# NOTICE!!! This is copied from https://stackoverflow.com/questions/4643647/fast-prime-factorization-module import random def primesbelow(N): # http://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188 #""" Input N>=6, Returns a list of primes, 2 <= p < N """ correction = N % 6 > 1 N = {0:N, 1:N-1, 2:N+4, 3:N+3, 4:N+2, 5:N+1}[N%6] sieve = [True] * (N // 3) sieve[0] = False for i in range(int(N ** .5) // 3 + 1): if sieve[i]: k = (3 * i + 1) | 1 sieve[k*k // 3::2*k] = [False] * ((N//6 - (k*k)//6 - 1)//k + 1) sieve[(k*k + 4*k - 2*k*(i%2)) // 3::2*k] = [False] * ((N // 6 - (k*k + 4*k - 2*k*(i%2))//6 - 1) // k + 1) return [2, 3] + [(3 * i + 1) | 1 for i in range(1, N//3 - correction) if sieve[i]] smallprimeset = set(primesbelow(100000)) _smallprimeset = 100000 def isprime(n, precision=7): # http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time if n == 1 or n % 2 == 0: return False elif n < 1: raise ValueError("Out of bounds, first argument must be > 0") elif n < _smallprimeset: return n in smallprimeset d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for repeat in range(precision): a = random.randrange(2, n - 2) x = pow(a, d, n) if x == 1 or x == n - 1: continue for r in range(s - 1): x = pow(x, 2, n) if x == 1: return False if x == n - 1: break else: return False return True # https://comeoncodeon.wordpress.com/2010/09/18/pollard-rho-brent-integer-factorization/ def pollard_brent(n): if n % 2 == 0: return 2 if n % 3 == 0: return 3 y, c, m = 87552211475113995, 330422027228888537, 226866727920975483 #random.randint(1, n-1), random.randint(1, n-1), random.randint(1, n-1) g, r, q = 1, 1, 1 while g == 1: x = y for i in range(r): y = (pow(y, 2, n) + c) % n print(i) k = 0 while k < r and g==1: ys = y print(min(m, r-k)) for i in range(min(m, r-k)): y = (pow(y, 2, n) + c) % n q = q * abs(x-y) % n g = gcd(q, n) k += m r *= 2 if g == n: while True: ys = (pow(ys, 2, n) + c) % n g = gcd(abs(x - ys), n) if g > 1: break return g smallprimes = primesbelow(10000) # might seem low, but 1000*1000 = 1000000, so this will fully factor every composite < 1000000 def primefactors(n, sort=False): factors = [] limit = int(n ** .5) + 1 for checker in smallprimes: if checker > limit: break while n % checker == 0: factors.append(checker) n //= checker limit = int(n ** .5) + 1 if checker > limit: break if n < 2: return factors while n > 1: if isprime(n): factors.append(n) break factor = pollard_brent(n) # trial division did not fully factor, switch to pollard-brent factors.extend(primefactors(factor)) # recurse to factor the not necessarily prime factor returned by pollard-brent n //= factor if sort: factors.sort() return factors def factorization(n): factors = {} for p1 in primefactors(n): try: factors[p1] += 1 except KeyError: factors[p1] = 1 return factors totients = {} def totient(n): if n == 0: return 1 try: return totients[n] except KeyError: pass tot = 1 for p, exp in factorization(n).items(): tot *= (p - 1) * p ** (exp - 1) totients[n] = tot return tot def gcd(a, b): if a == b: return a while b > 0: a, b = b, a % b return a def lcm(a, b): return abs(a * b) // gcd(a, b)