xf86RandR12CrtcComputeGamma(crtc, colors, reds, greens, blues,
NULL, NULL, NULL,
xf86GetGammaRampSize(pScreen));
}
xf86RandR12CrtcReloadGamma(crtc);
}
}
/*
* Compatibility pScrn->ChangeGamma provider for ddx drivers which do not call
* xf86HandleColormaps(). Note such drivers really should be fixed to call
* xf86HandleColormaps() as this clobbers the per-CRTC gamma ramp of the CRTC
* assigned to the RandR compatibility output.
*/
static int
xf86RandR12ChangeGamma(ScrnInfoPtr pScrn, Gamma gamma)
{
RRCrtcPtr randr_crtc = xf86CompatRRCrtc(pScrn);
int size;
if (!randr_crtc || pScrn->LoadPalette == xf86RandR12LoadPalette)
return Success;
size = max(0, randr_crtc->gammaSize);
if (!size)
return Success;
init_one_component(randr_crtc->gammaRed, size, gamma.red);
init_one_component(randr_crtc->gammaGreen, size, gamma.green);
init_one_component(randr_crtc->gammaBlue, size, gamma.blue);
xf86RandR12CrtcSetGamma(xf86ScrnToScreen(pScrn), randr_crtc);
pScrn->gamma = gamma;
return Success;
}
static Bool
xf86RandR12EnterVT(ScrnInfoPtr pScrn)
{
ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
rrScrPrivPtr rp = rrGetScrPriv(pScreen);
Bool ret;
int i;
if (randrp->orig_EnterVT) {
pScrn->EnterVT = randrp->orig_EnterVT;
ret = pScrn->EnterVT(pScrn);
randrp->orig_EnterVT = pScrn->EnterVT;
pScrn->EnterVT = xf86RandR12EnterVT;
if (!ret)
return FALSE;
}
/* reload gamma */
for (i = 0; i < rp->numCrtcs; i++)
xf86RandR12CrtcReloadGamma(rp->crtcs[i]->devPrivate);
return RRGetInfo(pScreen, TRUE); /* force a re-probe of outputs and notify clients about changes */
}
static void
xf86DetachOutputGPU(ScreenPtr pScreen)
{
rrScrPrivPtr rp = rrGetScrPriv(pScreen);
int i;
/* make sure there are no attached shared scanout pixmaps first */
for (i = 0; i < rp->numCrtcs; i++)
RRCrtcDetachScanoutPixmap(rp->crtcs[i]);
DetachOutputGPU(pScreen);
}
static Bool
xf86RandR14ProviderSetOutputSource(ScreenPtr pScreen,
RRProviderPtr provider,
RRProviderPtr source_provider)
{
if (!source_provider) {
if (provider->output_source) {
xf86DetachOutputGPU(pScreen);
}
provider->output_source = NULL;
return TRUE;
}
if (provider->output_source == source_provider)
return TRUE;
SetRootClip(source_provider->pScreen, ROOT_CLIP_NONE);
AttachOutputGPU(source_provider->pScreen, pScreen);
provider->output_source = source_provider;
SetRootClip(source_provider->pScreen, ROOT_CLIP_FULL);
return TRUE;
}
static Bool
xf86RandR14ProviderSetOffloadSink(ScreenPtr pScreen,
RRProviderPtr provider,
RRProviderPtr sink_provider)
{
if (!sink_provider) {
if (provider->offload_sink) {
xf86DetachOutputGPU(pScreen);
}
provider->offload_sink = NULL;
return TRUE;
}
if (provider->offload_sink == sink_provider)
return TRUE;
AttachOffloadGPU(sink_provider->pScreen, pScreen);
provider->offload_sink = sink_provider;
return TRUE;
}
static Bool
xf86RandR14ProviderSetProperty(ScreenPtr pScreen,
RRProviderPtr randr_provider,
Atom property, RRPropertyValuePtr value)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
/* If we don't have any property handler, then we don't care what the
* user is setting properties to.
*/
if (config->provider_funcs->set_property == NULL)
return TRUE;
/*
* This function gets called even when vtSema is FALSE, as
* drivers will need to remember the correct value to apply
* when the VT switch occurs
*/
return config->provider_funcs->set_property(pScrn, property, value);
}
static Bool
xf86RandR14ProviderGetProperty(ScreenPtr pScreen,
RRProviderPtr randr_provider, Atom property)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
if (config->provider_funcs->get_property == NULL)
return TRUE;
/* Should be safe even w/o vtSema */
return config->provider_funcs->get_property(pScrn, property);
}
static Bool
xf86CrtcSetScanoutPixmap(RRCrtcPtr randr_crtc, PixmapPtr pixmap)
{
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (!crtc->funcs->set_scanout_pixmap)
return FALSE;
return crtc->funcs->set_scanout_pixmap(crtc, pixmap);
}
static void
xf86RandR13ConstrainCursorHarder(DeviceIntPtr dev, ScreenPtr screen, int mode, int *x, int *y)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(screen);
if (randrp->panning)
return;
if (randrp->orig_ConstrainCursorHarder) {
screen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder;
screen->ConstrainCursorHarder(dev, screen, mode, x, y);
screen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder;
}
}
static void
xf86RandR14ProviderDestroy(ScreenPtr screen, RRProviderPtr provider)
{
ScrnInfoPtr scrn = xf86ScreenToScrn(screen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
if (config->randr_provider == provider) {
if (config->randr_provider->offload_sink) {
DetachOffloadGPU(screen);
config->randr_provider->offload_sink = NULL;
RRSetChanged(screen);
}
if (config->randr_provider->output_source) {
xf86DetachOutputGPU(screen);
config->randr_provider->output_source = NULL;
RRSetChanged(screen);
}
if (screen->current_primary)
DetachUnboundGPU(screen);
}
config->randr_provider = NULL;
}
static void
xf86CrtcCheckReset(xf86CrtcPtr crtc) {
if (xf86CrtcInUse(crtc)) {
RRTransformPtr transform;
if (crtc->desiredTransformPresent)
transform = &crtc->desiredTransform;
else
transform = NULL;
xf86CrtcSetModeTransform(crtc, &crtc->desiredMode,
crtc->desiredRotation, transform,
crtc->desiredX, crtc->desiredY);
xf86_crtc_show_cursor(crtc);
}
}
void
xf86CrtcLeaseTerminated(RRLeasePtr lease)
{
int c;
int o;
ScrnInfoPtr scrn = xf86ScreenToScrn(lease->screen);
RRLeaseTerminated(lease);
/*
* Force a full mode set on any crtc in the expiring lease which
* was running before the lease started
*/
for (c = 0; c < lease->numCrtcs; c++) {
RRCrtcPtr randr_crtc = lease->crtcs[c];
xf86CrtcPtr crtc = randr_crtc->devPrivate;
xf86CrtcCheckReset(crtc);
}
/* Check to see if any leased output is using a crtc which
* was not reset in the above loop
*/
for (o = 0; o < lease->numOutputs; o++) {
RROutputPtr randr_output = lease->outputs[o];
xf86OutputPtr output = randr_output->devPrivate;
xf86CrtcPtr crtc = output->crtc;
if (crtc) {
for (c = 0; c < lease->numCrtcs; c++)
if (lease->crtcs[c] == crtc->randr_crtc)
break;
if (c != lease->numCrtcs)
continue;
xf86CrtcCheckReset(crtc);
}
}
/* Power off if necessary */
xf86DisableUnusedFunctions(scrn);
RRLeaseFree(lease);
}
static Bool
xf86CrtcSoleOutput(xf86CrtcPtr crtc, xf86OutputPtr output)
{
ScrnInfoPtr scrn = crtc->scrn;
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
int o;
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr other = config->output[o];
if (other != output && other->crtc == crtc)
return FALSE;
}
return TRUE;
}
void
xf86CrtcLeaseStarted(RRLeasePtr lease)
{
int c;
int o;
for (c = 0; c < lease->numCrtcs; c++) {
RRCrtcPtr randr_crtc = lease->crtcs[c];
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (crtc->enabled) {
/*
* Leave the primary plane enabled so we can
* flip without blanking the screen. Hide
* the cursor so it doesn't remain on the screen
* while the lease is active
*/
xf86_crtc_hide_cursor(crtc);
crtc->enabled = FALSE;
}
}
for (o = 0; o < lease->numOutputs; o++) {
RROutputPtr randr_output = lease->outputs[o];
xf86OutputPtr output = randr_output->devPrivate;
xf86CrtcPtr crtc = output->crtc;
if (crtc)
if (xf86CrtcSoleOutput(crtc, output))
crtc->enabled = FALSE;
}
}
static int
xf86RandR16CreateLease(ScreenPtr screen, RRLeasePtr randr_lease, int *fd)
{
ScrnInfoPtr scrn = xf86ScreenToScrn(screen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
if (config->funcs->create_lease)
return config->funcs->create_lease(randr_lease, fd);
else
return BadMatch;
}
static void
xf86RandR16TerminateLease(ScreenPtr screen, RRLeasePtr randr_lease)
{
ScrnInfoPtr scrn = xf86ScreenToScrn(screen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
if (config->funcs->terminate_lease)
config->funcs->terminate_lease(randr_lease);
}
static Bool
xf86RandR12Init12(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
rrScrPrivPtr rp = rrGetScrPriv(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
rp->rrGetInfo = xf86RandR12GetInfo12;
rp->rrScreenSetSize = xf86RandR12ScreenSetSize;
rp->rrCrtcSet = xf86RandR12CrtcSet;
rp->rrCrtcSetGamma = xf86RandR12CrtcSetGamma;
rp->rrOutputSetProperty = xf86RandR12OutputSetProperty;
rp->rrOutputValidateMode = xf86RandR12OutputValidateMode;
#if RANDR_13_INTERFACE
rp->rrOutputGetProperty = xf86RandR13OutputGetProperty;
rp->rrGetPanning = xf86RandR13GetPanning;
rp->rrSetPanning = xf86RandR13SetPanning;
#endif
rp->rrModeDestroy = xf86RandR12ModeDestroy;
rp->rrSetConfig = NULL;
rp->rrProviderSetOutputSource = xf86RandR14ProviderSetOutputSource;
rp->rrProviderSetOffloadSink = xf86RandR14ProviderSetOffloadSink;
rp->rrProviderSetProperty = xf86RandR14ProviderSetProperty;
rp->rrProviderGetProperty = xf86RandR14ProviderGetProperty;
rp->rrCrtcSetScanoutPixmap = xf86CrtcSetScanoutPixmap;
rp->rrProviderDestroy = xf86RandR14ProviderDestroy;
rp->rrCreateLease = xf86RandR16CreateLease;
rp->rrTerminateLease = xf86RandR16TerminateLease;
pScrn->PointerMoved = xf86RandR12PointerMoved;
pScrn->ChangeGamma = xf86RandR12ChangeGamma;
randrp->orig_EnterVT = pScrn->EnterVT;
pScrn->EnterVT = xf86RandR12EnterVT;
randrp->panning = FALSE;
randrp->orig_ConstrainCursorHarder = pScreen->ConstrainCursorHarder;
pScreen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder;
if (!xf86RandR12CreateObjects12(pScreen))
return FALSE;
/*
* Configure output modes
*/
if (!xf86RandR12SetInfo12(pScreen))
return FALSE;
if (!xf86RandR12InitGamma(pScrn, 256))
return FALSE;
return TRUE;
}
#endif
Bool
xf86RandR12PreInit(ScrnInfoPtr pScrn)
{
return TRUE;
}