291 lines
7.5 KiB
PHP
291 lines
7.5 KiB
PHP
<?php
|
|
|
|
set_include_path(get_include_path().PATH_SEPARATOR.dirname(__FILE__).DIRECTORY_SEPARATOR.'libpy2php');
|
|
require_once 'libpy2php.php';
|
|
|
|
|
|
|
|
class PrimeModule
|
|
{
|
|
public function __construct()
|
|
{
|
|
$this->smallprimeset = array_unique($this->primesbelow(100000));
|
|
$this->_smallprimeset = 100000;
|
|
$this->smallprimes = $this->primesbelow(10000);
|
|
}
|
|
|
|
public function primesbelow($N)
|
|
{
|
|
$res = [];
|
|
for ($i = 2; $i <= $N; $i++) {
|
|
if ($i % 2 != 1 && $i != 2) {
|
|
continue;
|
|
}
|
|
$d = 3;
|
|
$x = sqrt($i);
|
|
while ($i % $d != 0 && $d < $x) {
|
|
$d += 2;
|
|
}
|
|
if ((($i % $d == 0 && $i != $d) * 1) == 0) {
|
|
$res[] = $i;
|
|
}
|
|
}
|
|
|
|
return $res;
|
|
}
|
|
|
|
public function isprime($n, $precision = 7)
|
|
{
|
|
if (($n == 1) || (($n % 2) == 0)) {
|
|
return false;
|
|
} elseif (($n < 1)) {
|
|
throw new Exception('Out of bounds, first argument must be > 0');
|
|
} elseif (($n < $this->_smallprimeset)) {
|
|
return in_array($n, $this->smallprimeset);
|
|
}
|
|
$d = ($n - 1);
|
|
$s = 0;
|
|
while (($d % 2) == 0) {
|
|
$d = floor($d / 2);
|
|
$s++;
|
|
}
|
|
$break = false;
|
|
foreach (pyjslib_range($precision) as $repeat) {
|
|
$a = rand(2, ($n - 2));
|
|
$x = posmod(pow($a, $d), $n);
|
|
if (($x == 1) || ($x == ($n - 1))) {
|
|
continue;
|
|
}
|
|
foreach (pyjslib_range($s - 1) as $r) {
|
|
$x = posmod(pow($x, 2), $n);
|
|
if (($x == 1)) {
|
|
return false;
|
|
}
|
|
if (($x == ($n - 1))) {
|
|
$break = true;
|
|
}
|
|
}
|
|
if (!$break) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
public function pollard_brent($n)
|
|
{
|
|
$zero = new \phpseclib\Math\BigInteger(0);
|
|
$one = new \phpseclib\Math\BigInteger(1);
|
|
$two = new \phpseclib\Math\BigInteger(2);
|
|
$three = new \phpseclib\Math\BigInteger(3);
|
|
if ($n->powMod($one, $two)->toString() == '0') {
|
|
return 2;
|
|
}
|
|
if ($n->powMod($one, $three)->toString() == '0') {
|
|
return 3;
|
|
}
|
|
$big = new \phpseclib\Math\BigInteger();
|
|
$max = $n->subtract($one);
|
|
list($y, $c, $m) = [new \phpseclib\Math\BigInteger(87552211475113995), new \phpseclib\Math\BigInteger(330422027228888537), new \phpseclib\Math\BigInteger(226866727920975483)];
|
|
//[$big->random($one, $max), $big->random($one, $max), $big->random($one, $max)];
|
|
list($g, $r, $q) = [$one, $one, $one];
|
|
while ($g->equals($one)) {
|
|
$x = $y;
|
|
$range = $r;
|
|
while (!$range->equals($zero)) {
|
|
$y = $y->powMod($two, $n)->add($c)->powMod($one, $n);
|
|
$range = $range->subtract($one);
|
|
}
|
|
$k = $zero;
|
|
while ($k->compare($r) == -1 && $g->equals($one)) {
|
|
$ys = $y;
|
|
$range = $big->min($m, $r->subtract($k));
|
|
while (!$range->equals($zero)) {
|
|
$y = $y->powMod($two, $n)->add($c)->powMod($one, $n);
|
|
$q = $q->multiply($x->subtract($y)->abs())->powMod($one, $n);
|
|
$range = $range->subtract($one);
|
|
}
|
|
$g = $q->gcd($n);
|
|
$k = $k->add($m);
|
|
}
|
|
$r = $r->multiply($two);
|
|
}
|
|
if ($g->equals($n)) {
|
|
while (true) {
|
|
$ys = $ys->powMod($two, $n)->add($c)->powMod($one, $n);
|
|
$g = $x->subtract($ys)->abs()->gcd($n);
|
|
if ($g->compare($one) == 1) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return $g;
|
|
}
|
|
|
|
public function primefactors($n, $sort = false)
|
|
{
|
|
$factors = [];
|
|
$n = new \phpseclib\Math\BigInteger(1724114033281923457);
|
|
$one = new \phpseclib\Math\BigInteger(1);
|
|
$two = new \phpseclib\Math\BigInteger(2);
|
|
$limit = $n->root()->add($one);
|
|
foreach ($this->smallprimes as $checker) {
|
|
$checker = new \phpseclib\Math\BigInteger($checker);
|
|
if ($limit->compare($checker) == -1) {
|
|
break;
|
|
}
|
|
while ($n->modPow($one, $checker)->toString() == '0') {
|
|
$factors[] = $checker;
|
|
$n = $n->divide($checker)[0];
|
|
$limit = $n->root()->add($one);
|
|
if ($limit->compare($checker) == -1) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if ($n->compare($two) == -1) {
|
|
return $factors;
|
|
}
|
|
while ($n->compare($two) == 1) {
|
|
if ($n->isprime()) {
|
|
$factors[] = $n;
|
|
break;
|
|
}
|
|
$factor = $this->pollard_brent($n);
|
|
$factors[] = $this->primefactors($factor);
|
|
$n = floor($n / $factor);
|
|
}
|
|
if ($sort) {
|
|
$factors = sort($factors);
|
|
}
|
|
|
|
return $factors;
|
|
}
|
|
|
|
public function factorization($n)
|
|
{
|
|
$factors = [];
|
|
foreach (primefactors($n) as $p1) {
|
|
if (isset($factors[$p1])) {
|
|
$factors[$p1] += 1;
|
|
} else {
|
|
$factors[$p1] = 1;
|
|
}
|
|
}
|
|
|
|
return $factors;
|
|
}
|
|
|
|
public function totient($n)
|
|
{
|
|
$totients = [];
|
|
if (($n == 0)) {
|
|
return 1;
|
|
}
|
|
if (isset($totients[$n])) {
|
|
return $totients[$n];
|
|
}
|
|
$tot = 1;
|
|
foreach (factorization($n) as $p => $exp) {
|
|
$tot *= (($p - 1) * pow($p, ($exp - 1)));
|
|
}
|
|
$totients[$n] = $tot;
|
|
|
|
return $tot;
|
|
}
|
|
|
|
public function gcd($a, $b)
|
|
{
|
|
if (($a == $b)) {
|
|
return $a;
|
|
}
|
|
while (($b > 0)) {
|
|
list($a, $b) = [$b, posmod($a, $b)];
|
|
}
|
|
|
|
return $a;
|
|
}
|
|
|
|
public function lcm($a, $b)
|
|
{
|
|
return floor(abs(($a * $b)) / $this->gcd($a, $b));
|
|
}
|
|
|
|
/*
|
|
function pqPrimeLeemon ($what) {
|
|
$minBits = 64;
|
|
$minLen = ceil($minBits / $bpe) + 1;
|
|
$it = 0
|
|
$a = new Array(minLen)
|
|
$b = new Array(minLen)
|
|
$c = new Array(minLen)
|
|
$g = new Array(minLen)
|
|
$z = new Array(minLen)
|
|
$x = new Array(minLen)
|
|
$y = new Array(minLen)
|
|
|
|
for ($i = 0; $i < 3; $i++) {
|
|
$q = (nextRandomInt(128) & 15) + 17
|
|
copyInt_(x, nextRandomInt(1000000000) + 1)
|
|
copy_(y, x)
|
|
lim = 1 << (i + 18)
|
|
|
|
for (j = 1; j < lim; j++) {
|
|
++it
|
|
copy_(a, x)
|
|
copy_(b, x)
|
|
copyInt_(c, q)
|
|
|
|
while (!isZero(b)) {
|
|
if (b[0] & 1) {
|
|
add_(c, a)
|
|
if (greater(c, what)) {
|
|
sub_(c, what)
|
|
}
|
|
}
|
|
add_(a, a)
|
|
if (greater(a, what)) {
|
|
sub_(a, what)
|
|
}
|
|
rightShift_(b, 1)
|
|
}
|
|
|
|
copy_(x, c)
|
|
if (greater(x, y)) {
|
|
copy_(z, x)
|
|
sub_(z, y)
|
|
} else {
|
|
copy_(z, y)
|
|
sub_(z, x)
|
|
}
|
|
eGCD_(z, what, g, a, b)
|
|
if (!equalsInt(g, 1)) {
|
|
break
|
|
}
|
|
if ((j & (j - 1)) == 0) {
|
|
copy_(y, x)
|
|
}
|
|
}
|
|
if (greater(g, one)) {
|
|
break
|
|
}
|
|
}
|
|
|
|
divide_(what, g, x, y)
|
|
|
|
if (greater(g, x)) {
|
|
P = x
|
|
Q = g
|
|
} else {
|
|
P = g
|
|
Q = x
|
|
}
|
|
|
|
// console.log(dT(), 'done', bigInt2str(what, 10), bigInt2str(P, 10), bigInt2str(Q, 10))
|
|
|
|
return [bytesFromLeemonBigInt(P), bytesFromLeemonBigInt(Q), it]
|
|
}*/
|
|
}
|