MadelineProto/prime.php
danogentili fe2078f566 update
2016-07-18 18:56:33 +02:00

178 lines
4.7 KiB
PHP

<?php
set_include_path(get_include_path().PATH_SEPARATOR.dirname(__FILE__).DIRECTORY_SEPARATOR.'libpy2php');
require_once 'libpy2php.php';
class PrimeModule {
function __construct() {
$this->smallprimeset = array_unique($this->primesbelow(100000));
$this->_smallprimeset = 100000;
$this->smallprimes = $this->primesbelow(10000);
}
function primesbelow($N) {
$res = [];
for ($i = 2; $i <= $N; $i++)
{
if($i % 2 != 1 && $i != 2) continue;
$d = 3;
$x = sqrt($i);
while ($i % $d != 0 && $d < $x) $d += 2;
if((($i % $d == 0 && $i != $d) * 1) == 0) $res[] = $i;
}
return $res;
}
function isprime($n, $precision = 7)
{
if (($n == 1) || (($n % 2) == 0)) {
return false;
} elseif (($n < 1)) {
throw new Exception('Out of bounds, first argument must be > 0');
} elseif (($n < $this->_smallprimeset)) {
return in_array($n, $this->smallprimeset);
}
$d = ($n - 1);
$s = 0;
while (($d % 2) == 0) {
$d = floor($d / 2);
$s += 1;
}
foreach (pyjslib_range($precision) as $repeat) {
$a = rand(2, ($n - 2));
$x = posmod(pow($a, $d), $n);
if (($x == 1) || ($x == ($n - 1))) {
continue;
}
foreach (pyjslib_range(($s - 1)) as $r) {
$x = posmod(pow($x, 2), $n);
if (($x == 1)) {
return false;
}
if (($x == ($n - 1))) {
break;
}
}
}
return true;
}
function pollard_brent($n)
{
if ((($n % 2) == 0)) {
return 2;
}
if ((($n % 3) == 0)) {
return 3;
}
list($y, $c, $m) = [rand(1, ($n - 1)), rand(1, ($n - 1)), rand(1, ($n - 1))];
list($g, $r, $q) = [1, 1, 1];
while (($g == 1)) {
$x = $y;
foreach (pyjslib_range($r) as $i) {
$y = ((posmod(pow($y, 2), $n) + $c) % $n);
}
$k = 0;
while (($k < $r) && ($g == 1)) {
$ys = $y;
foreach (pyjslib_range(min($m, ($r - $k))) as $i) {
$y = ((posmod(pow($y, 2), $n) + $c) % $n);
$q = (($q * abs(($x - $y))) % $n);
}
$g = $this->gcd($q, $n);
$k += $m;
}
$r *= 2;
}
if (($g == $n)) {
while (true) {
$ys = ((posmod(pow($ys, 2), $n) + $c) % $n);
$g = $this->gcd(abs(($x - $ys)), $n);
if (($g > 1)) {
break;
}
}
}
return $g;
}
function primefactors($n, $sort = false)
{
$factors = [];
$limit = ((int)(pow($n, 0.5)) + 1);
foreach ($this->smallprimes as $checker) {
if (($checker > $limit)) {
break;
}
while (($n % $checker) == 0) {
$factors[] = $checker;
$n = floor($n / $checker);
$limit = ((int)(pow($n, 0.5)) + 1);
if (($checker > $limit)) {
break;
}
}
}
if (($n < 2)) {
return $factors;
}
while (($n > 1)) {
if ($this->isprime($n)) {
$factors[] = $n;
break;
}
$factor = $this->pollard_brent($n);
$factors[] = $this->primefactors($factor);
$n = floor($n / $factor);
}
if ($sort) {
$factors = sort($factors);
}
return $factors;
}
function factorization($n)
{
$factors = [];
foreach (primefactors($n) as $p1) {
if(isset($factors[$p1])) {
$factors[$p1] += 1;
} else {
$factors[$p1] = 1;
}
}
return $factors;
}
function totient($n)
{
$totients = [];
if (($n == 0)) {
return 1;
}
if(isset($totients[$n])) {
return $totients[$n];
}
$tot = 1;
foreach (factorization($n) as $p => $exp) {
$tot *= (($p - 1) * pow($p, ($exp - 1)));
}
$totients[$n] = $tot;
return $tot;
}
function gcd($a, $b)
{
if (($a == $b)) {
return $a;
}
while (($b > 0)) {
list($a, $b) = [$b, ($a % $b)];
}
return $a;
}
function lcm($a, $b)
{
return floor(abs(($a * $b)) / $this->gcd($a, $b));
}
}