xserver-multidpi/hw/xfree86/ramdac/BT.c
Paulo Cesar Pereira de Andrade 49f77fff14 Rework symbol visibility for easier maintenance
Save in a few special cases, _X_EXPORT should not be used in C source
files. Instead, it should be used in headers, and the proper C source
include that header. Some special cases are symbols that need to be
shared between modules, but not expected to be used by external drivers,
and symbols that are accessible via LoaderSymbol/dlopen.

  This patch also adds conditionally some new sdk header files, depending
on extensions enabled. These files were added to match pattern for
other extensions/modules, that is, have the headers "deciding" symbol
visibility in the sdk. These headers are:
o Xext/panoramiXsrv.h, Xext/panoramiX.h
o fbpict.h (unconditionally)
o vidmodeproc.h
o mioverlay.h (unconditionally, used only by xaa)
o xfixes.h (unconditionally, symbols required by dri2)

  LoaderSymbol and similar functions now don't have different prototypes,
in loaderProcs.h and xf86Module.h, so that both headers can be included,
without the need of defining IN_LOADER.

  xf86NewInputDevice() device prototype readded to xf86Xinput.h, but
not exported (and with a comment about it).
2008-12-03 05:43:34 -02:00

166 lines
4.8 KiB
C

/*
* Copyright 1998 by Alan Hourihane, Wigan, England.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of Alan Hourihane not be used in
* advertising or publicity pertaining to distribution of the software without
* specific, written prior permission. Alan Hourihane makes no representations
* about the suitability of this software for any purpose. It is provided
* "as is" without express or implied warranty.
*
* ALAN HOURIHANE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL ALAN HOURIHANE BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
* DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* Authors: Alan Hourihane, <alanh@fairlite.demon.co.uk>
*
* BT RAMDAC routines.
*/
#ifdef HAVE_XORG_CONFIG_H
#include <xorg-config.h>
#endif
#include "xf86.h"
#include "xf86_OSproc.h"
#define INIT_BT_RAMDAC_INFO
#include "BTPriv.h"
#include "xf86RamDacPriv.h"
void
BTramdacRestore(ScrnInfoPtr pScrn, RamDacRecPtr ramdacPtr,
RamDacRegRecPtr ramdacReg)
{
int i;
/* Here we pass a short, so that we can evaluate a mask too */
/* So that the mask is the high byte and the data the low byte */
/* Just the command/status registers */
for (i=0x06;i<0x0A;i++)
(*ramdacPtr->WriteDAC)
(pScrn, i, (ramdacReg->DacRegs[i] & 0xFF00) >> 8,
ramdacReg->DacRegs[i]);
}
void
BTramdacSave(ScrnInfoPtr pScrn, RamDacRecPtr ramdacPtr,
RamDacRegRecPtr ramdacReg)
{
int i;
(*ramdacPtr->ReadAddress)(pScrn, 0); /* Start at index 0 */
for (i=0;i<768;i++)
ramdacReg->DAC[i] = (*ramdacPtr->ReadData)(pScrn);
/* Just the command/status registers */
for (i=0x06;i<0x0A;i++)
ramdacReg->DacRegs[i] = (*ramdacPtr->ReadDAC)(pScrn, i);
}
RamDacHelperRecPtr
BTramdacProbe(ScrnInfoPtr pScrn, RamDacSupportedInfoRecPtr ramdacs/*, RamDacRecPtr ramdacPtr*/)
{
RamDacRecPtr ramdacPtr = RAMDACSCRPTR(pScrn);
Bool RamDacIsSupported = FALSE;
RamDacHelperRecPtr ramdacHelperPtr = NULL;
int BTramdac_ID = -1;
int i, status, cmd0;
/* Save COMMAND Register 0 */
cmd0 = (*ramdacPtr->ReadDAC)(pScrn, BT_COMMAND_REG_0);
/* Ensure were going to access the STATUS Register on next read */
(*ramdacPtr->WriteDAC)(pScrn, BT_COMMAND_REG_0, 0x7F, 0x00);
status = (*ramdacPtr->ReadDAC)(pScrn, BT_STATUS_REG);
switch (status) {
case 0x40:
BTramdac_ID = ATT20C504_RAMDAC;
break;
case 0xD0:
BTramdac_ID = ATT20C505_RAMDAC;
break;
default:
xf86DrvMsg(pScrn->scrnIndex, X_PROBED,
"Unknown BT RAMDAC type (0x%x), assuming BT485\n",
status);
case 0x80:
case 0x90:
case 0xA0:
case 0xB0:
case 0x28: /* This is for the DEC TGA - Questionable ? */
BTramdac_ID = BT485_RAMDAC;
break;
}
/* Restore COMMAND Register 0 */
(*ramdacPtr->WriteDAC)(pScrn, BT_COMMAND_REG_0, 0x00, cmd0);
if (BTramdac_ID == -1) {
xf86DrvMsg(pScrn->scrnIndex, X_PROBED,
"Cannot determine BT RAMDAC type, aborting\n");
return NULL;
} else {
xf86DrvMsg(pScrn->scrnIndex, X_PROBED,
"Attached RAMDAC is %s\n", BTramdacDeviceInfo[BTramdac_ID&0xFFFF].DeviceName);
}
for (i=0;ramdacs[i].token != -1;i++) {
if (ramdacs[i].token == BTramdac_ID)
RamDacIsSupported = TRUE;
}
if (!RamDacIsSupported) {
xf86DrvMsg(pScrn->scrnIndex, X_PROBED,
"This BT RAMDAC is NOT supported by this driver, aborting\n");
return NULL;
}
ramdacHelperPtr = RamDacHelperCreateInfoRec();
switch(BTramdac_ID) {
case BT485_RAMDAC:
ramdacHelperPtr->SetBpp = BTramdacSetBpp;
break;
}
ramdacPtr->RamDacType = BTramdac_ID;
ramdacHelperPtr->RamDacType = BTramdac_ID;
ramdacHelperPtr->Save = BTramdacSave;
ramdacHelperPtr->Restore = BTramdacRestore;
return ramdacHelperPtr;
}
void
BTramdacSetBpp(ScrnInfoPtr pScrn, RamDacRegRecPtr ramdacReg)
{
/* We need to deal with Direct Colour visuals for 8bpp and other
* good stuff for colours */
switch (pScrn->bitsPerPixel) {
case 32:
ramdacReg->DacRegs[BT_COMMAND_REG_1] = 0x10;
break;
case 24:
ramdacReg->DacRegs[BT_COMMAND_REG_1] = 0x10;
break;
case 16:
ramdacReg->DacRegs[BT_COMMAND_REG_1] = 0x38;
break;
case 15:
ramdacReg->DacRegs[BT_COMMAND_REG_1] = 0x30;
break;
case 8:
ramdacReg->DacRegs[BT_COMMAND_REG_1] = 0x40;
break;
case 4:
ramdacReg->DacRegs[BT_COMMAND_REG_1] = 0x60;
break;
}
}