smallprimeset = array_unique($this->primesbelow(100000)); $this->_smallprimeset = 100000; $this->smallprimes = $this->primesbelow(10000); } public function primesbelow($N) { $res = []; for ($i = 2; $i <= $N; $i++) { if ($i % 2 != 1 && $i != 2) { continue; } $d = 3; $x = sqrt($i); while ($i % $d != 0 && $d < $x) { $d += 2; } if ((($i % $d == 0 && $i != $d) * 1) == 0) { $res[] = $i; } } return $res; } public function isprime($n, $precision = 7) { if (($n == 1) || (($n % 2) == 0)) { return false; } elseif (($n < 1)) { throw new Exception('Out of bounds, first argument must be > 0'); } elseif (($n < $this->_smallprimeset)) { return in_array($n, $this->smallprimeset); } $d = ($n - 1); $s = 0; while (($d % 2) == 0) { $d = floor($d / 2); $s++; } $break = false; foreach (pyjslib_range($precision) as $repeat) { $a = rand(2, ($n - 2)); $x = posmod(pow($a, $d), $n); if (($x == 1) || ($x == ($n - 1))) { continue; } foreach (pyjslib_range($s - 1) as $r) { $x = posmod(pow($x, 2), $n); if (($x == 1)) { return false; } if (($x == ($n - 1))) { $break = true; } } if (!$break) { return false; } } return true; } // taken from https://github.com/enricostara/telegram-mt-node/blob/master/lib/security/pq-finder.js public function factorization($num) { $zero = new \phpseclib\Math\BigInteger(0); $one = new \phpseclib\Math\BigInteger(1); $two = new \phpseclib\Math\BigInteger(2); $three = new \phpseclib\Math\BigInteger(3); $prime = new \phpseclib\Math\BigInteger(); for ($i = 0; $i < 3; $i++) { $q = new \phpseclib\Math\BigInteger((random_int(0, 128) & 15) + 17); $x = new \phpseclib\Math\BigInteger(random_int(0, 1000000000) + 1); $y = $x; $lim = 1 << ($i + 18); for ($j = 1; $j < $lim; $j++) { $a = $x; $b = $x; $c = $q; while (!$b->equals($zero)) { if (b.repr[0] & 1) { c.addEquals(a); if (c.gt(num)) { c = c.subtract(num); } } a.addEquals(a); if (a.gt(num)) { a = a.subtract(num); } b = b.shiftRight(1); } $x = $c; $z = $y.gt(x) ? y.subtract(x) : x.subtract(y); $prime = z.gcd(num, a, b); if (!prime.eql(BigInteger.One())) { break; } if ((j & (j - 1)) === 0) { $y = $x; } } if (prime.gt(BigInteger.One())) { break; } } $cofactor = num.divide(prime)[0]; $_pq = cofactor.gt(prime) ? [prime, cofactor] : [cofactor, prime]; return _$pq; } public function pollard_brent($n) { $zero = new \phpseclib\Math\BigInteger(0); $one = new \phpseclib\Math\BigInteger(1); $two = new \phpseclib\Math\BigInteger(2); $three = new \phpseclib\Math\BigInteger(3); if ($n->powMod($one, $two)->toString() == '0') { return 2; } if ($n->powMod($one, $three)->toString() == '0') { return 3; } $big = new \phpseclib\Math\BigInteger(); $max = $n->subtract($one); list($y, $c, $m) = [new \phpseclib\Math\BigInteger(87552211475113995), new \phpseclib\Math\BigInteger(330422027228888537), new \phpseclib\Math\BigInteger(226866727920975483)]; //[$big->random($one, $max), $big->random($one, $max), $big->random($one, $max)]; list($g, $r, $q) = [$one, $one, $one]; while ($g->equals($one)) { $x = $y; $params = ['y' => $y, 'two' => $two, 'c' => $c, 'one' => $one, 'n' => $n]; $r->loopforeach(function ($i, $params) { $params['y'] = $params['y']->powMod($params['two'], $params['n'])->add($params['c'])->powMod($params['one'], $params['n']); }, $params); each($params); $k = $zero; while ($k->compare($r) == -1 && $g->equals($one)) { $ys = $y; $params = ['x' => $x, 'y' => $y, 'two' => $two, 'c' => $c, 'one' => $one, 'n' => $n, 'q' => $q]; $m->min($r->subtract($k))->loopforeach(function ($i, $params) { $params['y'] = $params['y']->powMod($params['two'], $params['n'])->add($params['c'])->powMod($params['one'], $params['n']); $params['q'] = $params['q']->multiply($params['x']->subtract($params['y'])->abs())->powMod($params['one'], $params['n']); }, $params); each($params); $g = $q->gcd($n); $k = $k->add($m); } $r = $r->multiply($two); } die; if ($g->equals($n)) { while (true) { $ys = $ys->powMod($two, $n)->add($c)->powMod($one, $n); $g = $x->subtract($ys)->abs()->gcd($n); if ($g->compare($one) == 1) { break; } } } return $g; } public function primefactors($n, $sort = false) { $factors = []; $n = new \phpseclib\Math\BigInteger(1724114033281923457); $one = new \phpseclib\Math\BigInteger(1); $two = new \phpseclib\Math\BigInteger(2); $limit = $n->root()->add($one); foreach ($this->smallprimes as $checker) { $checker = new \phpseclib\Math\BigInteger($checker); if ($limit->compare($checker) == -1) { break; } while ($n->modPow($one, $checker)->toString() == '0') { $factors[] = $checker; $n = $n->divide($checker)[0]; $limit = $n->root()->add($one); if ($limit->compare($checker) == -1) { break; } } } if ($n->compare($two) == -1) { return $factors; } while ($n->compare($two) == 1) { if ($n->isprime()) { $factors[] = $n; break; } $factor = $this->pollard_brent($n); $factors[] = $this->primefactors($factor); $n = floor($n / $factor); } if ($sort) { $factors = sort($factors); } return $factors; } public function factorization($n) { $factors = []; foreach (primefactors($n) as $p1) { if (isset($factors[$p1])) { $factors[$p1] += 1; } else { $factors[$p1] = 1; } } return $factors; } public function totient($n) { $totients = []; if (($n == 0)) { return 1; } if (isset($totients[$n])) { return $totients[$n]; } $tot = 1; foreach (factorization($n) as $p => $exp) { $tot *= (($p - 1) * pow($p, ($exp - 1))); } $totients[$n] = $tot; return $tot; } public function gcd($a, $b) { if (($a == $b)) { return $a; } while (($b > 0)) { list($a, $b) = [$b, posmod($a, $b)]; } return $a; } public function lcm($a, $b) { return floor(abs(($a * $b)) / $this->gcd($a, $b)); } }