tdlight/tdactor/test/actors_simple.cpp

672 lines
16 KiB
C++
Raw Normal View History

//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2020
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/utils/tests.h"
#include "td/actor/actor.h"
#include "td/actor/MultiPromise.h"
#include "td/actor/PromiseFuture.h"
#include "td/actor/SleepActor.h"
#include "td/actor/Timeout.h"
#include "td/utils/common.h"
#include "td/utils/logging.h"
#include "td/utils/MpscPollableQueue.h"
#include "td/utils/Observer.h"
#include "td/utils/port/detail/PollableFd.h"
#include "td/utils/port/FileFd.h"
#include "td/utils/port/thread.h"
#include "td/utils/Slice.h"
#include "td/utils/Status.h"
#include "td/utils/StringBuilder.h"
#include "td/utils/Time.h"
#include <memory>
#include <tuple>
REGISTER_TESTS(actors_simple)
namespace {
using namespace td;
static const size_t BUF_SIZE = 1024 * 1024;
static char buf[BUF_SIZE];
static char buf2[BUF_SIZE];
static StringBuilder sb(MutableSlice(buf, BUF_SIZE - 1));
static StringBuilder sb2(MutableSlice(buf2, BUF_SIZE - 1));
static auto create_queue() {
auto res = std::make_shared<MpscPollableQueue<EventFull>>();
res->init();
return res;
}
TEST(Actors, SendLater) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
sb.clear();
Scheduler scheduler;
scheduler.init(0, {create_queue()}, nullptr);
auto guard = scheduler.get_guard();
class Worker : public Actor {
public:
void f() {
sb << "A";
}
};
auto id = create_actor<Worker>("Worker");
scheduler.run_no_guard(Timestamp::now());
send_closure(id, &Worker::f);
send_closure_later(id, &Worker::f);
send_closure(id, &Worker::f);
ASSERT_STREQ("A", sb.as_cslice().c_str());
scheduler.run_no_guard(Timestamp::now());
ASSERT_STREQ("AAA", sb.as_cslice().c_str());
}
class X {
public:
X() {
sb << "[cnstr_default]";
}
X(const X &) {
sb << "[cnstr_copy]";
}
X(X &&) {
sb << "[cnstr_move]";
}
X &operator=(const X &) {
sb << "[set_copy]";
return *this;
}
X &operator=(X &&) {
sb << "[set_move]";
return *this;
}
~X() = default;
};
class XReceiver final : public Actor {
public:
void by_const_ref(const X &) {
sb << "[by_const_ref]";
}
void by_lvalue_ref(const X &) {
sb << "[by_lvalue_ref]";
}
void by_value(X) {
sb << "[by_value]";
}
};
TEST(Actors, simple_pass_event_arguments) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
Scheduler scheduler;
scheduler.init(0, {create_queue()}, nullptr);
auto guard = scheduler.get_guard();
auto id = create_actor<XReceiver>("XR").release();
scheduler.run_no_guard(Timestamp::now());
X x;
// check tuple
// std::tuple<X> tx;
// sb.clear();
// std::tuple<X> ty(std::move(tx));
// tx = std::move(ty);
// ASSERT_STREQ("[cnstr_move]", sb.as_cslice().c_str());
// Send temporary object
// Tmp-->ConstRef
sb.clear();
send_closure(id, &XReceiver::by_const_ref, X());
ASSERT_STREQ("[cnstr_default][by_const_ref]", sb.as_cslice().c_str());
// Tmp-->ConstRef (Delayed)
sb.clear();
send_closure_later(id, &XReceiver::by_const_ref, X());
scheduler.run_no_guard(Timestamp::now());
// LOG(ERROR) << sb.as_cslice();
ASSERT_STREQ("[cnstr_default][cnstr_move][by_const_ref]", sb.as_cslice().c_str());
// Tmp-->LvalueRef
sb.clear();
send_closure(id, &XReceiver::by_lvalue_ref, X());
ASSERT_STREQ("[cnstr_default][by_lvalue_ref]", sb.as_cslice().c_str());
// Tmp-->LvalueRef (Delayed)
sb.clear();
send_closure_later(id, &XReceiver::by_lvalue_ref, X());
scheduler.run_no_guard(Timestamp::now());
ASSERT_STREQ("[cnstr_default][cnstr_move][by_lvalue_ref]", sb.as_cslice().c_str());
// Tmp-->Value
sb.clear();
send_closure(id, &XReceiver::by_value, X());
ASSERT_STREQ("[cnstr_default][cnstr_move][by_value]", sb.as_cslice().c_str());
// Tmp-->Value (Delayed)
sb.clear();
send_closure_later(id, &XReceiver::by_value, X());
scheduler.run_no_guard(Timestamp::now());
ASSERT_STREQ("[cnstr_default][cnstr_move][cnstr_move][by_value]", sb.as_cslice().c_str());
// Var-->ConstRef
sb.clear();
send_closure(id, &XReceiver::by_const_ref, x);
ASSERT_STREQ("[by_const_ref]", sb.as_cslice().c_str());
// Var-->ConstRef (Delayed)
sb.clear();
send_closure_later(id, &XReceiver::by_const_ref, x);
scheduler.run_no_guard(Timestamp::now());
ASSERT_STREQ("[cnstr_copy][by_const_ref]", sb.as_cslice().c_str());
// Var-->LvalueRef
// Var-->LvalueRef (Delayed)
// CE or stange behaviour
// Var-->Value
sb.clear();
send_closure(id, &XReceiver::by_value, x);
ASSERT_STREQ("[cnstr_copy][by_value]", sb.as_cslice().c_str());
// Var-->Value (Delayed)
sb.clear();
send_closure_later(id, &XReceiver::by_value, x);
scheduler.run_no_guard(Timestamp::now());
ASSERT_STREQ("[cnstr_copy][cnstr_move][by_value]", sb.as_cslice().c_str());
}
class PrintChar final : public Actor {
public:
PrintChar(char c, int cnt) : char_(c), cnt_(cnt) {
}
void start_up() override {
yield();
}
void wakeup() override {
if (cnt_ == 0) {
stop();
} else {
sb << char_;
cnt_--;
yield();
}
}
private:
char char_;
int cnt_;
};
} // namespace
//
// Yield must add actor to the end of queue
//
TEST(Actors, simple_hand_yield) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
Scheduler scheduler;
scheduler.init(0, {create_queue()}, nullptr);
sb.clear();
int cnt = 1000;
{
auto guard = scheduler.get_guard();
create_actor<PrintChar>("PrintA", 'A', cnt).release();
create_actor<PrintChar>("PrintB", 'B', cnt).release();
create_actor<PrintChar>("PrintC", 'C', cnt).release();
}
scheduler.run(Timestamp::now());
std::string expected;
for (int i = 0; i < cnt; i++) {
expected += "ABC";
}
ASSERT_STREQ(expected.c_str(), sb.as_cslice().c_str());
}
class Ball {
public:
friend void start_migrate(Ball &ball, int32 sched_id) {
sb << "start";
}
friend void finish_migrate(Ball &ball) {
sb2 << "finish";
}
};
class Pong final : public Actor {
public:
void pong(Ball ball) {
Scheduler::instance()->finish();
}
};
class Ping final : public Actor {
public:
explicit Ping(ActorId<Pong> pong) : pong_(pong) {
}
void start_up() override {
send_closure(pong_, &Pong::pong, Ball());
}
private:
ActorId<Pong> pong_;
};
TEST(Actors, simple_migrate) {
sb.clear();
sb2.clear();
ConcurrentScheduler scheduler;
scheduler.init(2);
auto pong = scheduler.create_actor_unsafe<Pong>(2, "Pong").release();
scheduler.create_actor_unsafe<Ping>(1, "Ping", pong).release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
#if TD_THREAD_UNSUPPORTED || TD_EVENTFD_UNSUPPORTED
ASSERT_STREQ("", sb.as_cslice().c_str());
ASSERT_STREQ("", sb2.as_cslice().c_str());
#else
ASSERT_STREQ("start", sb.as_cslice().c_str());
ASSERT_STREQ("finish", sb2.as_cslice().c_str());
#endif
}
class OpenClose final : public Actor {
public:
explicit OpenClose(int cnt) : cnt_(cnt) {
}
void start_up() override {
yield();
}
void wakeup() override {
ObserverBase *observer = reinterpret_cast<ObserverBase *>(123);
if (cnt_ > 0) {
auto r_file_fd = FileFd::open("server", FileFd::Read | FileFd::Create);
LOG_CHECK(r_file_fd.is_ok()) << r_file_fd.error();
auto file_fd = r_file_fd.move_as_ok();
{ PollableFd pollable_fd = file_fd.get_poll_info().extract_pollable_fd(observer); }
file_fd.close();
cnt_--;
yield();
} else {
Scheduler::instance()->finish();
}
}
private:
int cnt_;
};
TEST(Actors, open_close) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
ConcurrentScheduler scheduler;
scheduler.init(2);
int cnt = 1000000;
#if TD_WINDOWS || TD_ANDROID
// TODO(perf) optimize
cnt = 100;
#endif
scheduler.create_actor_unsafe<OpenClose>(1, "A", cnt).release();
scheduler.create_actor_unsafe<OpenClose>(2, "B", cnt).release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
}
namespace {
class MsgActor : public Actor {
public:
virtual void msg() = 0;
};
class Slave : public Actor {
public:
ActorId<MsgActor> msg;
explicit Slave(ActorId<MsgActor> msg) : msg(msg) {
}
void hangup() override {
send_closure(msg, &MsgActor::msg);
}
};
class MasterActor : public MsgActor {
public:
void loop() override {
alive_ = true;
slave = create_actor<Slave>("slave", static_cast<ActorId<MsgActor>>(actor_id(this)));
stop();
}
ActorOwn<Slave> slave;
MasterActor() = default;
MasterActor(const MasterActor &) = delete;
MasterActor &operator=(const MasterActor &) = delete;
MasterActor(MasterActor &&) = delete;
MasterActor &operator=(MasterActor &&) = delete;
~MasterActor() override {
alive_ = 987654321;
}
void msg() override {
CHECK(alive_ == 123456789);
}
uint64 alive_ = 123456789;
};
} // namespace
TEST(Actors, call_after_destruct) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
Scheduler scheduler;
scheduler.init(0, {create_queue()}, nullptr);
{
auto guard = scheduler.get_guard();
create_actor<MasterActor>("Master").release();
}
scheduler.run(Timestamp::now());
}
class LinkTokenSlave : public Actor {
public:
explicit LinkTokenSlave(ActorShared<> parent) : parent_(std::move(parent)) {
}
void add(uint64 link_token) {
CHECK(link_token == get_link_token());
}
void close() {
stop();
}
private:
ActorShared<> parent_;
};
class LinkTokenMasterActor : public Actor {
public:
explicit LinkTokenMasterActor(int cnt) : cnt_(cnt) {
}
void start_up() override {
child_ = create_actor<LinkTokenSlave>("Slave", actor_shared(this, 123)).release();
yield();
}
void loop() override {
for (int i = 0; i < 100 && cnt_ > 0; cnt_--, i++) {
auto token = static_cast<uint64>(cnt_) + 1;
switch (i % 4) {
case 0: {
send_closure(ActorShared<LinkTokenSlave>(child_, token), &LinkTokenSlave::add, token);
break;
}
case 1: {
send_closure_later(ActorShared<LinkTokenSlave>(child_, token), &LinkTokenSlave::add, token);
break;
}
case 2: {
EventCreator::closure(ActorShared<LinkTokenSlave>(child_, token), &LinkTokenSlave::add, token).try_emit();
break;
}
case 3: {
EventCreator::closure(ActorShared<LinkTokenSlave>(child_, token), &LinkTokenSlave::add, token)
.try_emit_later();
break;
}
}
}
if (cnt_ == 0) {
send_closure(child_, &LinkTokenSlave::close);
} else {
yield();
}
}
void hangup_shared() override {
CHECK(get_link_token() == 123);
Scheduler::instance()->finish();
stop();
}
private:
int cnt_;
ActorId<LinkTokenSlave> child_;
};
TEST(Actors, link_token) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
ConcurrentScheduler scheduler;
scheduler.init(0);
auto cnt = 100000;
scheduler.create_actor_unsafe<LinkTokenMasterActor>(0, "A", cnt).release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
}
TEST(Actors, promise) {
int value = -1;
Promise<int> p1 = PromiseCreator::lambda([&](int x) { value = x; });
p1.set_error(Status::Error("Test error"));
ASSERT_EQ(0, value);
Promise<int32> p2 = PromiseCreator::lambda([&](Result<int32> x) { value = 1; });
p2.set_error(Status::Error("Test error"));
ASSERT_EQ(1, value);
}
class LaterSlave : public Actor {
public:
explicit LaterSlave(ActorShared<> parent) : parent_(std::move(parent)) {
}
private:
ActorShared<> parent_;
void hangup() override {
sb << "A";
send_closure(actor_id(this), &LaterSlave::finish);
}
void finish() {
sb << "B";
stop();
}
};
class LaterMasterActor : public Actor {
int cnt_ = 3;
std::vector<ActorOwn<LaterSlave>> children_;
void start_up() override {
for (int i = 0; i < cnt_; i++) {
children_.push_back(create_actor<LaterSlave>("B", actor_shared(this)));
}
yield();
}
void loop() override {
children_.clear();
}
void hangup_shared() override {
if (!--cnt_) {
Scheduler::instance()->finish();
stop();
}
}
};
TEST(Actors, later) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
sb.clear();
ConcurrentScheduler scheduler;
scheduler.init(0);
scheduler.create_actor_unsafe<LaterMasterActor>(0, "A").release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
ASSERT_STREQ(sb.as_cslice().c_str(), "AAABBB");
}
class MultiPromise2 : public Actor {
public:
void start_up() override {
auto promise = PromiseCreator::lambda([](Result<Unit> result) {
result.ensure();
Scheduler::instance()->finish();
});
MultiPromiseActorSafe multi_promise{"MultiPromiseActor2"};
multi_promise.add_promise(std::move(promise));
for (int i = 0; i < 10; i++) {
create_actor<SleepActor>("Sleep", 0.1, multi_promise.get_promise()).release();
}
}
};
class MultiPromise1 : public Actor {
public:
void start_up() override {
auto promise = PromiseCreator::lambda([](Result<Unit> result) {
CHECK(result.is_error());
create_actor<MultiPromise2>("B").release();
});
MultiPromiseActorSafe multi_promise{"MultiPromiseActor1"};
multi_promise.add_promise(std::move(promise));
}
};
TEST(Actors, MultiPromise) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
sb.clear();
ConcurrentScheduler scheduler;
scheduler.init(0);
scheduler.create_actor_unsafe<MultiPromise1>(0, "A").release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
}
class FastPromise : public Actor {
public:
void start_up() override {
PromiseFuture<int> pf;
auto promise = pf.move_promise();
auto future = pf.move_future();
promise.set_value(123);
CHECK(future.move_as_ok() == 123);
Scheduler::instance()->finish();
}
};
TEST(Actors, FastPromise) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
sb.clear();
ConcurrentScheduler scheduler;
scheduler.init(0);
scheduler.create_actor_unsafe<FastPromise>(0, "A").release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
}
class StopInTeardown : public Actor {
void loop() override {
stop();
}
void tear_down() override {
stop();
Scheduler::instance()->finish();
}
};
TEST(Actors, stop_in_teardown) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
sb.clear();
ConcurrentScheduler scheduler;
scheduler.init(0);
scheduler.create_actor_unsafe<StopInTeardown>(0, "A").release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
}
class AlwaysWaitForMailbox : public Actor {
public:
void start_up() override {
always_wait_for_mailbox();
create_actor<SleepActor>("Sleep", 0.1, PromiseCreator::lambda([actor_id = actor_id(this), ptr = this](Unit) {
send_closure(actor_id, &AlwaysWaitForMailbox::g);
send_closure(actor_id, &AlwaysWaitForMailbox::g);
CHECK(!ptr->was_f_);
}))
.release();
}
void f() {
was_f_ = true;
Scheduler::instance()->finish();
}
void g() {
send_closure(actor_id(this), &AlwaysWaitForMailbox::f);
}
private:
Timeout timeout_;
bool was_f_{false};
};
TEST(Actors, always_wait_for_mailbox) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
ConcurrentScheduler scheduler;
scheduler.init(0);
scheduler.create_actor_unsafe<AlwaysWaitForMailbox>(0, "A").release();
scheduler.start();
while (scheduler.run_main(10)) {
}
scheduler.finish();
}
#if !TD_THREAD_UNSUPPORTED && !TD_EVENTFD_UNSUPPORTED
TEST(Actors, send_from_other_threads) {
SET_VERBOSITY_LEVEL(VERBOSITY_NAME(ERROR));
ConcurrentScheduler scheduler;
scheduler.init(1);
int thread_n = 10;
class Listener : public Actor {
public:
explicit Listener(int cnt) : cnt_(cnt) {
}
void dec() {
if (--cnt_ == 0) {
Scheduler::instance()->finish();
}
}
private:
int cnt_;
};
auto A = scheduler.create_actor_unsafe<Listener>(1, "A", thread_n).release();
scheduler.start();
std::vector<td::thread> threads(thread_n);
for (auto &thread : threads) {
thread = td::thread([&A, &scheduler] {
auto guard = scheduler.get_send_guard();
send_closure(A, &Listener::dec);
});
}
while (scheduler.run_main(10)) {
}
for (auto &thread : threads) {
thread.join();
}
scheduler.finish();
}
#endif