Azzolini Riccardo 2019-03-12

Grafi

1 Grafo non orientato

Un **grafo non orientato** è una coppia $G = \langle V, E \rangle$ dove

- V è l'insieme finito dei **vertici** o **nodi**;
- $E \subseteq V^{(2)}$ è l'insieme dei lati.

Nota: $V^{(2)} = \{U \subseteq V \mid |U| = 2\}$ è l'insieme dei sottoinsiemi di due elementi di V.

2 Grafo orientato

Un **grafo orientato** è una coppia $G = \langle V, E \rangle$ dove

- V è l'insieme finito dei **vertici** o **nodi**;
- $E \subseteq V^2$ è l'insieme degli **archi**.

3 Numero di lati o archi

Siano $G = \langle V, E \rangle$, n = |V|, m = |E|.

• Per un grafo non orientato, il numero di lati è

$$0 \le m \le \frac{n(n-1)}{2}$$

• Per un grafo orientato, il numero di archi è

$$0 < m < n^2$$

G si dice

- sparso se m = O(n);
- denso se $m = \Theta(n^2)$.

4 Sottografo

 $G' = \langle V', E' \rangle$ è un **sottografo** di $G = \langle V, E \rangle$ se e solo se

- $V' \subseteq V$, cioè G' ha solo vertici presenti in G;
- $E' \subseteq E \cap V'^{(2)}$ se G è non orientato, o $E' \subseteq E \cap V'^2$ se G è orientato, ovvero G' ha solo lati/archi che sono presenti in G e collegano vertici appartenenti a V'.

5 Cappio

In un grafo *orientato*, un arco (x, x), cioè da un nodo a se stesso, è chiamato **cappio**.

6 Adiacenza

Sia $G = \langle V, E \rangle$ un grafo. Un nodo $w \in V$ è adiacente a un altro nodo $v \in V$ se

- per G non orientato, esiste un lato tra $v \in w$, cioè $\{v, w\} \in E$;
- per G orientato, esiste un arco da v a w, cioè $(v, w) \in E$.

L'insieme di adiacenza di v è l'insieme di tutti i nodi adiacenti a v:

- Adiac $(v) = \{w \mid \{v, w\} \in E\}$ se G è non orientato;
- Adiac $(v) = \{w \mid (v, w) \in E\}$ se G è orientato;

7 Cammino

Un **cammino** in $G = \langle V, E \rangle$ è una sequenza di nodi x_1, x_2, \ldots, x_k , ciascuno collegato al successivo da un lato/arco, cioè tali che $\{x_i, x_{i+1}\} \in E$ (o $(x_i, x_{i+1}) \in E$) per ogni $1 \le i < k$.

Un cammino x_1, x_2, \ldots, x_k ha **lunghezza** k-1.

8 Ciclo

Un **ciclo** in $G = \langle V, E \rangle$ è un cammino x_1, x_2, \dots, x_k che inizia e finisce allo stesso nodo, cioè tale che $x_1 = x_k$.

9 Ciclo e cammino semplici

Un *ciclo* x_1, x_2, \ldots, x_k è **semplice** se e solo se tutti i suoi nodi sono diversi, eccetto il primo e l'ultimo, ovvero

$$x_i = x_j \iff i = 1 \land j = k$$

Un cammino, invece, è semplice se e solo se non contiene cicli.

10 Nodi, grafi e componenti connessi

Un nodo $v \in V$ è **connesso** a un altro nodo $w \in V$, e si scrive $v \diamond w$, se in $G = \langle V, E \rangle$ esiste un cammino da v a w.

 $G = \langle V, E \rangle$ è un **grafo connesso** se e solo se tutti i suoi nodi sono connessi tra loro, cioè

$$v \diamond w \quad \forall v, w \in V$$

In un grafo $G=\langle V,E\rangle, \diamond$ è una relazione binaria riflessiva e transitiva sull'insieme V. Se G è non orientato, ogni cammino si può percorrere in entrambe le direzioni. Di conseguenza,

$$v \diamond w \iff w \diamond v$$

ovvero \diamond è anche simmetrica, e quindi è una relazione di equivalenza, le cui classi di equivalenza, chiamate **componenti connesse** di G, sono gruppi di nodi tutti connessi tra di loro. L'insieme quoziente V/\diamond è allora l'insieme delle componenti connesse di G.

11 Rappresentazioni

Un grafo $G = \langle V, E \rangle$ può essere rappresentato tramite

liste di adiacenza: una lista di tutti i nodi e, per ciascuno di essi, una lista dei nodi adiacenti;

matrice di adiacenza: una matrice quadrata binaria, nella quale l'elemento a_{ij} ha valore 1 se esiste il lato $\{x_i, x_i\}$ (o l'arco (x_i, x_i)), altrimenti ha valore 0.

Osservazione: Se G è non orientato, la matrice è simmetrica rispetto alla diagonale principale e tutti gli elementi su tale diagonale sono 0 (perché i cappi esistono solo nei grafi orientati).

Se n = |V| e m = |E|, allora

- la rappresentazione con liste di adiacenza occupa spazio $\Theta(n+m)$, ma richiede tempo $O(n)^1$ per stabilire se esiste un lato/arco;
- la rappresentazione con matrice di adiacenza occupa solitamente più spazio, $\Theta(n^2)$, ma in compenso permette di stabilire se un lato/arco esiste in tempo O(1).

In pratica, conviene rappresentare

- grafi sparsi mediante liste di adiacenza;
- grafi densi mediante matrice di adiacenza.

Infatti, nel caso di un grafo denso, cioè con $m=\Theta(n^2)$, anche le liste di adiacenza occuperebbero spazio $\Theta(n+n^2)=\Theta(n^2)$, quindi l'uso di una matrice di adiacenza permette di ridurre il tempo necessario per le operazioni pur occupando lo stesso spazio (in termini asintotici).

¹Nel caso peggiore è necessario scorrere per intero la lista di nodi, $\Theta(n)$, e una lista di adiacenza contenente tutti gli altri nodi, $\Theta(n)$.