xserver-multidpi/hw/xfree86/modes/xf86RandR12.c
Alex Goins 1bdbc7e764 randr/xf86: Add PRIME Synchronization / Double Buffer
Changes PRIME to use double buffering and synchronization if all required
driver functions are available.

rrcrtc.c:
    Changes rrSetupPixmapSharing() to use double buffering and
    synchronization in the case that all required driver functions are
    available. Otherwise, falls back to unsynchronized single buffer.

    Changes RRCrtcDetachScanoutPixmap() to properly clean up in the case of
    double buffering.

    Moves StopPixmapTracking() from rrDestroySharedPixmap() to
    RRCrtcDetachScanoutPixmap().

    Changes RRReplaceScanoutPixmap() to fail if we are using double buffering,
    as it would need a second ppix parameter to function with double buffering,
    and AFAICT no driver I've implemented double buffered source support in uses
    RRReplaceScanoutPixmap().

randrstr.h:
    Adds scanout_pixmap_back to struct _rrCrtc to facilitate PRIME
    double buffering.

xf86Crtc.h:
    Adds current_scanout_back to _xf86Crtc to facilitate detection
    of changes to it in xf86RandR12CrtcSet().

xf86RandR12.c:
    Changes xf86RandR12CrtcSet() to detect changes in
    scanout_pixmap_back.

    Adds scanout_pixmap_back to struct _rrCrtc to facilitate PRIME double
    buffering.

v1: Initial commit
v2: Rename PresentTrackedFlippingPixmap to PresentSharedPixmap
v3: Refactor to accomodate moving (rr)StartFlippingPixmapTracking and
    (rr)(Enable/Disable)SharedPixmapFlipping to rrScrPrivRec from ScreenRec
    Add fallback if flipping funcs fail
v4: Detach scanout pixmap when destroying scanout_pixmap_back, to avoid
    dangling pointers in some drivers
v5: Disable RRReplaceScanoutPixmap for double-buffered PRIME, it would need an
    ABI change with support for 2 pixmaps if it were to be supported, but AFAICT
    no driver that actually supports double-buffered PRIME uses it.
    Refactor to use rrEnableSharedPixmapFlipping() as a substitute for
    rrCrtcSetScanoutPixmap() in the flipping case.
    Remove extraneous pSlaveScrPriv from DetachScanoutPixmap()
    Remove extraneous protopix and pScrPriv from rrSetupPixmapSharing()
v6: Rebase onto ToT
v7: Unchanged

Reviewed-by: Dave Airlie <airlied@redhat.com>
Signed-off-by: Alex Goins <agoins@nvidia.com>
2016-06-28 12:56:17 -04:00

2027 lines
61 KiB
C

/*
* Copyright © 2002 Keith Packard, member of The XFree86 Project, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that copyright
* notice and this permission notice appear in supporting documentation, and
* that the name of the copyright holders not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. The copyright holders make no representations
* about the suitability of this software for any purpose. It is provided "as
* is" without express or implied warranty.
*
* THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THIS SOFTWARE.
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#else
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#endif
#include "xf86.h"
#include "os.h"
#include "globals.h"
#include "xf86Modes.h"
#include "xf86Priv.h"
#include "xf86DDC.h"
#include "mipointer.h"
#include "windowstr.h"
#include "inputstr.h"
#include <randrstr.h>
#include <X11/extensions/render.h>
#include "xf86Crtc.h"
#include "xf86RandR12.h"
typedef struct _xf86RandR12Info {
int virtualX;
int virtualY;
int mmWidth;
int mmHeight;
int maxX;
int maxY;
int pointerX;
int pointerY;
Rotation rotation; /* current mode */
Rotation supported_rotations; /* driver supported */
/* Used to wrap EnterVT so we can re-probe the outputs when a laptop unsuspends
* (actually, any time that we switch back into our VT).
*
* See https://bugs.freedesktop.org/show_bug.cgi?id=21554
*/
xf86EnterVTProc *orig_EnterVT;
Bool panning;
ConstrainCursorHarderProcPtr orig_ConstrainCursorHarder;
} XF86RandRInfoRec, *XF86RandRInfoPtr;
#ifdef RANDR_12_INTERFACE
static Bool xf86RandR12Init12(ScreenPtr pScreen);
static Bool xf86RandR12CreateScreenResources12(ScreenPtr pScreen);
#endif
static int xf86RandR12Generation;
static DevPrivateKeyRec xf86RandR12KeyRec;
static DevPrivateKey xf86RandR12Key;
#define XF86RANDRINFO(p) ((XF86RandRInfoPtr) \
dixLookupPrivate(&(p)->devPrivates, xf86RandR12Key))
static int
xf86RandR12ModeRefresh(DisplayModePtr mode)
{
if (mode->VRefresh)
return (int) (mode->VRefresh + 0.5);
else
return (int) (mode->Clock * 1000.0 / mode->HTotal / mode->VTotal + 0.5);
}
/* Adapt panning area; return TRUE if panning area was valid without adaption */
static int
xf86RandR13VerifyPanningArea(xf86CrtcPtr crtc, int screenWidth,
int screenHeight)
{
int ret = TRUE;
if (crtc->version < 2)
return FALSE;
if (crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1) {
/* Panning in X is disabled */
if (crtc->panningTotalArea.x1 || crtc->panningTotalArea.x2)
/* Illegal configuration -> fail/disable */
ret = FALSE;
crtc->panningTotalArea.x1 = crtc->panningTotalArea.x2 = 0;
crtc->panningTrackingArea.x1 = crtc->panningTrackingArea.x2 = 0;
crtc->panningBorder[0] = crtc->panningBorder[2] = 0;
}
else {
/* Panning in X is enabled */
if (crtc->panningTotalArea.x1 < 0) {
/* Panning region outside screen -> move inside */
crtc->panningTotalArea.x2 -= crtc->panningTotalArea.x1;
crtc->panningTotalArea.x1 = 0;
ret = FALSE;
}
if (crtc->panningTotalArea.x2 <
crtc->panningTotalArea.x1 + crtc->mode.HDisplay) {
/* Panning region smaller than displayed area -> crop to displayed area */
crtc->panningTotalArea.x2 =
crtc->panningTotalArea.x1 + crtc->mode.HDisplay;
ret = FALSE;
}
if (crtc->panningTotalArea.x2 > screenWidth) {
/* Panning region larger than screen -> move inside, then crop to screen */
crtc->panningTotalArea.x1 -=
crtc->panningTotalArea.x2 - screenWidth;
crtc->panningTotalArea.x2 = screenWidth;
ret = FALSE;
if (crtc->panningTotalArea.x1 < 0)
crtc->panningTotalArea.x1 = 0;
}
if (crtc->panningBorder[0] + crtc->panningBorder[2] >
crtc->mode.HDisplay) {
/* Borders too large -> set to 0 */
crtc->panningBorder[0] = crtc->panningBorder[2] = 0;
ret = FALSE;
}
}
if (crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1) {
/* Panning in Y is disabled */
if (crtc->panningTotalArea.y1 || crtc->panningTotalArea.y2)
/* Illegal configuration -> fail/disable */
ret = FALSE;
crtc->panningTotalArea.y1 = crtc->panningTotalArea.y2 = 0;
crtc->panningTrackingArea.y1 = crtc->panningTrackingArea.y2 = 0;
crtc->panningBorder[1] = crtc->panningBorder[3] = 0;
}
else {
/* Panning in Y is enabled */
if (crtc->panningTotalArea.y1 < 0) {
/* Panning region outside screen -> move inside */
crtc->panningTotalArea.y2 -= crtc->panningTotalArea.y1;
crtc->panningTotalArea.y1 = 0;
ret = FALSE;
}
if (crtc->panningTotalArea.y2 <
crtc->panningTotalArea.y1 + crtc->mode.VDisplay) {
/* Panning region smaller than displayed area -> crop to displayed area */
crtc->panningTotalArea.y2 =
crtc->panningTotalArea.y1 + crtc->mode.VDisplay;
ret = FALSE;
}
if (crtc->panningTotalArea.y2 > screenHeight) {
/* Panning region larger than screen -> move inside, then crop to screen */
crtc->panningTotalArea.y1 -=
crtc->panningTotalArea.y2 - screenHeight;
crtc->panningTotalArea.y2 = screenHeight;
ret = FALSE;
if (crtc->panningTotalArea.y1 < 0)
crtc->panningTotalArea.y1 = 0;
}
if (crtc->panningBorder[1] + crtc->panningBorder[3] >
crtc->mode.VDisplay) {
/* Borders too large -> set to 0 */
crtc->panningBorder[1] = crtc->panningBorder[3] = 0;
ret = FALSE;
}
}
return ret;
}
/*
* The heart of the panning operation:
*
* Given a frame buffer position (fb_x, fb_y),
* and a crtc position (crtc_x, crtc_y),
* and a transform matrix which maps frame buffer to crtc,
* compute a panning position (pan_x, pan_y) that
* makes the resulting transform line those two up
*/
static void
xf86ComputeCrtcPan(Bool transform_in_use,
struct pixman_f_transform *m,
double screen_x, double screen_y,
double crtc_x, double crtc_y,
int old_pan_x, int old_pan_y, int *new_pan_x, int *new_pan_y)
{
if (transform_in_use) {
/*
* Given the current transform, M, the current position
* on the Screen, S, and the desired position on the CRTC,
* C, compute a translation, T, such that:
*
* M T S = C
*
* where T is of the form
*
* | 1 0 dx |
* | 0 1 dy |
* | 0 0 1 |
*
* M T S =
* | M00 Sx + M01 Sy + M00 dx + M01 dy + M02 | | Cx F |
* | M10 Sx + M11 Sy + M10 dx + M11 dy + M12 | = | Cy F |
* | M20 Sx + M21 Sy + M20 dx + M21 dy + M22 | | F |
*
* R = M S
*
* Cx F = M00 dx + M01 dy + R0
* Cy F = M10 dx + M11 dy + R1
* F = M20 dx + M21 dy + R2
*
* Zero out dx, then dy
*
* F (Cx M10 - Cy M00) =
* (M10 M01 - M00 M11) dy + M10 R0 - M00 R1
* F (M10 - Cy M20) =
* (M10 M21 - M20 M11) dy + M10 R2 - M20 R1
*
* F (Cx M11 - Cy M01) =
* (M11 M00 - M01 M10) dx + M11 R0 - M01 R1
* F (M11 - Cy M21) =
* (M11 M20 - M21 M10) dx + M11 R2 - M21 R1
*
* Make some temporaries
*
* T = | Cx M10 - Cy M00 |
* | Cx M11 - Cy M01 |
*
* U = | M10 M01 - M00 M11 |
* | M11 M00 - M01 M10 |
*
* Q = | M10 R0 - M00 R1 |
* | M11 R0 - M01 R1 |
*
* P = | M10 - Cy M20 |
* | M11 - Cy M21 |
*
* W = | M10 M21 - M20 M11 |
* | M11 M20 - M21 M10 |
*
* V = | M10 R2 - M20 R1 |
* | M11 R2 - M21 R1 |
*
* Rewrite:
*
* F T0 = U0 dy + Q0
* F P0 = W0 dy + V0
* F T1 = U1 dx + Q1
* F P1 = W1 dx + V1
*
* Solve for F (two ways)
*
* F (W0 T0 - U0 P0) = W0 Q0 - U0 V0
*
* W0 Q0 - U0 V0
* F = -------------
* W0 T0 - U0 P0
*
* F (W1 T1 - U1 P1) = W1 Q1 - U1 V1
*
* W1 Q1 - U1 V1
* F = -------------
* W1 T1 - U1 P1
*
* We'll use which ever solution works (denominator != 0)
*
* Finally, solve for dx and dy:
*
* dx = (F T1 - Q1) / U1
* dx = (F P1 - V1) / W1
*
* dy = (F T0 - Q0) / U0
* dy = (F P0 - V0) / W0
*/
double r[3];
double q[2], u[2], t[2], v[2], w[2], p[2];
double f;
struct pict_f_vector d;
int i;
/* Get the un-normalized crtc coordinates again */
for (i = 0; i < 3; i++)
r[i] = m->m[i][0] * screen_x + m->m[i][1] * screen_y + m->m[i][2];
/* Combine values into temporaries */
for (i = 0; i < 2; i++) {
q[i] = m->m[1][i] * r[0] - m->m[0][i] * r[1];
u[i] = m->m[1][i] * m->m[0][1 - i] - m->m[0][i] * m->m[1][1 - i];
t[i] = m->m[1][i] * crtc_x - m->m[0][i] * crtc_y;
v[i] = m->m[1][i] * r[2] - m->m[2][i] * r[1];
w[i] = m->m[1][i] * m->m[2][1 - i] - m->m[2][i] * m->m[1][1 - i];
p[i] = m->m[1][i] - m->m[2][i] * crtc_y;
}
/* Find a way to compute f */
f = 0;
for (i = 0; i < 2; i++) {
double a = w[i] * q[i] - u[i] * v[i];
double b = w[i] * t[i] - u[i] * p[i];
if (b != 0) {
f = a / b;
break;
}
}
/* Solve for the resulting transform vector */
for (i = 0; i < 2; i++) {
if (u[i])
d.v[1 - i] = (t[i] * f - q[i]) / u[i];
else if (w[1])
d.v[1 - i] = (p[i] * f - v[i]) / w[i];
else
d.v[1 - i] = 0;
}
*new_pan_x = old_pan_x - floor(d.v[0] + 0.5);
*new_pan_y = old_pan_y - floor(d.v[1] + 0.5);
}
else {
*new_pan_x = screen_x - crtc_x;
*new_pan_y = screen_y - crtc_y;
}
}
static void
xf86RandR13Pan(xf86CrtcPtr crtc, int x, int y)
{
int newX, newY;
int width, height;
Bool panned = FALSE;
if (crtc->version < 2)
return;
if (!crtc->enabled ||
(crtc->panningTotalArea.x2 <= crtc->panningTotalArea.x1 &&
crtc->panningTotalArea.y2 <= crtc->panningTotalArea.y1))
return;
newX = crtc->x;
newY = crtc->y;
width = crtc->mode.HDisplay;
height = crtc->mode.VDisplay;
if ((crtc->panningTrackingArea.x2 <= crtc->panningTrackingArea.x1 ||
(x >= crtc->panningTrackingArea.x1 &&
x < crtc->panningTrackingArea.x2)) &&
(crtc->panningTrackingArea.y2 <= crtc->panningTrackingArea.y1 ||
(y >= crtc->panningTrackingArea.y1 &&
y < crtc->panningTrackingArea.y2))) {
struct pict_f_vector c;
/*
* Pre-clip the mouse position to the panning area so that we don't
* push the crtc outside. This doesn't deal with changes to the
* panning values, only mouse position changes.
*/
if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
if (x < crtc->panningTotalArea.x1)
x = crtc->panningTotalArea.x1;
if (x >= crtc->panningTotalArea.x2)
x = crtc->panningTotalArea.x2 - 1;
}
if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
if (y < crtc->panningTotalArea.y1)
y = crtc->panningTotalArea.y1;
if (y >= crtc->panningTotalArea.y2)
y = crtc->panningTotalArea.y2 - 1;
}
c.v[0] = x;
c.v[1] = y;
c.v[2] = 1.0;
if (crtc->transform_in_use) {
pixman_f_transform_point(&crtc->f_framebuffer_to_crtc, &c);
}
else {
c.v[0] -= crtc->x;
c.v[1] -= crtc->y;
}
if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
if (c.v[0] < crtc->panningBorder[0]) {
c.v[0] = crtc->panningBorder[0];
panned = TRUE;
}
if (c.v[0] >= width - crtc->panningBorder[2]) {
c.v[0] = width - crtc->panningBorder[2] - 1;
panned = TRUE;
}
}
if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
if (c.v[1] < crtc->panningBorder[1]) {
c.v[1] = crtc->panningBorder[1];
panned = TRUE;
}
if (c.v[1] >= height - crtc->panningBorder[3]) {
c.v[1] = height - crtc->panningBorder[3] - 1;
panned = TRUE;
}
}
if (panned)
xf86ComputeCrtcPan(crtc->transform_in_use,
&crtc->f_framebuffer_to_crtc,
x, y, c.v[0], c.v[1], newX, newY, &newX, &newY);
}
/*
* Ensure that the crtc is within the panning region.
*
* XXX This computation only works when we do not have a transform
* in use.
*/
if (!crtc->transform_in_use) {
/* Validate against [xy]1 after [xy]2, to be sure that results are > 0 for [xy]1 > 0 */
if (crtc->panningTotalArea.x2 > crtc->panningTotalArea.x1) {
if (newX > crtc->panningTotalArea.x2 - width)
newX = crtc->panningTotalArea.x2 - width;
if (newX < crtc->panningTotalArea.x1)
newX = crtc->panningTotalArea.x1;
}
if (crtc->panningTotalArea.y2 > crtc->panningTotalArea.y1) {
if (newY > crtc->panningTotalArea.y2 - height)
newY = crtc->panningTotalArea.y2 - height;
if (newY < crtc->panningTotalArea.y1)
newY = crtc->panningTotalArea.y1;
}
}
if (newX != crtc->x || newY != crtc->y)
xf86CrtcSetOrigin(crtc, newX, newY);
}
static Bool
xf86RandR12GetInfo(ScreenPtr pScreen, Rotation * rotations)
{
RRScreenSizePtr pSize;
ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
DisplayModePtr mode;
int maxX = 0, maxY = 0;
*rotations = randrp->supported_rotations;
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = scrp->virtualX;
randrp->virtualY = scrp->virtualY;
}
/* Re-probe the outputs for new monitors or modes */
if (scrp->vtSema) {
xf86ProbeOutputModes(scrp, 0, 0);
xf86SetScrnInfoModes(scrp);
}
for (mode = scrp->modes;; mode = mode->next) {
int refresh = xf86RandR12ModeRefresh(mode);
if (randrp->maxX == 0 || randrp->maxY == 0) {
if (maxX < mode->HDisplay)
maxX = mode->HDisplay;
if (maxY < mode->VDisplay)
maxY = mode->VDisplay;
}
pSize = RRRegisterSize(pScreen,
mode->HDisplay, mode->VDisplay,
randrp->mmWidth, randrp->mmHeight);
if (!pSize)
return FALSE;
RRRegisterRate(pScreen, pSize, refresh);
if (xf86ModesEqual(mode, scrp->currentMode)) {
RRSetCurrentConfig(pScreen, randrp->rotation, refresh, pSize);
}
if (mode->next == scrp->modes)
break;
}
if (randrp->maxX == 0 || randrp->maxY == 0) {
randrp->maxX = maxX;
randrp->maxY = maxY;
}
return TRUE;
}
static Bool
xf86RandR12SetMode(ScreenPtr pScreen,
DisplayModePtr mode,
Bool useVirtual, int mmWidth, int mmHeight)
{
ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
int oldWidth = pScreen->width;
int oldHeight = pScreen->height;
int oldmmWidth = pScreen->mmWidth;
int oldmmHeight = pScreen->mmHeight;
WindowPtr pRoot = pScreen->root;
DisplayModePtr currentMode = NULL;
Bool ret = TRUE;
if (pRoot)
(*scrp->EnableDisableFBAccess) (scrp, FALSE);
if (useVirtual) {
scrp->virtualX = randrp->virtualX;
scrp->virtualY = randrp->virtualY;
}
else {
scrp->virtualX = mode->HDisplay;
scrp->virtualY = mode->VDisplay;
}
if (randrp->rotation & (RR_Rotate_90 | RR_Rotate_270)) {
/* If the screen is rotated 90 or 270 degrees, swap the sizes. */
pScreen->width = scrp->virtualY;
pScreen->height = scrp->virtualX;
pScreen->mmWidth = mmHeight;
pScreen->mmHeight = mmWidth;
}
else {
pScreen->width = scrp->virtualX;
pScreen->height = scrp->virtualY;
pScreen->mmWidth = mmWidth;
pScreen->mmHeight = mmHeight;
}
if (scrp->currentMode == mode) {
/* Save current mode */
currentMode = scrp->currentMode;
/* Reset, just so we ensure the drivers SwitchMode is called */
scrp->currentMode = NULL;
}
/*
* We know that if the driver failed to SwitchMode to the rotated
* version, then it should revert back to it's prior mode.
*/
if (!xf86SwitchMode(pScreen, mode)) {
ret = FALSE;
scrp->virtualX = pScreen->width = oldWidth;
scrp->virtualY = pScreen->height = oldHeight;
pScreen->mmWidth = oldmmWidth;
pScreen->mmHeight = oldmmHeight;
scrp->currentMode = currentMode;
}
/*
* Make sure the layout is correct
*/
xf86ReconfigureLayout();
/*
* Make sure the whole screen is visible
*/
xf86SetViewport(pScreen, pScreen->width, pScreen->height);
xf86SetViewport(pScreen, 0, 0);
if (pRoot)
(*scrp->EnableDisableFBAccess) (scrp, TRUE);
return ret;
}
Bool
xf86RandR12SetConfig(ScreenPtr pScreen,
Rotation rotation, int rate, RRScreenSizePtr pSize)
{
ScrnInfoPtr scrp = xf86ScreenToScrn(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
DisplayModePtr mode;
int pos[MAXDEVICES][2];
Bool useVirtual = FALSE;
int maxX = 0, maxY = 0;
Rotation oldRotation = randrp->rotation;
DeviceIntPtr dev;
Bool view_adjusted = FALSE;
randrp->rotation = rotation;
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = scrp->virtualX;
randrp->virtualY = scrp->virtualY;
}
for (dev = inputInfo.devices; dev; dev = dev->next) {
if (!IsMaster(dev) && !IsFloating(dev))
continue;
miPointerGetPosition(dev, &pos[dev->id][0], &pos[dev->id][1]);
}
for (mode = scrp->modes;; mode = mode->next) {
if (randrp->maxX == 0 || randrp->maxY == 0) {
if (maxX < mode->HDisplay)
maxX = mode->HDisplay;
if (maxY < mode->VDisplay)
maxY = mode->VDisplay;
}
if (mode->HDisplay == pSize->width &&
mode->VDisplay == pSize->height &&
(rate == 0 || xf86RandR12ModeRefresh(mode) == rate))
break;
if (mode->next == scrp->modes) {
if (pSize->width == randrp->virtualX &&
pSize->height == randrp->virtualY) {
mode = scrp->modes;
useVirtual = TRUE;
break;
}
if (randrp->maxX == 0 || randrp->maxY == 0) {
randrp->maxX = maxX;
randrp->maxY = maxY;
}
return FALSE;
}
}
if (randrp->maxX == 0 || randrp->maxY == 0) {
randrp->maxX = maxX;
randrp->maxY = maxY;
}
if (!xf86RandR12SetMode(pScreen, mode, useVirtual, pSize->mmWidth,
pSize->mmHeight)) {
randrp->rotation = oldRotation;
return FALSE;
}
/*
* Move the cursor back where it belongs; SwitchMode repositions it
* FIXME: duplicated code, see modes/xf86RandR12.c
*/
for (dev = inputInfo.devices; dev; dev = dev->next) {
if (!IsMaster(dev) && !IsFloating(dev))
continue;
if (pScreen == miPointerGetScreen(dev)) {
int px = pos[dev->id][0];
int py = pos[dev->id][1];
px = (px >= pScreen->width ? (pScreen->width - 1) : px);
py = (py >= pScreen->height ? (pScreen->height - 1) : py);
/* Setting the viewpoint makes only sense on one device */
if (!view_adjusted && IsMaster(dev)) {
xf86SetViewport(pScreen, px, py);
view_adjusted = TRUE;
}
(*pScreen->SetCursorPosition) (dev, pScreen, px, py, FALSE);
}
}
return TRUE;
}
#define PANNING_ENABLED(crtc) \
((crtc)->panningTotalArea.x2 > (crtc)->panningTotalArea.x1 || \
(crtc)->panningTotalArea.y2 > (crtc)->panningTotalArea.y1)
static Bool
xf86RandR12ScreenSetSize(ScreenPtr pScreen,
CARD16 width,
CARD16 height, CARD32 mmWidth, CARD32 mmHeight)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
WindowPtr pRoot = pScreen->root;
PixmapPtr pScrnPix;
Bool ret = FALSE;
int c;
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = pScrn->virtualX;
randrp->virtualY = pScrn->virtualY;
}
if (pRoot && pScrn->vtSema)
(*pScrn->EnableDisableFBAccess) (pScrn, FALSE);
/* Let the driver update virtualX and virtualY */
if (!(*config->funcs->resize) (pScrn, width, height))
goto finish;
ret = TRUE;
/* Update panning information */
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
if (PANNING_ENABLED (crtc)) {
if (crtc->panningTotalArea.x2 > crtc->panningTrackingArea.x1)
crtc->panningTotalArea.x2 += width - pScreen->width;
if (crtc->panningTotalArea.y2 > crtc->panningTrackingArea.y1)
crtc->panningTotalArea.y2 += height - pScreen->height;
if (crtc->panningTrackingArea.x2 > crtc->panningTrackingArea.x1)
crtc->panningTrackingArea.x2 += width - pScreen->width;
if (crtc->panningTrackingArea.y2 > crtc->panningTrackingArea.y1)
crtc->panningTrackingArea.y2 += height - pScreen->height;
xf86RandR13VerifyPanningArea(crtc, width, height);
xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
}
}
pScrnPix = (*pScreen->GetScreenPixmap) (pScreen);
pScreen->width = pScrnPix->drawable.width = width;
pScreen->height = pScrnPix->drawable.height = height;
randrp->mmWidth = pScreen->mmWidth = mmWidth;
randrp->mmHeight = pScreen->mmHeight = mmHeight;
xf86SetViewport(pScreen, pScreen->width - 1, pScreen->height - 1);
xf86SetViewport(pScreen, 0, 0);
finish:
update_desktop_dimensions();
if (pRoot && pScrn->vtSema)
(*pScrn->EnableDisableFBAccess) (pScrn, TRUE);
#if RANDR_12_INTERFACE
if (pScreen->root && ret)
RRScreenSizeNotify(pScreen);
#endif
return ret;
}
Rotation
xf86RandR12GetRotation(ScreenPtr pScreen)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
return randrp->rotation;
}
Bool
xf86RandR12CreateScreenResources(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config;
XF86RandRInfoPtr randrp;
int c;
int width, height;
int mmWidth, mmHeight;
#ifdef PANORAMIX
/* XXX disable RandR when using Xinerama */
if (!noPanoramiXExtension)
return TRUE;
#endif
config = XF86_CRTC_CONFIG_PTR(pScrn);
randrp = XF86RANDRINFO(pScreen);
/*
* Compute size of screen
*/
width = 0;
height = 0;
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
int crtc_width = crtc->x + xf86ModeWidth(&crtc->mode, crtc->rotation);
int crtc_height = crtc->y + xf86ModeHeight(&crtc->mode, crtc->rotation);
if (crtc->enabled) {
if (crtc_width > width)
width = crtc_width;
if (crtc_height > height)
height = crtc_height;
if (crtc->panningTotalArea.x2 > width)
width = crtc->panningTotalArea.x2;
if (crtc->panningTotalArea.y2 > height)
height = crtc->panningTotalArea.y2;
}
}
if (width && height) {
/*
* Compute physical size of screen
*/
if (monitorResolution) {
mmWidth = width * 25.4 / monitorResolution;
mmHeight = height * 25.4 / monitorResolution;
}
else {
xf86OutputPtr output = xf86CompatOutput(pScrn);
if (output &&
output->conf_monitor &&
(output->conf_monitor->mon_width > 0 &&
output->conf_monitor->mon_height > 0)) {
/*
* Prefer user configured DisplaySize
*/
mmWidth = output->conf_monitor->mon_width;
mmHeight = output->conf_monitor->mon_height;
}
else {
/*
* Otherwise, just set the screen to DEFAULT_DPI
*/
mmWidth = width * 25.4 / DEFAULT_DPI;
mmHeight = height * 25.4 / DEFAULT_DPI;
}
}
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Setting screen physical size to %d x %d\n",
mmWidth, mmHeight);
/*
* This is the initial setting of the screen size.
* We have to pre-set it here, otherwise panning would be adapted
* to the new screen size.
*/
pScreen->width = width;
pScreen->height = height;
xf86RandR12ScreenSetSize(pScreen, width, height, mmWidth, mmHeight);
}
if (randrp->virtualX == -1 || randrp->virtualY == -1) {
randrp->virtualX = pScrn->virtualX;
randrp->virtualY = pScrn->virtualY;
}
xf86CrtcSetScreenSubpixelOrder(pScreen);
#if RANDR_12_INTERFACE
if (xf86RandR12CreateScreenResources12(pScreen))
return TRUE;
#endif
return TRUE;
}
Bool
xf86RandR12Init(ScreenPtr pScreen)
{
rrScrPrivPtr rp;
XF86RandRInfoPtr randrp;
#ifdef PANORAMIX
/* XXX disable RandR when using Xinerama */
if (!noPanoramiXExtension) {
if (xf86NumScreens == 1)
noPanoramiXExtension = TRUE;
else
return TRUE;
}
#endif
if (xf86RandR12Generation != serverGeneration)
xf86RandR12Generation = serverGeneration;
xf86RandR12Key = &xf86RandR12KeyRec;
if (!dixRegisterPrivateKey(&xf86RandR12KeyRec, PRIVATE_SCREEN, 0))
return FALSE;
randrp = malloc(sizeof(XF86RandRInfoRec));
if (!randrp)
return FALSE;
if (!RRScreenInit(pScreen)) {
free(randrp);
return FALSE;
}
rp = rrGetScrPriv(pScreen);
rp->rrGetInfo = xf86RandR12GetInfo;
rp->rrSetConfig = xf86RandR12SetConfig;
randrp->virtualX = -1;
randrp->virtualY = -1;
randrp->mmWidth = pScreen->mmWidth;
randrp->mmHeight = pScreen->mmHeight;
randrp->rotation = RR_Rotate_0; /* initial rotated mode */
randrp->supported_rotations = RR_Rotate_0;
randrp->maxX = randrp->maxY = 0;
dixSetPrivate(&pScreen->devPrivates, xf86RandR12Key, randrp);
#if RANDR_12_INTERFACE
if (!xf86RandR12Init12(pScreen))
return FALSE;
#endif
return TRUE;
}
void
xf86RandR12CloseScreen(ScreenPtr pScreen)
{
XF86RandRInfoPtr randrp;
if (xf86RandR12Key == NULL)
return;
randrp = XF86RANDRINFO(pScreen);
#if RANDR_12_INTERFACE
xf86ScreenToScrn(pScreen)->EnterVT = randrp->orig_EnterVT;
pScreen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder;
#endif
free(randrp);
}
void
xf86RandR12SetRotations(ScreenPtr pScreen, Rotation rotations)
{
XF86RandRInfoPtr randrp;
#if RANDR_12_INTERFACE
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
int c;
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
#endif
if (xf86RandR12Key == NULL)
return;
randrp = XF86RANDRINFO(pScreen);
#if RANDR_12_INTERFACE
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
RRCrtcSetRotations(crtc->randr_crtc, rotations);
}
#endif
randrp->supported_rotations = rotations;
}
void
xf86RandR12SetTransformSupport(ScreenPtr pScreen, Bool transforms)
{
#if RANDR_13_INTERFACE
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
int c;
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
#endif
if (xf86RandR12Key == NULL)
return;
#if RANDR_13_INTERFACE
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
RRCrtcSetTransformSupport(crtc->randr_crtc, transforms);
}
#endif
}
void
xf86RandR12GetOriginalVirtualSize(ScrnInfoPtr pScrn, int *x, int *y)
{
ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
if (xf86RandR12Generation != serverGeneration ||
XF86RANDRINFO(pScreen)->virtualX == -1) {
*x = pScrn->virtualX;
*y = pScrn->virtualY;
}
else {
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
*x = randrp->virtualX;
*y = randrp->virtualY;
}
}
#if RANDR_12_INTERFACE
#define FLAG_BITS (RR_HSyncPositive | \
RR_HSyncNegative | \
RR_VSyncPositive | \
RR_VSyncNegative | \
RR_Interlace | \
RR_DoubleScan | \
RR_CSync | \
RR_CSyncPositive | \
RR_CSyncNegative | \
RR_HSkewPresent | \
RR_BCast | \
RR_PixelMultiplex | \
RR_DoubleClock | \
RR_ClockDivideBy2)
static Bool
xf86RandRModeMatches(RRModePtr randr_mode, DisplayModePtr mode)
{
#if 0
if (match_name) {
/* check for same name */
int len = strlen(mode->name);
if (randr_mode->mode.nameLength != len)
return FALSE;
if (memcmp(randr_mode->name, mode->name, len) != 0)
return FALSE;
}
#endif
/* check for same timings */
if (randr_mode->mode.dotClock / 1000 != mode->Clock)
return FALSE;
if (randr_mode->mode.width != mode->HDisplay)
return FALSE;
if (randr_mode->mode.hSyncStart != mode->HSyncStart)
return FALSE;
if (randr_mode->mode.hSyncEnd != mode->HSyncEnd)
return FALSE;
if (randr_mode->mode.hTotal != mode->HTotal)
return FALSE;
if (randr_mode->mode.hSkew != mode->HSkew)
return FALSE;
if (randr_mode->mode.height != mode->VDisplay)
return FALSE;
if (randr_mode->mode.vSyncStart != mode->VSyncStart)
return FALSE;
if (randr_mode->mode.vSyncEnd != mode->VSyncEnd)
return FALSE;
if (randr_mode->mode.vTotal != mode->VTotal)
return FALSE;
/* check for same flags (using only the XF86 valid flag bits) */
if ((randr_mode->mode.modeFlags & FLAG_BITS) != (mode->Flags & FLAG_BITS))
return FALSE;
/* everything matches */
return TRUE;
}
static Bool
xf86RandR12CrtcNotify(RRCrtcPtr randr_crtc)
{
ScreenPtr pScreen = randr_crtc->pScreen;
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
RRModePtr randr_mode = NULL;
int x;
int y;
Rotation rotation;
int numOutputs;
RROutputPtr *randr_outputs;
RROutputPtr randr_output;
xf86CrtcPtr crtc = randr_crtc->devPrivate;
xf86OutputPtr output;
int i, j;
DisplayModePtr mode = &crtc->mode;
Bool ret;
randr_outputs = xallocarray(config->num_output, sizeof(RROutputPtr));
if (!randr_outputs)
return FALSE;
x = crtc->x;
y = crtc->y;
rotation = crtc->rotation;
numOutputs = 0;
randr_mode = NULL;
for (i = 0; i < config->num_output; i++) {
output = config->output[i];
if (output->crtc == crtc) {
randr_output = output->randr_output;
randr_outputs[numOutputs++] = randr_output;
/*
* We make copies of modes, so pointer equality
* isn't sufficient
*/
for (j = 0; j < randr_output->numModes + randr_output->numUserModes;
j++) {
RRModePtr m =
(j <
randr_output->numModes ? randr_output->
modes[j] : randr_output->userModes[j -
randr_output->
numModes]);
if (xf86RandRModeMatches(m, mode)) {
randr_mode = m;
break;
}
}
}
}
ret = RRCrtcNotify(randr_crtc, randr_mode, x, y,
rotation,
crtc->transformPresent ? &crtc->transform : NULL,
numOutputs, randr_outputs);
free(randr_outputs);
return ret;
}
/*
* Convert a RandR mode to a DisplayMode
*/
static void
xf86RandRModeConvert(ScrnInfoPtr scrn,
RRModePtr randr_mode, DisplayModePtr mode)
{
memset(mode, 0, sizeof(DisplayModeRec));
mode->status = MODE_OK;
mode->Clock = randr_mode->mode.dotClock / 1000;
mode->HDisplay = randr_mode->mode.width;
mode->HSyncStart = randr_mode->mode.hSyncStart;
mode->HSyncEnd = randr_mode->mode.hSyncEnd;
mode->HTotal = randr_mode->mode.hTotal;
mode->HSkew = randr_mode->mode.hSkew;
mode->VDisplay = randr_mode->mode.height;
mode->VSyncStart = randr_mode->mode.vSyncStart;
mode->VSyncEnd = randr_mode->mode.vSyncEnd;
mode->VTotal = randr_mode->mode.vTotal;
mode->VScan = 0;
mode->Flags = randr_mode->mode.modeFlags & FLAG_BITS;
xf86SetModeCrtc(mode, scrn->adjustFlags);
}
static Bool
xf86RandR12CrtcSet(ScreenPtr pScreen,
RRCrtcPtr randr_crtc,
RRModePtr randr_mode,
int x,
int y,
Rotation rotation,
int num_randr_outputs, RROutputPtr * randr_outputs)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
xf86CrtcPtr crtc = randr_crtc->devPrivate;
RRTransformPtr transform;
Bool changed = FALSE;
int o, ro;
xf86CrtcPtr *save_crtcs;
Bool save_enabled = crtc->enabled;
if (!crtc->scrn->vtSema)
return FALSE;
save_crtcs = xallocarray(config->num_output, sizeof(xf86CrtcPtr));
if ((randr_mode != NULL) != crtc->enabled)
changed = TRUE;
else if (randr_mode && !xf86RandRModeMatches(randr_mode, &crtc->mode))
changed = TRUE;
if (rotation != crtc->rotation)
changed = TRUE;
if (crtc->current_scanout != randr_crtc->scanout_pixmap ||
crtc->current_scanout_back != randr_crtc->scanout_pixmap_back)
changed = TRUE;
transform = RRCrtcGetTransform(randr_crtc);
if ((transform != NULL) != crtc->transformPresent)
changed = TRUE;
else if (transform &&
memcmp(&transform->transform, &crtc->transform.transform,
sizeof(transform->transform)) != 0)
changed = TRUE;
if (x != crtc->x || y != crtc->y)
changed = TRUE;
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
xf86CrtcPtr new_crtc;
save_crtcs[o] = output->crtc;
if (output->crtc == crtc)
new_crtc = NULL;
else
new_crtc = output->crtc;
for (ro = 0; ro < num_randr_outputs; ro++)
if (output->randr_output == randr_outputs[ro]) {
new_crtc = crtc;
break;
}
if (new_crtc != output->crtc) {
changed = TRUE;
output->crtc = new_crtc;
}
}
for (ro = 0; ro < num_randr_outputs; ro++)
if (randr_outputs[ro]->pendingProperties)
changed = TRUE;
/* XXX need device-independent mode setting code through an API */
if (changed) {
crtc->enabled = randr_mode != NULL;
if (randr_mode) {
DisplayModeRec mode;
xf86RandRModeConvert(pScrn, randr_mode, &mode);
if (!xf86CrtcSetModeTransform
(crtc, &mode, rotation, transform, x, y)) {
crtc->enabled = save_enabled;
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
output->crtc = save_crtcs[o];
}
free(save_crtcs);
return FALSE;
}
xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height);
xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
randrp->panning = PANNING_ENABLED (crtc);
/*
* Save the last successful setting for EnterVT
*/
xf86SaveModeContents(&crtc->desiredMode, &mode);
crtc->desiredRotation = rotation;
crtc->current_scanout = randr_crtc->scanout_pixmap;
crtc->current_scanout_back = randr_crtc->scanout_pixmap_back;
if (transform) {
crtc->desiredTransform = *transform;
crtc->desiredTransformPresent = TRUE;
}
else
crtc->desiredTransformPresent = FALSE;
crtc->desiredX = x;
crtc->desiredY = y;
}
xf86DisableUnusedFunctions(pScrn);
}
free(save_crtcs);
return xf86RandR12CrtcNotify(randr_crtc);
}
static Bool
xf86RandR12CrtcSetGamma(ScreenPtr pScreen, RRCrtcPtr randr_crtc)
{
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (crtc->funcs->gamma_set == NULL)
return FALSE;
if (!crtc->scrn->vtSema)
return TRUE;
/* Realloc local gamma if needed. */
if (randr_crtc->gammaSize != crtc->gamma_size) {
CARD16 *tmp_ptr;
tmp_ptr = reallocarray(crtc->gamma_red,
randr_crtc->gammaSize, 3 * sizeof(CARD16));
if (!tmp_ptr)
return FALSE;
crtc->gamma_red = tmp_ptr;
crtc->gamma_green = crtc->gamma_red + randr_crtc->gammaSize;
crtc->gamma_blue = crtc->gamma_green + randr_crtc->gammaSize;
}
crtc->gamma_size = randr_crtc->gammaSize;
memcpy(crtc->gamma_red, randr_crtc->gammaRed,
crtc->gamma_size * sizeof(CARD16));
memcpy(crtc->gamma_green, randr_crtc->gammaGreen,
crtc->gamma_size * sizeof(CARD16));
memcpy(crtc->gamma_blue, randr_crtc->gammaBlue,
crtc->gamma_size * sizeof(CARD16));
/* Only set it when the crtc is actually running.
* Otherwise it will be set when it's activated.
*/
if (crtc->active)
crtc->funcs->gamma_set(crtc, crtc->gamma_red, crtc->gamma_green,
crtc->gamma_blue, crtc->gamma_size);
return TRUE;
}
static Bool
xf86RandR12CrtcGetGamma(ScreenPtr pScreen, RRCrtcPtr randr_crtc)
{
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (!crtc->gamma_size)
return FALSE;
if (!crtc->gamma_red || !crtc->gamma_green || !crtc->gamma_blue)
return FALSE;
/* Realloc randr gamma if needed. */
if (randr_crtc->gammaSize != crtc->gamma_size) {
CARD16 *tmp_ptr;
tmp_ptr = reallocarray(randr_crtc->gammaRed,
crtc->gamma_size, 3 * sizeof(CARD16));
if (!tmp_ptr)
return FALSE;
randr_crtc->gammaRed = tmp_ptr;
randr_crtc->gammaGreen = randr_crtc->gammaRed + crtc->gamma_size;
randr_crtc->gammaBlue = randr_crtc->gammaGreen + crtc->gamma_size;
}
randr_crtc->gammaSize = crtc->gamma_size;
memcpy(randr_crtc->gammaRed, crtc->gamma_red,
crtc->gamma_size * sizeof(CARD16));
memcpy(randr_crtc->gammaGreen, crtc->gamma_green,
crtc->gamma_size * sizeof(CARD16));
memcpy(randr_crtc->gammaBlue, crtc->gamma_blue,
crtc->gamma_size * sizeof(CARD16));
return TRUE;
}
static Bool
xf86RandR12OutputSetProperty(ScreenPtr pScreen,
RROutputPtr randr_output,
Atom property, RRPropertyValuePtr value)
{
xf86OutputPtr output = randr_output->devPrivate;
/* If we don't have any property handler, then we don't care what the
* user is setting properties to.
*/
if (output->funcs->set_property == NULL)
return TRUE;
/*
* This function gets called even when vtSema is FALSE, as
* drivers will need to remember the correct value to apply
* when the VT switch occurs
*/
return output->funcs->set_property(output, property, value);
}
static Bool
xf86RandR13OutputGetProperty(ScreenPtr pScreen,
RROutputPtr randr_output, Atom property)
{
xf86OutputPtr output = randr_output->devPrivate;
if (output->funcs->get_property == NULL)
return TRUE;
/* Should be safe even w/o vtSema */
return output->funcs->get_property(output, property);
}
static Bool
xf86RandR12OutputValidateMode(ScreenPtr pScreen,
RROutputPtr randr_output, RRModePtr randr_mode)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86OutputPtr output = randr_output->devPrivate;
DisplayModeRec mode;
xf86RandRModeConvert(pScrn, randr_mode, &mode);
/*
* This function may be called when vtSema is FALSE, so
* the underlying function must either avoid touching the hardware
* or return FALSE when vtSema is FALSE
*/
if (output->funcs->mode_valid(output, &mode) != MODE_OK)
return FALSE;
return TRUE;
}
static void
xf86RandR12ModeDestroy(ScreenPtr pScreen, RRModePtr randr_mode)
{
}
/**
* Given a list of xf86 modes and a RandR Output object, construct
* RandR modes and assign them to the output
*/
static Bool
xf86RROutputSetModes(RROutputPtr randr_output, DisplayModePtr modes)
{
DisplayModePtr mode;
RRModePtr *rrmodes = NULL;
int nmode = 0;
int npreferred = 0;
Bool ret = TRUE;
int pref;
for (mode = modes; mode; mode = mode->next)
nmode++;
if (nmode) {
rrmodes = xallocarray(nmode, sizeof(RRModePtr));
if (!rrmodes)
return FALSE;
nmode = 0;
for (pref = 1; pref >= 0; pref--) {
for (mode = modes; mode; mode = mode->next) {
if ((pref != 0) == ((mode->type & M_T_PREFERRED) != 0)) {
xRRModeInfo modeInfo;
RRModePtr rrmode;
modeInfo.nameLength = strlen(mode->name);
modeInfo.width = mode->HDisplay;
modeInfo.dotClock = mode->Clock * 1000;
modeInfo.hSyncStart = mode->HSyncStart;
modeInfo.hSyncEnd = mode->HSyncEnd;
modeInfo.hTotal = mode->HTotal;
modeInfo.hSkew = mode->HSkew;
modeInfo.height = mode->VDisplay;
modeInfo.vSyncStart = mode->VSyncStart;
modeInfo.vSyncEnd = mode->VSyncEnd;
modeInfo.vTotal = mode->VTotal;
modeInfo.modeFlags = mode->Flags;
rrmode = RRModeGet(&modeInfo, mode->name);
if (rrmode) {
rrmodes[nmode++] = rrmode;
npreferred += pref;
}
}
}
}
}
ret = RROutputSetModes(randr_output, rrmodes, nmode, npreferred);
free(rrmodes);
return ret;
}
/*
* Mirror the current mode configuration to RandR
*/
static Bool
xf86RandR12SetInfo12(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
RROutputPtr *clones;
RRCrtcPtr *crtcs;
int ncrtc;
int o, c, l;
int nclone;
clones = xallocarray(config->num_output, sizeof(RROutputPtr));
crtcs = xallocarray(config->num_crtc, sizeof(RRCrtcPtr));
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
ncrtc = 0;
for (c = 0; c < config->num_crtc; c++)
if (output->possible_crtcs & (1 << c))
crtcs[ncrtc++] = config->crtc[c]->randr_crtc;
if (!RROutputSetCrtcs(output->randr_output, crtcs, ncrtc)) {
free(crtcs);
free(clones);
return FALSE;
}
RROutputSetPhysicalSize(output->randr_output,
output->mm_width, output->mm_height);
xf86RROutputSetModes(output->randr_output, output->probed_modes);
switch (output->status) {
case XF86OutputStatusConnected:
RROutputSetConnection(output->randr_output, RR_Connected);
break;
case XF86OutputStatusDisconnected:
RROutputSetConnection(output->randr_output, RR_Disconnected);
break;
case XF86OutputStatusUnknown:
RROutputSetConnection(output->randr_output, RR_UnknownConnection);
break;
}
RROutputSetSubpixelOrder(output->randr_output, output->subpixel_order);
/*
* Valid clones
*/
nclone = 0;
for (l = 0; l < config->num_output; l++) {
xf86OutputPtr clone = config->output[l];
if (l != o && (output->possible_clones & (1 << l)))
clones[nclone++] = clone->randr_output;
}
if (!RROutputSetClones(output->randr_output, clones, nclone)) {
free(crtcs);
free(clones);
return FALSE;
}
}
free(crtcs);
free(clones);
return TRUE;
}
/*
* Query the hardware for the current state, then mirror
* that to RandR
*/
static Bool
xf86RandR12GetInfo12(ScreenPtr pScreen, Rotation * rotations)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
if (!pScrn->vtSema)
return TRUE;
xf86ProbeOutputModes(pScrn, 0, 0);
xf86SetScrnInfoModes(pScrn);
return xf86RandR12SetInfo12(pScreen);
}
static Bool
xf86RandR12CreateObjects12(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int c;
int o;
if (!RRInit())
return FALSE;
/*
* Configure crtcs
*/
for (c = 0; c < config->num_crtc; c++) {
xf86CrtcPtr crtc = config->crtc[c];
crtc->randr_crtc = RRCrtcCreate(pScreen, crtc);
RRCrtcGammaSetSize(crtc->randr_crtc, 256);
}
/*
* Configure outputs
*/
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
output->randr_output = RROutputCreate(pScreen, output->name,
strlen(output->name), output);
if (output->funcs->create_resources != NULL)
output->funcs->create_resources(output);
RRPostPendingProperties(output->randr_output);
}
if (config->name) {
config->randr_provider = RRProviderCreate(pScreen, config->name,
strlen(config->name));
RRProviderSetCapabilities(config->randr_provider, pScrn->capabilities);
}
return TRUE;
}
static void
xf86RandR12CreateMonitors(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int o, ot;
int ht, vt;
int ret;
char buf[25];
for (o = 0; o < config->num_output; o++) {
xf86OutputPtr output = config->output[o];
struct xf86CrtcTileInfo *tile_info = &output->tile_info, *this_tile;
RRMonitorPtr monitor;
int output_num, num_outputs;
if (!tile_info->group_id)
continue;
if (tile_info->tile_h_loc ||
tile_info->tile_v_loc)
continue;
num_outputs = tile_info->num_h_tile * tile_info->num_v_tile;
monitor = RRMonitorAlloc(num_outputs);
if (!monitor)
return;
monitor->pScreen = pScreen;
snprintf(buf, 25, "Auto-Monitor-%d", tile_info->group_id);
monitor->name = MakeAtom(buf, strlen(buf), TRUE);
monitor->primary = 0;
monitor->automatic = TRUE;
memset(&monitor->geometry.box, 0, sizeof(monitor->geometry.box));
output_num = 0;
for (ht = 0; ht < tile_info->num_h_tile; ht++) {
for (vt = 0; vt < tile_info->num_v_tile; vt++) {
for (ot = 0; ot < config->num_output; ot++) {
this_tile = &config->output[ot]->tile_info;
if (this_tile->group_id != tile_info->group_id)
continue;
if (this_tile->tile_h_loc != ht ||
this_tile->tile_v_loc != vt)
continue;
monitor->outputs[output_num] = config->output[ot]->randr_output->id;
output_num++;
}
}
}
ret = RRMonitorAdd(serverClient, pScreen, monitor);
if (ret) {
RRMonitorFree(monitor);
return;
}
}
}
static Bool
xf86RandR12CreateScreenResources12(ScreenPtr pScreen)
{
int c;
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
if (xf86RandR12Key == NULL)
return TRUE;
for (c = 0; c < config->num_crtc; c++)
xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc);
RRScreenSetSizeRange(pScreen, config->minWidth, config->minHeight,
config->maxWidth, config->maxHeight);
xf86RandR12CreateMonitors(pScreen);
return TRUE;
}
/*
* Something happened within the screen configuration due
* to DGA, VidMode or hot key. Tell RandR
*/
void
xf86RandR12TellChanged(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
int c;
if (xf86RandR12Key == NULL)
return;
xf86RandR12SetInfo12(pScreen);
for (c = 0; c < config->num_crtc; c++)
xf86RandR12CrtcNotify(config->crtc[c]->randr_crtc);
RRTellChanged(pScreen);
}
static void
xf86RandR12PointerMoved(ScrnInfoPtr pScrn, int x, int y)
{
ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
int c;
randrp->pointerX = x;
randrp->pointerY = y;
for (c = 0; c < config->num_crtc; c++)
xf86RandR13Pan(config->crtc[c], x, y);
}
static Bool
xf86RandR13GetPanning(ScreenPtr pScreen,
RRCrtcPtr randr_crtc,
BoxPtr totalArea, BoxPtr trackingArea, INT16 *border)
{
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (crtc->version < 2)
return FALSE;
if (totalArea)
memcpy(totalArea, &crtc->panningTotalArea, sizeof(BoxRec));
if (trackingArea)
memcpy(trackingArea, &crtc->panningTrackingArea, sizeof(BoxRec));
if (border)
memcpy(border, crtc->panningBorder, 4 * sizeof(INT16));
return TRUE;
}
static Bool
xf86RandR13SetPanning(ScreenPtr pScreen,
RRCrtcPtr randr_crtc,
BoxPtr totalArea, BoxPtr trackingArea, INT16 *border)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
xf86CrtcPtr crtc = randr_crtc->devPrivate;
BoxRec oldTotalArea;
BoxRec oldTrackingArea;
INT16 oldBorder[4];
Bool oldPanning = randrp->panning;
if (crtc->version < 2)
return FALSE;
memcpy(&oldTotalArea, &crtc->panningTotalArea, sizeof(BoxRec));
memcpy(&oldTrackingArea, &crtc->panningTrackingArea, sizeof(BoxRec));
memcpy(oldBorder, crtc->panningBorder, 4 * sizeof(INT16));
if (totalArea)
memcpy(&crtc->panningTotalArea, totalArea, sizeof(BoxRec));
if (trackingArea)
memcpy(&crtc->panningTrackingArea, trackingArea, sizeof(BoxRec));
if (border)
memcpy(crtc->panningBorder, border, 4 * sizeof(INT16));
if (xf86RandR13VerifyPanningArea(crtc, pScreen->width, pScreen->height)) {
xf86RandR13Pan(crtc, randrp->pointerX, randrp->pointerY);
randrp->panning = PANNING_ENABLED (crtc);
return TRUE;
}
else {
/* Restore old settings */
memcpy(&crtc->panningTotalArea, &oldTotalArea, sizeof(BoxRec));
memcpy(&crtc->panningTrackingArea, &oldTrackingArea, sizeof(BoxRec));
memcpy(crtc->panningBorder, oldBorder, 4 * sizeof(INT16));
randrp->panning = oldPanning;
return FALSE;
}
}
/*
* Compatibility with XF86VidMode's gamma changer. This necessarily clobbers
* any per-crtc setup. You asked for it...
*/
static void
gamma_to_ramp(float gamma, CARD16 *ramp, int size)
{
int i;
for (i = 0; i < size; i++) {
if (gamma == 1.0)
ramp[i] = i | i << 8;
else
ramp[i] =
(CARD16) (pow((double) i / (double) (size - 1), 1. / gamma)
* (double) (size - 1) * 257);
}
}
static int
xf86RandR12ChangeGamma(ScrnInfoPtr pScrn, Gamma gamma)
{
CARD16 *points, *red, *green, *blue;
RRCrtcPtr crtc = xf86CompatRRCrtc(pScrn);
int size;
if (!crtc)
return Success;
size = max(0, crtc->gammaSize);
if (!size)
return Success;
points = calloc(size, 3 * sizeof(CARD16));
if (!points)
return BadAlloc;
red = points;
green = points + size;
blue = points + 2 * size;
gamma_to_ramp(gamma.red, red, size);
gamma_to_ramp(gamma.green, green, size);
gamma_to_ramp(gamma.blue, blue, size);
RRCrtcGammaSet(crtc, red, green, blue);
free(points);
pScrn->gamma = gamma;
return Success;
}
static Bool
xf86RandR12EnterVT(ScrnInfoPtr pScrn)
{
ScreenPtr pScreen = xf86ScrnToScreen(pScrn);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
rrScrPrivPtr rp = rrGetScrPriv(pScreen);
Bool ret;
int i;
if (randrp->orig_EnterVT) {
pScrn->EnterVT = randrp->orig_EnterVT;
ret = pScrn->EnterVT(pScrn);
randrp->orig_EnterVT = pScrn->EnterVT;
pScrn->EnterVT = xf86RandR12EnterVT;
if (!ret)
return FALSE;
}
/* reload gamma */
for (i = 0; i < rp->numCrtcs; i++)
xf86RandR12CrtcSetGamma(pScreen, rp->crtcs[i]);
return RRGetInfo(pScreen, TRUE); /* force a re-probe of outputs and notify clients about changes */
}
static void
xf86DetachOutputGPU(ScreenPtr pScreen)
{
rrScrPrivPtr rp = rrGetScrPriv(pScreen);
int i;
/* make sure there are no attached shared scanout pixmaps first */
for (i = 0; i < rp->numCrtcs; i++)
RRCrtcDetachScanoutPixmap(rp->crtcs[i]);
DetachOutputGPU(pScreen);
}
static Bool
xf86RandR14ProviderSetOutputSource(ScreenPtr pScreen,
RRProviderPtr provider,
RRProviderPtr source_provider)
{
if (!source_provider) {
if (provider->output_source) {
xf86DetachOutputGPU(pScreen);
}
provider->output_source = NULL;
return TRUE;
}
if (provider->output_source == source_provider)
return TRUE;
SetRootClip(source_provider->pScreen, ROOT_CLIP_NONE);
AttachOutputGPU(source_provider->pScreen, pScreen);
provider->output_source = source_provider;
SetRootClip(source_provider->pScreen, ROOT_CLIP_FULL);
return TRUE;
}
static Bool
xf86RandR14ProviderSetOffloadSink(ScreenPtr pScreen,
RRProviderPtr provider,
RRProviderPtr sink_provider)
{
if (!sink_provider) {
if (provider->offload_sink) {
xf86DetachOutputGPU(pScreen);
}
provider->offload_sink = NULL;
return TRUE;
}
if (provider->offload_sink == sink_provider)
return TRUE;
AttachOffloadGPU(sink_provider->pScreen, pScreen);
provider->offload_sink = sink_provider;
return TRUE;
}
static Bool
xf86RandR14ProviderSetProperty(ScreenPtr pScreen,
RRProviderPtr randr_provider,
Atom property, RRPropertyValuePtr value)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
/* If we don't have any property handler, then we don't care what the
* user is setting properties to.
*/
if (config->provider_funcs->set_property == NULL)
return TRUE;
/*
* This function gets called even when vtSema is FALSE, as
* drivers will need to remember the correct value to apply
* when the VT switch occurs
*/
return config->provider_funcs->set_property(pScrn, property, value);
}
static Bool
xf86RandR14ProviderGetProperty(ScreenPtr pScreen,
RRProviderPtr randr_provider, Atom property)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(pScrn);
if (config->provider_funcs->get_property == NULL)
return TRUE;
/* Should be safe even w/o vtSema */
return config->provider_funcs->get_property(pScrn, property);
}
static Bool
xf86CrtcSetScanoutPixmap(RRCrtcPtr randr_crtc, PixmapPtr pixmap)
{
xf86CrtcPtr crtc = randr_crtc->devPrivate;
if (!crtc->funcs->set_scanout_pixmap)
return FALSE;
return crtc->funcs->set_scanout_pixmap(crtc, pixmap);
}
static void
xf86RandR13ConstrainCursorHarder(DeviceIntPtr dev, ScreenPtr screen, int mode, int *x, int *y)
{
XF86RandRInfoPtr randrp = XF86RANDRINFO(screen);
if (randrp->panning)
return;
if (randrp->orig_ConstrainCursorHarder) {
screen->ConstrainCursorHarder = randrp->orig_ConstrainCursorHarder;
screen->ConstrainCursorHarder(dev, screen, mode, x, y);
screen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder;
}
}
static void
xf86RandR14ProviderDestroy(ScreenPtr screen, RRProviderPtr provider)
{
ScrnInfoPtr scrn = xf86ScreenToScrn(screen);
xf86CrtcConfigPtr config = XF86_CRTC_CONFIG_PTR(scrn);
if (config->randr_provider == provider) {
if (config->randr_provider->offload_sink) {
DetachOffloadGPU(screen);
config->randr_provider->offload_sink = NULL;
RRSetChanged(screen);
}
if (config->randr_provider->output_source) {
xf86DetachOutputGPU(screen);
config->randr_provider->output_source = NULL;
RRSetChanged(screen);
}
if (screen->current_master)
DetachUnboundGPU(screen);
}
config->randr_provider = NULL;
}
static Bool
xf86RandR12Init12(ScreenPtr pScreen)
{
ScrnInfoPtr pScrn = xf86ScreenToScrn(pScreen);
rrScrPrivPtr rp = rrGetScrPriv(pScreen);
XF86RandRInfoPtr randrp = XF86RANDRINFO(pScreen);
int i;
rp->rrGetInfo = xf86RandR12GetInfo12;
rp->rrScreenSetSize = xf86RandR12ScreenSetSize;
rp->rrCrtcSet = xf86RandR12CrtcSet;
rp->rrCrtcSetGamma = xf86RandR12CrtcSetGamma;
rp->rrCrtcGetGamma = xf86RandR12CrtcGetGamma;
rp->rrOutputSetProperty = xf86RandR12OutputSetProperty;
rp->rrOutputValidateMode = xf86RandR12OutputValidateMode;
#if RANDR_13_INTERFACE
rp->rrOutputGetProperty = xf86RandR13OutputGetProperty;
rp->rrGetPanning = xf86RandR13GetPanning;
rp->rrSetPanning = xf86RandR13SetPanning;
#endif
rp->rrModeDestroy = xf86RandR12ModeDestroy;
rp->rrSetConfig = NULL;
rp->rrProviderSetOutputSource = xf86RandR14ProviderSetOutputSource;
rp->rrProviderSetOffloadSink = xf86RandR14ProviderSetOffloadSink;
rp->rrProviderSetProperty = xf86RandR14ProviderSetProperty;
rp->rrProviderGetProperty = xf86RandR14ProviderGetProperty;
rp->rrCrtcSetScanoutPixmap = xf86CrtcSetScanoutPixmap;
rp->rrProviderDestroy = xf86RandR14ProviderDestroy;
pScrn->PointerMoved = xf86RandR12PointerMoved;
pScrn->ChangeGamma = xf86RandR12ChangeGamma;
randrp->orig_EnterVT = pScrn->EnterVT;
pScrn->EnterVT = xf86RandR12EnterVT;
randrp->panning = FALSE;
randrp->orig_ConstrainCursorHarder = pScreen->ConstrainCursorHarder;
pScreen->ConstrainCursorHarder = xf86RandR13ConstrainCursorHarder;
if (!xf86RandR12CreateObjects12(pScreen))
return FALSE;
/*
* Configure output modes
*/
if (!xf86RandR12SetInfo12(pScreen))
return FALSE;
for (i = 0; i < rp->numCrtcs; i++) {
xf86RandR12CrtcGetGamma(pScreen, rp->crtcs[i]);
}
return TRUE;
}
#endif
Bool
xf86RandR12PreInit(ScrnInfoPtr pScrn)
{
return TRUE;
}