129 lines
3.4 KiB
C++
Raw Normal View History

//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2020
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/mtproto/crypto.h"
#include "td/mtproto/mtproto_api.h"
#include "td/utils/as.h"
#include "td/utils/common.h"
#include "td/utils/crypto.h"
#include "td/utils/misc.h"
#include "td/utils/Random.h"
#include "td/utils/ScopeGuard.h"
#include "td/utils/Slice.h"
#include "td/utils/Status.h"
#include "td/utils/tl_storers.h"
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
namespace td {
/*** RSA ***/
RSA::RSA(BigNum n, BigNum e) : n_(std::move(n)), e_(std::move(e)) {
}
RSA RSA::clone() const {
return RSA(n_.clone(), e_.clone());
}
Result<RSA> RSA::from_pem_public_key(Slice pem) {
init_crypto();
auto *bio =
BIO_new_mem_buf(const_cast<void *>(static_cast<const void *>(pem.ubegin())), narrow_cast<int32>(pem.size()));
if (bio == nullptr) {
return Status::Error("Cannot create BIO");
}
SCOPE_EXIT {
BIO_free(bio);
};
auto rsa = PEM_read_bio_RSAPublicKey(bio, nullptr, nullptr, nullptr);
if (rsa == nullptr) {
return Status::Error("Error while reading rsa pubkey");
}
SCOPE_EXIT {
RSA_free(rsa);
};
if (RSA_size(rsa) != 256) {
return Status::Error("RSA_size != 256");
}
const BIGNUM *n_num;
const BIGNUM *e_num;
#if OPENSSL_VERSION_NUMBER < 0x10100000L
n_num = rsa->n;
e_num = rsa->e;
#else
RSA_get0_key(rsa, &n_num, &e_num, nullptr);
#endif
auto n = static_cast<void *>(BN_dup(n_num));
auto e = static_cast<void *>(BN_dup(e_num));
if (n == nullptr || e == nullptr) {
return Status::Error("Cannot dup BIGNUM");
}
return RSA(BigNum::from_raw(n), BigNum::from_raw(e));
}
int64 RSA::get_fingerprint() const {
// string objects are necessary, because mtproto_api::rsa_public_key contains Slice inside
string n_str = n_.to_binary();
string e_str = e_.to_binary();
mtproto_api::rsa_public_key public_key(n_str, e_str);
size_t size = tl_calc_length(public_key);
std::vector<unsigned char> tmp(size);
size = tl_store_unsafe(public_key, tmp.data());
CHECK(size == tmp.size());
unsigned char key_sha1[20];
sha1(Slice(tmp.data(), tmp.size()), key_sha1);
return as<int64>(key_sha1 + 12);
}
size_t RSA::size() const {
// Checked in RSA::from_pem_public_key step
return 256;
}
size_t RSA::encrypt(unsigned char *from, size_t from_len, size_t max_from_len, unsigned char *to, size_t to_len) const {
CHECK(from_len > 0 && from_len <= 2550);
size_t pad = (25500 - from_len - 32) % 255 + 32;
size_t chunks = (from_len + pad) / 255;
int bits = n_.get_num_bits();
CHECK(bits >= 2041 && bits <= 2048);
CHECK(chunks * 255 == from_len + pad);
CHECK(from_len + pad <= max_from_len);
CHECK(chunks * 256 <= to_len);
Random::secure_bytes(from + from_len, pad);
BigNumContext ctx;
BigNum y;
while (chunks-- > 0) {
BigNum x = BigNum::from_binary(Slice(from, 255));
BigNum::mod_exp(y, x, e_, n_, ctx);
MutableSlice(to, 256).copy_from(y.to_binary(256));
to += 256;
}
return chunks * 256;
}
void RSA::decrypt_signature(Slice from, MutableSlice to) const {
CHECK(from.size() == 256);
BigNumContext ctx;
BigNum x = BigNum::from_binary(from);
BigNum y;
BigNum::mod_exp(y, x, e_, n_, ctx);
to.copy_from(y.to_binary(256));
}
} // namespace td